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ABSTRACT

In	the	same	way	that	we	have	the	ability	to	detect	single	particles	of	light	-	photons

-	in	optical	experiments	and	devices, the	role	of	a	single	atom	counter	in	analo-

gous	set-ups	using	atoms	is	of	notable	interest. It	is	also	a	role	that	has	yet	to	be

properly	fulfilled, particularly	in	the	case	of	cold, neutral	atoms. In	this	thesis, we

investigate	the	use	of	an	optical	cavity	of	modest	finesse	to	detect	single	rubid-

ium	atoms. We	explore	the	system	with	theoretical	modelling	and	experimental

testing. This	is	the	first	study	of	optical	cavities	that	thoroughly	considers	the	opti-

misation	of	design	for	high-quantum	efficiency, low-noise	single-atom	counting,

with	an	investigation	of	such	a	comprehensive	range	of	parameters.

We	model	 the	 atom	detection	with	 a	quantum	description	of	 a	 two-level

atom	and	single	cavity	mode. Specifically, we	numerically	solve	a	set	of	ODEs

that	define	the	field	of	a	Fabry-Perot	cavity	mode	in	a	truncated	Fock	basis. Their

solution	gives	the	steady-state	density	matrix	for	the	cavity-atom	system	that	is

subsequently	used	to	determine	the	expectation	values	for	a	range	of	operators.

Our	modelling	presents	a	set	of	variables	that	define	a	large	parameter	space.

We	consider	the	full	parameter	space	in	order	to	find	the	best	theoretical	signal-

to-noise	ratio	for	a	maximally	coupled	atom. We	find	good	signal-to-noise	ratios

are	achieved	using	both	resonant	and	detuned	frequencies	for	the	probe	laser	and

cavity	resonance, provided	the	intra-cavity	intensity	corresponds	approximately

to	the	atomic	saturation	intensity. This	requires	increasing	driving	power	in	the

probe	beam	as	the	detuning	is	increased. A corollary	is	that	the	probe	powers

resulting	in	the	best	signal-to-noise	ratios	-	particularly	for	detuned	detection	-

are	higher	than	the	saturation	intensity	for	a	typical	avalanche	photodiode. Con-

sequently	heterodyne	detection	 is	determined	 to	be	 the	best	photon	detection

system	for	the	cavity	set-up.
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We	proceed	to	refine	the	model, with	simulations	of	atomic	trajectories	that

account	for	various	forces	within	the	cavity	mode. The	dipole	force	results	in	a

strong	channelling	of	atoms	into	high-coupling	regions	of	the	mode, meaning	that

detuned	detection	results	in	better	quantum	efficiencies	than	resonant	detection.

High	quantum	efficiencies	accompanied	by	 low	 false-count	 rates	 suggests	 the

ability	to	detect	the	statistics	of	an	atomic	source	with	high	sensitivity. A clearance

of	more	than	20dB above	the	atomic	noise-floor	is	found	for	detuned	detection,

and	approximately	8dB for	resonant	detection.

The	experimental	investigation	of	cavity	detection	is	realised	with	an	under-

coupled	Fabry-Perot	 cavity	with	a	finesse	of	 approximately	 the	 same	value	as

our	modelled	cavity: 10000. We	study	resonant	detection. The	set-up	differs

somewhat	from	the	simulated	process	in	two	respects; our	measurements	are	not

shot-noise	limited	as	in	the	model, and	our	atoms	transit	the	cavity	much	faster

and	with	lower	density	resulting	in	a	substantially	weaker	signal. We	have	begun

the	 investigation	of	a	new	atomic	source	 that	will	produce	slower	atoms, and

hopefully	allow	a	more	complete	experimental	study	of	the	cavity	detector.
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CHAPTER

ONE

INTRODUCTION

1.1 What	is	‘quantum-atom	optics’?
This	thesis	will	focus	on	the	detection	of	single	atoms	from	cold	atomic	sources

in	the	research	field	of	quantum-atom	optics. In	its	present	form, quantum-atom

optics	is	intrinsically	concerned	with	quantum	mechanics	and	in	particular	the

wave-nature	of	massive	particles. The	term atom	optics refers	to	the	links	between

traditional	classical	and	quantum	optical	systems	that	make	use	of	light	(photons)

and	the	analogous	systems	that	use	atoms, or	more	generally, massive	particles

including	ions	and	molecules	[99].

Understanding	light	-	how	it	propagates	and	interacts	with	itself	and	the	en-

vironment	-	has	been	fundamentally	important	in	the	formation	of	quantum	me-

chanics	as	a	theoretical	framework. It	has	also	been	critical	to	the	development	of

one	of	the	most	indispensable	tools	of	experimental	scientific	research, the	laser,

that	is	used	in	a	plethora	of	scientific	and	technological	applications. The	avail-

ability	of	this	coherent	source	of	light	has	allowed	us	to	extend	the	precision	of	our

measurements	of	the	physical	world	beyond	the	possibilities	offered	by	thermal

light	sources. Quantum	mechanical	measurements, inevitably	pertaining	to	the

unimaginably	small, allow	us	to	determine	temporal	and	spatial	properties	with

precision	not	achievable	with	classical	devises	that	typically	suffer	from	thermal

fluctuations	orders	of	magnitude	larger	than	the	values	of	interest. It	is	therefore

natural	to	consider	the	extension	of	atom	optics	to quantum atom	optics, utilising

coherent	ensembles	of	cold	atoms	in	place	of	cold	thermal	ensembles	in	precision

1
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measurement	experiments	[16]	as	well	as	investigations	in	fundamental	physics

[80].

It	is	worth	remembering	that	‘quantum’	is	used	as	a	somewhat	flexible	term,

since	what	is	considered	‘non-classical’	for	light	(for	example, a	number	state)

may	seem	perfectly	classical	for	atoms. Nevertheless, in	both	photonic	and	atom

optics, wave-particle	duality	is	often	observed, which	in	itself	must	be	considered

a	very	non-classical	experience. Coherence	is	one	of	the	properties	most	com-

monly	thought	of	as	non-classical	for	atoms	and	one	of	its	principle	signatures

is	 the	uniformity	 in	 time	and	 space	of	 the	phase	 relationship	between	waves.

This	is first	order coherence. More	generally, coherence	may	be	thought	of	as

all	the	properties	that	define	correlations	between	two	sources. For	atomic	en-

sembles, the	best	coherence	is	achieved	with	a	Bose-Einstein	Condensate	(BEC),

and	the	experimental	realisation	of	this	state	in	1995	[10, 40]	has	fuelled	ongo-

ing	interest	in	theoretical	and	experimental	investigations	in	this	field. Research

has	included	the	production	of	atom	lasers	[98, 37, 61, 18, 120], the	measure-

ment	of	first	and	second-order	coherence	[11, 103], tuneable	particle	interactions

[46, 38, 119, 9]	and	correlations	[77, 103]	and	quantum	phase	transitions	[15].

BECs	and	atom	lasers	are	central	to	the	field	of	quantum-atom	optics	and	to	the

motivation	behind	this	thesis	-	which	will	focus	on	the	detection	of	single	atoms

from	such	sources	-	although	their	production	and	unique	characteristics	will	not

be	discussed	outside	of	this	introduction. For	details	on	the	standard	cooling	and

trapping	techniques	necessary	for	the	realisation	of	these	remarkable	quantum

states, the	reader	is	referred	to	the	extensive	literature	on	the	topic, for	example

reference	[97].

1.2 Why	detect	single	atoms?

It	 is	difficult	 to	 imagine	devices	based	on	cold	atoms, and	 in	particular, con-

densed, coherent	sources	-	with	 their	adverse	vacuum	requirements	and	often

restrictive	topological	arrangements	-	ever	becoming	common-place	in	the	way

that photonic lasers	have	done. Nevertheless	there	is	substantial	interest	in	their

potential	role	as	tools	of	precision	measurement	in	various	forms	of	interferometer

[21, 146, 44, 39]. In	horology, frequency	standards	based	on	atomic	and	molecu-

lar	beam	magnetic	resonance	were	suggested	as	far	back	as	the	1940s	[113], and

the	current	primary	standard	for	time	and	frequency	measurements	makes	use	of
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Ramsey	interferometry	in	a	caesium	fountain	clock, with	a	fractional	frequency

uncertainty	of 3×10−16 [106]. Atomic	oscillators	based	on	optical	transitions	offer

significantly	more	precision	than	the	microwave	transition	in	caesium, and	simi-

lar	technology	using	cold	ions	has	produced	a	clock	with	a	fractional	frequency

uncertainty	of	only 8.6 × 10−18 [32].

As	well	as	high	precision	time	standards, atom-interferometric	devices	have

been	used	to	measure	the	gravitational	constant, G [48, 88], the	fine	structure

constant, α [58, 28, 36]	and	to	probe	inertial	 forces	employing	measurements

of	accelerations	and	rotations	with	sensitivity	comparable	to	optical	gyroscopes

[59]. To	date, the	most	precise	measurements	achieved	with	atom	interferom-

eters	have	made	use	of	cold	thermal	atomic	sources	offering	higher	fluxes	than

BECs	[137, 108]. Although	the	coherence	of	a	condensed	source	is	an	attrac-

tive	feature, issues	such	as	matter-wave-front	distortion	limit	the	sensitivity	of	the

interferometric	measurements	they	provide. Often, to	improve	such	atom-beam

attributes, low	fluxes	are	used	[121], but	this	also	limits	sensitivity. However, as

with	quantum	optics	using	photons, in	the	absence	of	high	flux, improvement	of

interferometric	sensitivity	can	be	accomplished	using	‘squeezed’	states, and	spin-

squeezing	in	cold	atomic	samples	has	already	been	demonstrated	[57, 45, 116].

1.2.1 Measuring	quantum	statistics

The	ability	to	detect	squeezing	requires	detection	with	a	sensitivity	of	at	least ‘root

N’;	that	is	to	say	that	the	noise	of	the	detection	system	is	below	the	Poissonian

noise	of	a	shot	noise-limited	atomic	source, with	a	mean	flux	of N atoms	per

measurement	interval. Indeed, as	with	the	measurement	of	squeezing, any novel

quantum	statistics	are	only	distinguishable	when	detection	sensitivity	exceeds	the

Poissonian	limit	of
√

N . In	order	to	directly	probe	these	novel	quantum	statistics

in	cold	atomic	gases, a	detector	with	sensitivity	at	the	single-atom	level	is	desir-

able, and	certainly	a	detection	sensitivity	of	at	least
√

N is	required. An	important

consideration	for	any	detection	device, is	the	dark-noise	-	or	noise-floor	-	clear-

ance, which	tells	us	how	much	head-room	there	is	between	this root	N limit, and

the	inherent	noise	of	the	detector. Given	the	profound	difficulties	in	achieving

sensitive	atomic	detection, it	is	a	worthy	pursuit	to	investigate	the	potential	of	a

chosen	detection	set-up	using	this	figure	of	merit. The	possibility	of	measuring

squeezing	in	an	atom	laser	beam, and	determining	the	noise-floor	clearance	of

a	cavity-based	detector	is	an	important	theme	in	this	thesis, and	in	particular	in
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the	work	presented	in	chapter	4.

More	generally, in	the	same	way	that	quantum-photon	optics	makes	use	of

single	photon	counters, it	is	reasonable	to	suppose	that	quantum-atom	optics	will

require	atom	detectors	with	single-particle	resolution. It	is	considered	that	studies

of	massive	particle	entanglement, quantum	information	processing, and	quantum

control	may	well	rely	on	the	manipulation	and	detection	of	single	particles.

For	BECs	and	atoms	 lasers, there	has	 also	been	 substantial	 interest	 in	 the

measurement	 of	 higher-order	 coherence	 in	 atomic	 fields	 [147]. In	 BECs, the

third-order	 correlation	 function g3(x) has	been	observed	directly	 [68]	 and via

measurement	of	three-body	losses	[27], and	several	experiments	have	measured

the	second-order	correlation	function g2(x) [68, 127, 77, 83]. The	second	order

correlation-function	of	an	atom	laser	has	also	been	measured	[103], but, since

atom	lasers	tend	to	have	lower	flux	than	BECs, measurements	using	lasers	instead

of	condensates	require	more	sensitive	detection.

1.2.2 Producing	non-classical	atomic	beams

The	production	of	non-classical	states	 in	an	atomic	ensemble	 is	not	 in	 itself	a

trivial	pursuit, and	a	detailed	discussion	of	the	theoretical	and	practical	consid-

erations	 is	beyond	 the	scope	of	 this	 thesis. Nevertheless, given	 its	 role	 in	 the

motivation	behind	this	work, a	brief	mention	as	to	how	such	states	in	an	atom

laser	beam	might	be	achieved	must	be	included.

Mechanisms	for	squeezing	proceed via interactions	-	or	non	linear	terms	in

the	Hamiltonian. In	quantum	optics	applications, photon-photon	interactions	in

vacuum	do	not	occur, and	a	substantial	engineering	effort	is	required	to	produce

a	non-linear	medium	capable	of	optical	 squeezing. Atoms	 interact	with	each

other	and	with	photons, and	squeeze	for	free, and	a	variety	of	mechanisms	has

been	proposed	 for	 the	production	of	 squeezing	 in	atomic	beams. Atom-atom

interactions	can	be	used	to	create	entanglement	in	atomic	spin	[43, 111]. Alter-

natively, the	quantum	state	of	a	squeezed	optical	field	can	be	transferred	onto

the	atomic	beam	[49, 79, 63].

In	 the	first	 case, collisions	between	 two	 trapped	condensate	atoms	 in	 the

|mF = 0⟩ spin-state, can	produce	a	pair	of	atoms, one	in	the |mF = +1⟩ state
and	one	in	the |mF = −1⟩ state, with	sufficient	energy	to	escape	the	trap, gener-
ating	correlated	atom	laser	beams. Other	proposals	involve	generating	number

squeezing	using	non-linear	interactions	between	atoms	within	a	BEC with	two
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internal	states	[62, 132, 90, 84].

In	the	second	case, squeezing	occurs via atom-photon	interactions. When

an	atomic	and	an	optical	field	are	coupled, they	can	be	described	together	by

a	single	mode, and	complete	state	transfer	occurs	between	them	in	a	Rabi-like

cycle. The	creation	of	non-classical	 light	 is	well	 established	 [20, 12, 89, 75,

114], and	it	seems	reasonable	that	a	non-classical	atom-laser	can	be	generated

by	transferring	the	quantum	state	of	an	optical	mode	to	an	atomic	beam	so	that

the	transmitted	light	 is	entangled	in	amplitude	and	phase	with	the	outcoupled

atom	laser	beam	[64, 63].

Finally, it	 is	worth	noting	 a	 further	 consideration	 in	 atomic	 squeezing, as

compared	to	its	optical	counterpart: one	complexity	in	optical	squeezing	is	the

immense	susceptibility	to	loss	due	to	scattering	and	absorption	in	a	typical	lab

environment. The	vacuum	chamber	 required	 for	a	cold	atom	experiment	 is	a

sunk	cost. We	may	as	well	take	advantage	of	it	and	use	this	low	loss, clean	envi-

ronment	with	squeezed	atomic	sources. The	realisation	of	spin-squeezed	states

of	a	two-component	Bose	Einstein	condensate	have	recently	been	demonstrated

experimentally	[57, 116].

1.3 Detection	techniques

This	thesis	is	concerned	with	the	high	quantum	efficiency	detection	of	cold	atoms

with	single-particle	resolution, using	an	optical	cavity. The	detection	process	re-

lies	on	the	coupling	of	the	atom	to	the	cavity	field	and	the	subsequent	measure-

ment	of	the	field. These	will	be	discussed	in	chapters	2 and	3. The	interaction

was	described	in	1963	by	Jaynes	and	Cummings	[76], and	the	quantised	picture

they	presented	has	subsequently	become	known	as	the	Jaynes-Cummings	model.

Research	in	which	the	Jaynes-Cummings	Hamiltonian	plays	a	central	role, gen-

erally	referred	to	as	cavity	quantum	electrodynamics	(cavity	QED),	continues	to

fuel	significant	interest	in	quantum	information	science	[92].

The	coupling	process	results	in	‘dressed	states’	that	have	different	resonant

frequencies	to	the	bare-atom	and	empty	cavity. Consequently	an	atom	inside	the

cavity	disrupts	the	transmission	of	a	probe	laser, and	observing	changes	in	the

cavity	output	field	can	be	used	to	establish	the	presence	of	a	single	atom. The

system	has	been	demonstrated	with	a	Fabry-Pérot	cavity	used	 to	detect	 single

atoms	in	a	thermal	atomic	source	[93, 70], as	well	as	from	a	coherent	matter	wave
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[104], and	the	possibility	of	cavity	detection	of	single	atoms	using	more	exotic

cavities	has	been	 investigated	 [122]. Outside	 their	use	as	detectors	 for	 single

atoms, optical	cavities	have	been	used	to	couple	to	relatively	large	ensembles,

including	BECs	of	several	thousand	atoms	[24, 118], as	well	as	to	demonstrate

‘optomechanics’	in	macroscopic	components	whose	behaviour	is	described	in

the	quantum	regime	[24, 142, 65, 86]. The	motion	of	atoms	within	the	cavity

mode	has	been	observed	[42, 101, 72], and	several	groups	have	investigated	the

phenomenon	of	Vacuum	Rabi	splitting, using	optical, microwave	and	solid-state

cavities	coupled	to	a	variety	of	two-state	systems	[136, 94, 81, 67].

Cavities	are	not	the	only	possibility	for	atomic	detection. Broadly	speaking,

the	options	available	can	be	divided	into	two	categories: optical	and	physical

detection. Optical	detection	(of	which	cavities	are	an	example)	relies	on	obser-

vations	of	light	fields	that	are	in	some	way	associated	with	the	presence	of	an

atom, while	physical	detection	measures	an	atom	when	it	makes	contact	with

some	other	material	component	that	is	a	part	of	the	detector.

Probably	the	most	common	technique	used	in	experimental	set-ups	for	atom

detection	is	absorption	imaging. While	free-space	absorption	imaging	is	a	reli-

able	and	relatively	straight-forward	process, it	is	generally	only	appropriate	for

sufficiently	optically	deep	atomic	 samples, and	 is	 not	 a	 favourable	option	 for

single	atom	detection	[91]. Single	molecules have been	observed	with	this	tech-

nique	[51]	but	only	with	long	integration	times; ruling	out	high	bandwidth	de-

tection.

One	of	the	most	theoretically	simple	(though	often	technically	challenging)

optical	 detection	 schemes	 is	 fluorescence	 detection, which	measures	 sponta-

neously	emitted	photons	 from	an	atom	 in	 the	detection	 region. Single	atoms

at	well	 determined	optical	 lattice	 sites	have	been	observed	with	fluorescence

detection	[87], as	has	 the	direct	measurement	of	 sub-Poissonian	statistics	 in	a

trapped	BEC [33]. Provided	the	photon	detection	optics	account	for	a	sufficient

numerical	aperture	surrounding	the	atom-detection	region, the	fluorescence	sig-

nal	can	be	strong	[7]. If	this	is	not	the	case, or	the	background	counts	are	too	high,

atoms	need	to	be	many	[129, 137], or	trapped	on	the	order	of 100µs	[87, 33, 55],

to	 acquire	 high	 signal-to-noise	 ratios. For	 atoms	 trapped	 in	 a	 2D optical	 lat-

tice, imaging	of	macroscopic	atomic	ensembles	with	single-atom	resolution	and

impressive	sensitivity	has	been	achieved	using	very	high	numerical	aperture	flu-
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orescence	 imaging	[14, 131]. These	 ‘quantum	gas	microscopes’	achieve	near

unity	fidelity	in	their	atom	detection, although	the	necessary	exposure	times	are

long; typically	between	200	and	1000	ms. Fast	detection	times	for	single	atoms

have	been	achieved	using	an	integrated	chip/detector	scheme	[145]. Although

practically	very	different, of	the	current	available	detection	techniques, fluores-

cence	detection	is	the	most	comparable	candidate	to	cavity	detection. The	two

approaches	have	even	be	used	in	a	single	integrated	set-up	[55], but	there	has	yet

to	be	a	thorough	investigation	that	compares	the	merits	-	practical	and	theoretical

-	of	high	efficiency	single-atom	detection	based	on	each	of	these	mechanisms.

An	example	of	physical	detection	of	quantum	degenerate	 gases	has	been

demonstrated	with	the	use	of	microchannel	plates	(MCP) for	metastable	helium

and	neon	[127, 143, 115]. A metastable	atom	in	a	highly	excited	and	long-lived

state	possesses	a	very	large	internal	energy. On	impact	with	a	conducting	surface,

the	atom	falls	to	its	ground	state	and	the	energy	is	used	to	eject	electrons	from

the	surface. The	electron	pulse	can	be	accelerated, multiplied	and	detected	with

good	signal-to-noise	ratio	allowing	single	atom	counting	[125, 107, 148].

Neutral	ground-state	atoms	do	not	have	enough	energy	for	this	process. In-

stead, converting	neutral	 atoms	 to	 ions, via photoionisation, allows	 improved

detection	efficiency, since	ions	have	a	lot	of	energy, and	are	relatively	easy	to

detect	[29]. Alternatively, the	principles	of	a	scanning	electron-microscope	have

been	employed	on	a	cold, trapped	quantum	gas, to	observe	single	atoms	with

a	resolution	on	the	order	of	hundreds	of	nanometers, by	first	ionising	the	atoms

with	an	electron	beam	(rather	than	the	photon	beam	used	in	photoionisation),

and	subsequently	detecting	the	ions	[52].

A note	on	terminology: In	the	literature	covering	single	atom	detection	re-

search, there	 is	 some	ambiguity	 surrounding	 the	 relevant	measures	of	 a	 good

detector. It	is	important	to	distinguish	between	the	detection quantum	efficiency,

and	what	I will	term fidelity: In	this	work, by	quantum	efficiency	I refer	to	the

ratio	of	the	number	of	detected	quanta	to	the	actual	number	of	quanta	that	pass

through	the	detection	region	in	a	given	measurement	time. Fidelity	pertains	to

the	reliability	with	which	we	can	say	that	a	detection	signal	was	triggered	by	a

real	event, rather	than	a dark signal	intrinsic	to	the	detector. In	the	language	of

quantum	optical	photosensitive	devices, the	term dark	current refers	to	the	flow

of	electrons	in	the	device, even	when	no	photons	are	present. If	this	current	is
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beyond	a	given	threshold, it	will	contribute	to	false	photon	counts, thus	limit-

ing	the	fidelity	of	the	device. Alternatively, if	the	quantum	efficiency	is	low, then

not	every	photon	hitting	the	detector	will	result	in	a	measurable	flow	of	electrons.

Both	are	important	properties, although	it	is	usually	only	possible	to	optimise	one

at	the	expense	of	the	other. It	is	therefore	advantageous	to	design	a	detector	with

its	end	purpose	in	mind, so	as	to	choose	and	work	towards	its	desired	attributes.

1.4 Thesis	structure
The	work	carried	out	for	this	thesis	falls	broadly	into	two	categories: (1)	The	the-

oretical	modelling	of	a	cavity	 system	with	 the	goal	 to	design	a	high	quantum

efficiency	detector	for	single	atoms	in	an	atom	laser	beam. (2)	The	subsequent

building	and	characterisation	of	an	experimental	set-up	to	implement	the	detec-

tion	scheme. Each	chapter	begins	with	a	brief	discussion	of	the	motivation	for

the	work	that	is	presented	there, and	a	layout	of	the	subsequent	sections. The

structure	of	the	narrative	is	as	follows:

• Chapter	2 provides	 the	necessary	 theoretical	 grounding	or	 references	 to

more	detailed	theoretical	background	for	the	remainder	of	the	work, in	par-

ticular	for	the	discussions	in	chapters	3	and	4. It	also	provides	an	overview

of	 the	 theoretical	models	of	 the	 two-level	atom, optical	cavity	and	 their

coupling, that	are	central	to	this	work.

• Chapter	3 is	are	concerned	with	a	thorough	analysis	of	the	signal-to-noise

ratio	 (snr)	of	 the	proposed	single-atom	detector. It	 investigates	 the	many

parameters	that	influence	the	quality	of	the	detection, considering	both	the

detection	set-up	and	operation	regimes.

• Chapter	4 builds	on	the	theoretical	work	on	detection	snr, and	is	concerned

with	deducing	the	quantum	efficiency, dark-noise	and	noise-floor	clearance

of	a	practical	detector	and	its	ability	to	measure	number	squeezing	in	an

atomic	beam.

• Chapter	5 gives	an	account	of	the	experimental	set-up. The	principal	com-

ponents	of	the	apparatus	are	covered, as	well	as	the	frequency-locking	pro-

cedures	that	are	employed	and	the	data	acquisition	process.
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• Results	of	our	detection	signal	are	presented	in chapter	6. Various	features

of	our	atomic	source	are	explored	and	compared	with	work	by	other	au-

thors.

• Chapter	7 contains	a	summary	of	the	theoretical	and	experimental	work	and

some	concluding	remarks	regarding	the	direction	of	future	experiments.
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Part I

Theory	and	Modelling

11





CHAPTER

TWO

BACKGROUND

The	work	 that	 is	discussed	 in	 this	 thesis	pertains	 to	 the	 interaction	between	a

single	atom	and	a	single	mode	of	the	electromagnetic	field	within	an	optical	res-

onator. These	are	the	two	fundamental	components	of	the	detection	system	that

we	consider. This	chapter	contains	a	review	of	the	models	of	these	components,

and	details	the	quantum	mechanical	description	of	their	interaction.

2.1 The	Two-Level	Atom
In	Bohr’s	model, an	atom	possesses	an	infinite	number	of	discrete	energy	levels1

characterised	by	the	principal	quantum	number n, with	approximate	values	given

by	the	relation:

En = −hcR∞
Z2
eff

n2

Here	the	energy	of	each	level	is	mostly	due	to	the	Coulomb	interaction	between

bound	electrons	and	the	atom’s	nucleus. R∞ is	the	Rydberg	constant, h is	Planck’s

constant, c the	speed	of	light, and Zeff is	the	effective	nuclear	charge	that	accounts

for	the	shielding	effect	of	inner-orbital	electrons	on	the	bare	nuclear	charge.

More	subtle	structure	to	the	internal	energy	levels	of	the	atom	exists	due	to

the	interactions	between	the	magnetic	moments	of	the	electrons’	spin	and	orbital

angular	momenta	(fine	structure)	as	well	as	interactions	of	the	nuclear	spin	with

1Although	theoretically	there	are	an	infinite	number	of	energy	levels	for	any	atom, in	practice
there	will	be	a	‘highest-bound-state’	level. If	an	electron	absorbs	enough	energy	to	be	excited	to
a	level	above	that	state	but	not	enough	to	escape, it	will	drop	back	down	to	an	open	orbital	in	a
lower	level	and	radiate	one	or	more	photons	to	carry	away	the	extra	energy.

13
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the	atomic	fields	(hyperfine	structure). The	mean	field	due	to	core	electrons	is	a

large	effect; in	alkali	atoms, with	only	a	single	valence	electron, the	effect	lifts

the	degeneracy	in	the	orbital	angular	momentum	quantum	number l.

The	atom	we	use	is	rubidium	87	-	one	of	the	alkali	atoms	that	is	relatively	eas-

ily	condensed	to	form	BECs, and	is	consequently	a	popular	choice	in	quantum-

atom	optics. Figure	2.1 shows	the	structure	for	the	D2	energy	levels	in	rubidium

87. The	principle	quantum	number	is n = 5, and	the	degeneracy	of	the	orbital	an-

gular	momentum	states	is	lifted, leading	to	separate	energy	levels	for	the	different

l states, labelled S (l = 0)	and P (l = 1).

Rather	 than	modelling	 the	atom	using	 this	 set	 of	unevenly-spaced	energy

levels, a	two-level	description	may	be	valid	when	the	driving	field	is	only	resonant

(or	close-to-resonant)	with	two	of	the	energy	levels, and	far	off	resonance	for	all

other	transitions. If	this	is	the	case, the	atomic	model	is	analogous	to	a	two-state,

spin-1/2	system.

The	lower	of	the	two	energy	eigenstates, the	ground	state, may	be	labelled

|−⟩ =

(
0

1

)
,

the	upper, or	excited	state,

|+⟩ =

(
1

0

)
.

The	operators	that	act	to	raise	(σ̂+ = |+⟩⟨−|)	and	lower	(σ̂− = |−⟩⟨+|)	the	atomic
excitation	between	these	levels	are	often	referred	to	as	‘pseudospin’	operators. In

the	Schrödinger	picture, the	Hamiltonian	for	the	bare	atom	is

Ĥa = ~ωa|+⟩⟨+| ≡ ~ωaσ̂+σ̂− (2.1)

where ~ωa is	the	energy	difference	between	the	two	levels. Of	course, the	ground

state	energy	is	arbitrary, and	an	equally	valid	Hamiltonian	that	is	often	used	is

Ĥa =
1

2
~ωa (|+⟩⟨+| − |−⟩⟨−|) ≡ 1

2
~ωaσ̂z. (2.2)

where σ̂z is	the	atomic	inversion	operator, related	to	the	raising	and	lowing	op-
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erators via
1

2
σ̂z = (σ̂+σ̂− − σ̂−σ̂+).

In	the	dipole	approximation, the	wavelength	of	a	classical	electromagnetic	field

coulomb �ne hyper�ne

Figure 2.1: The	fine, and	hyperfine	level	structure	of	the	ground	and	first	excited	states
of	rubidium	87. The	red, dashed	arrow	indicates	the	two-level	cycling	transition.

interacting	with	the	atom	is	much	larger	than	the	size	of	the	atom. The	mathemat-

ics	used	to	describe	the	evolution	of	the	two-level	atom	in	the	presence	of	such	a

field	has	parallels	in	other	areas	of	theoretical	physics: it	is	equivalent	to	that	of	a

magnetic	dipole	in	a	magnetic	field, and	the	dynamics	of	the	atomic	state	is	often

represented	on	a	‘Bloch	sphere’, analogous	to	the	‘Poincaré	sphere’	that	is	used

to	represent	polarisations	of	light. This	type	of	representation	will	not	be	heavily

used	in	this	thesis, but	is	common	in	related	literature. Detailed	descriptions	are

given	in, for	example, references	[47, 97].

The	 two-level	systems	 that	are	used	 in	experimental	quantum-atom	optics

are	diverse. They	 include	neutral	atoms	 [136], highly	excited	Rydberg	atoms

[112], molecules	[35]	and	ions	[34], as	well	as	‘artificial	atoms’	such	as	quantum
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dots	[81, 67, 149]	and	confined	Cooper-pairs	in	super-conducting	circuits	[17].

In	all	cases, the	validity	of	the	two-level	model	requires	that	available	photons

are	only	resonant	(or	close-to-resonant)	with	one	of	many	possible	transitions. If

this	condition	is	not	entirely	satisfied, but	one	wishes	to	use	the	two-level	model

nonetheless, an	atom	may	be	allowed	to	decay	to	other	states	(via other	transi-

tions)	provided	it	can	be	transferred	back	to	the	two-level	system	at	a	sufficient

rate.

In	the	energy	level	structure	shown	in	figure	2.1, the	two-level	system	is	com-

posed	of	the	‘cycling’	transition	between |F = 2⟩ and |F ′ = 3⟩, using	circularly
polarised	light. In	an	ideal	set-up	-	with	perfectly	aligned	magnetic	field, and

polarisation	vector	for	the	resonant	driving	field	-	the	system	is	closed. The	off-

resonant	excitations	from |F = 2⟩ to |F ′ = 2⟩ are	suppressed	by	selection	rules. In
that	case, all	spontaneous	emission	events	return	atoms	from	the	excited |F ′ = 3⟩
state	to	the |F = 2⟩ ground	state. In	a	real	system, such	as	a	magneto-optical	trap,
the	magnetic	environment	and	poorly	defined	polarisation	cause	excitations	of

some	atoms	to	the |F ′ = 2⟩ state, from	where	they	can	decay	to	the	‘dark’ |F = 1⟩
state, at	a	rate	determined	by	those	parameters. These	are	brought	back	to	the	cy-

cling	transition via an	additional	weak	‘re-pump’	laser, resonant	with	the |F = 1⟩
to |F = 2⟩ transition.

2.2 Fabry-Pérot	Resonators

2.2.1 Longitudinal	Modes

Many	different	systems	have	been	used	to	isolate	and	trap	photons	in	different

frequency	regimes. Useful	cavity	fields	range	from	the	whispering	gallery	modes

of	toroidal	structures	and	microresonators	[123, 128, 126], to	those	of	resonators

using	Bragg	mirrors	in	the	optical	realm	[104, 71], polished	mirror	mircowave

cavities	[96, 94], as	well	as	semiconductor	heterostructures	[81, 67], microwave

circuits	[141], and	defects	in	nano-fabricated	photonic	crystals	[149]. A review

of	much	of	the	varied	work	that	has	been	carried	out	using	optical	cavities	is	given

in	reference	[139].

The	cavity	used	in	the	work	presented	in	this	thesis	was	a	Fabry-Pérot	res-

onator, shown	schematically	in	figure	2.2. This	is	one	of	the	simplest	types	of

cavity	to	analyse, and	a	classical	treatment, considering	the	complex	amplitudes

of	self-reproducing	waves, is	given	in	many	undergraduate	optics	texts	(see, for
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example, reference	[124]). Maxwell’s	equations, and	the	boundary	conditions	in-

troduced	by	the	cavity	mirrors, place	restrictions	on	the	spatial	properties	of	the

electromagnetic	field, and	lead	to	reflected	and	transmitted	fields, Er and Et, that

are	related	to	the	input	field, E0, and	the	phase, δ, accumulated	in	a	round-trip

of	the	cavity, with	the	following	expressions:

Er

E0

= r1 + t21r2e
−iδ(

1

1 − r1r2e−iδ
) (2.3)

Et

E0

= t1t2e
−iδ/2(

1

1 − r1r2e−iδ
). (2.4)

Here

δ = 4πL/λ

for	a	resonator	of	length L, formed	by	an	input	mirror	with	amplitude	reflectivity

r1 and	transmissivity t1, and	output	mirror	of r2, and t2.

If	the	cavity	is	symmetric	(r1 = r2 = r)	the	above	expressions	simplify. Using

R = r2, the	ratio	of	the	transmitted	to	incident	field	intensity	becomes:

It

I0

=
(1 −R)2

1 − 2 cos δ + R2

It	is	usual	to	rewrite	this	expression	as

It

I0

=
1

1 + (2F/π)2 sin2 (δ/2)
(2.5)

where F is	a	parameter	known	as	the finesse. For	a	perfect	cavity, with	no	intra-

cavity	losses, the	finesse	is	determined	completely	by	the	quality	of	 the	cavity

mirrors:

F =
πR1/2

1 −R
.

The	transmitted	field	intensity	is	clearly	a	periodic	function	of	the	round-trip

phase	[equation	(2.5)], as	shown	in	figure	2.3, and	consequently	depends	on	the

wavelength	of	light	used	and	its	relation	to	the	cavity	length. Each	time	the	length

is	changed	by	one	half	wavelength, a	new	peak	in	transmission	is	scanned.

Operating on	 resonance then, we	are	 restricted	 to	 standing	waves	whose



18

input mirror output mirror

Figure 2.2: Schematic	diagram	of	a	Fabry-Pérot	cavity	showing	input, E0, reflected,
Er, circulating, Ecirc and	transmitted, Et fields.

wavelengths	are	defined	by	the	cavity	length,

2L = nλ (2.6)

Consequently, the	resonant	frequencies	of	the	field	take	discrete	values	given	by

ν =
nc

2L
(2.7)

where n is	the	number	of	nodes	in	the	standing-wave, and	each n defines	a	dif-

ferent	longitudinal	mode	of	the	field. There	is	a	constant	frequency	difference

between	adjacent	resonator	modes, n and n−1, known	as	the	free	spectral	range

νFSR =
c

2L
. (2.8)

From	(2.5), the	full-width	at	half	the	maximum	intensity	(FWHM), ∆ν, of	each

resonance	can	be	found, and	the	finesse	measures	the	ratio	of	the	free	spectral

range	to	the	width	of	a	resonance:

F =
νFSR

∆ν
. (2.9)
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Figure 2.3: Fabry-Pérot	transmission	intensity	[equation	(2.5)]	over	three	free	spectral
ranges, for	a	cavity	formed	with	mirrors	of	poor	to	good	reflectance R = r2 = 0.1, 0.5
and 0.99.

With	the	relations	given, it	becomes	apparent	that	two	different	frequencies	will

be	resonant	in	the	same	cavity	mirrors	at	different	cavity	lengths, as	indicated	in

figure	2.4.

In	this	figure, the	abscissa	is	parameterised	in	wavelengths, λ1, so	the	resonant

lengths	do	not	always	coincide; this	is	precisely	because	the	free-spectral-range

measures	the	occurrence	of	each	new	half-wavelength	between	the	cavity	mir-

rors. Attaining	‘co-resonance’	-	that	is, a	cavity	length	for	which	two	wavelengths

are	both	 resonant	 -	 is	covered	 in	 the	discussion	of	our	experimental	 set-up	 in

chapter	5.

It	can	be	useful	to	consider	the	response	of	the	cavity	in	terms	of	the	phase

shift	on	the	probe	beam	instead	of	changes	in	intensity. In	figure	2.5, we	show

a	cavity	response	in	terms	of	both	these	observables, as	a	function	of	the	cavity

linewidth, κ. The	phase	of	the	field	defined	with	equation	(2.4)	is	given	by Φ =

arg[E] while	the	intensity	is I = E∗ · E.
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Figure 2.4: Resonant	positions	for	two	different	frequencies	for	a	cavity	finesse	of 100.
The	cavity	length	is	varied	about	a	length, L, at	which	both	wavelengths	are	resonant.

2.2.2 Transverse	Modes

The	discussion	given	above	considers	the	confinement	of	the	field	along	the	cavity

axis. When	planar-mirrors	are	used, this	confinement	is	only	marginally	stable.

That	is	to	say	that	a	small	misalignment	of	the	mirrors, or	incoming	beam	with

respect	 to	 the	mirrors, will	 result	 in	reflections	 for	which	the	rays	are	not	self-

reproducing, and	eventually	 leave	 the	bounds	of	 the	 (finite)	mirrors. Concave

spherical-mirror	cavities	are	constructed	using	two	spherical	mirrors	with	radii	of

curvature R1 and R2, and	can	be	made	fully	stable. The	limits	to	the	resonator

stability	are	the	cases	of	the	planar-mirror	cavity, for	whichR1 = R2 = ∞, and	the

‘symmetric	concentric’	cavity	for	which R1 = R2 = L/2. Between	these	limits

cavities	are	considered	stable. In	a	ray-optics	model, misalignment	of	a	stable

cavity	results	in	beam	paths	that	are	self-reproducing, but	may	require	more	than

one	round	trip	before	this	condition	is	met.

The	boundary	conditions	imposed	on	the	electromagnetic	field	in	spherical-

mirror	cavities	result	in	resonant	beams	that	are	described	by	the	infinite	set	of

Hermite-Gaussian	modes	[124]. These	modes	are	defined	by	three	independent
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Figure 2.5: Response	of	a	symmetric	optical	resonator	(r1 = r2). Figure	(a)	shows	the
real	and	imaginary	components	of	the	transmitted	field, E, and	(b)	shows	the	transmitted
intensity I = E∗ · E and	phase	response, Φ = arg[E].

integers, (l, m, n) describing	the	intensity	distribution	of	the	field. The	integers l

and m characterise	the	beam	profile	in	the	transverse	plane, while n defines	the

order	of	the	longitudinal	modes, as	discussed	previously. The	transverse	modes

are	commonly	labelled	and	referred	to	as	TEMlm (transverse	electromagnetic). In

specific	experimental	circumstances, higher	order	modes	are	used	(see	for	exam-

ple, references	[75, 95, 130, 152])	but	typically, as	in	the	present	work, the	mode
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of	interest	is	the	lowest	order, or	Gaussian	beam: TEM00. The	intensity	profile	of

this	mode, in	the	transverse	plane, varies	as	a	Gaussian	distribution	proportional

to exp [−2(x2 + y2)/w(z)2], where w(z) is	the 1/e2 radius	of	the	beam	intensity

which	varies	along	the	cavity	axis.

In	a	symmetric	cavity, where R1 = R2 = R, the	beam	is	focused	in	the	centre

of	the	cavity, and	the	waist	size	is	given	by

w2
0 =

λL

2π
(2
|R|
L

− 1)1/2 (2.10)

For	cavity	mirrors	that	are	separated	by	a	distance	much	smaller	than	their	radius

of	curvature	(L ≪ R), the	transverse	radius	of	the	beam	does	not	vary	significantly,

so w(z) ≈ w(0) ≡ w0, and	the	normalised, position-dependent	electromagnetic

field	intensity	inside	the	cavity	varies	as

I(r) = cos2(2πz/λ) exp(−2(x2 + y2)/w2
0) − L/2 6 z 6 L/2 (2.11)

2.2.3 The	quantum-mechanical	mode

Thus	 far	we	 have	 described	 the	 isolation	 of	 a	 classical	 electromagnetic	wave

within	 an	optical	 resonator. The	quantum-mechanical	 description	of	 the	har-

monic	energy	levels	of	a	single	electromagnetic	field	mode	(such	as	that	isolated

in	a	cavity)	can	be	written	as2

Ĥc = ~ωcâ
†â (2.12)

Here, ~ωc is	 the	energy	of	a	photon	of	 the	cavity	mode, and â† and â are	 the

creation	and	annihilation	operators	that	add	or	remove	photons:

â|n⟩ =
√

n|n − 1⟩

â†|n⟩ =
√

n + 1|n + 1⟩,

They	obey	the	commutation	relation [â, â†] = 1, and	together	give	the	photon

number-operator n̂ = â†â.

The	classical	intra-cavity	intensity	scales	with	the	number	of	intra-cavity	pho-

2We	ignore	the	zero	point	energy	conventionally	included	in	the	Hamiltonian	of	the	harmonic
field	operator	since	it	will	not	be	important	for	the	coupled	system	to	be	discussed	shortly.
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tons, and	the	single-photon	energy	density	is	simply	the	photon	energy, ~ωc, di-

vided	by	the	cavity	mode	volume, Vm. The	mode	volume	is	found	by	integrating

the	cavity	mode	[equation	(2.11)]	over	all	three	spatial	dimensions:

Vm =
1

4
πw2

0L

2.3 Atom-Field	Coupling	and	Decoherence

2.3.1 The	Jaynes-Cummings	Model

Experimentally, a	single	mode	of	the	electromagnetic	field	can	be	isolated	within

the	volume	of	an	optical	cavity	by	virtue	of	 the	boundary	conditions	 imposed

on	Maxwell’s	equations	by	the	experimental	set-up. The	‘two-level	atom’	model

may	be	a	useful	approximation	to	the	real	system, or	a	very	accurate	description

of	states	available	depending	on	the	details	of	the	experiment.

A vast	array	of	optical	phenomena	are	well	described	with	semiclassical	the-

ory, in	which	atoms	have	quantised	energies, but	 the	 electromagnetic	field	 is

treated	classically. Nevertheless, it	is	a	fully	quantum	description	that	yields	the

novel	dynamics	of	cavity	QED that	drives	the	majority	of	current	research	and

it	is	this	description	we	analyse	here. The	quantised	interaction	between	a	two-

level	atom	and	the	harmonic-oscillator	cavity	field	is	 illustrated	by	the	Jaynes-

Cummings	Hamiltonian	[76]

Ĥ = ~ωaσ̂+σ− + ~ωcâ
†â + ~g(r)(σ̂+ + σ̂−)(â + â†). (2.13)

The	first	term	describes	the	excitation	of	the	two-level	atom	with	atomic	energy

spacing, ~ωa, while	the	second	tells	us	the	occupation	of	the	cavity	mode	with

equally-spaced	energy	levels	separated	by ~ωc. Here ~ is	Plank’s	constant	divided
by 2π, and ωi is	the	resonant	frequency	of	the	system, i: either	the	atom	(when

i = a)	or	cavity	(when i = c). The	third	term	describes	the	coupling	between	the

atomic	electric	dipole	and	the	electric	field	of	the	cavity	mode. This	is	not	to	be

confused	with	the	coupling	of	the	composite	system	to	external	reservoir	modes,

that	will	be	discussed	in	the	following	section.

The	strength	of	the	interaction	is	determined	by	the	size	of	the	dipole	moment,
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µ, and	the	strength	of	the	field, E(r):

~g(r) = µ · E(r) (2.14)

Values	for	the	magnitudes	of	the	atomic	dipole	matrix	elements	of	various

transitions	can	be	found	in	literature	[134], and	the	directions	of µ and E(r) are

determined	by	their	polarisation. E(r) is	time-independent	since	it	is	a	standing

wave	within	the	cavity. With	the	appropriate	magnetic	environment	and	polarisa-

tion	of	the	field, the	two	can	be	aligned	to	give	the	maximum	coupling	constant.

If	this	is	not	the	case, it	may	be	necessary	to	use	an	average	value	for	the	atomic

dipole	matrix	element	as	it	precesses	about	the	field	axis.

The	Interaction	Picture

If	we	consider	the	system	is	driven	by	a	field	with	frequency ω0, it	can	be	useful

to	re-write	the	Hamiltonian	(2.13)	as

Ĥ = ~ω0â
†â + ~ω0σ̂+σ̂−︸ ︷︷ ︸

Ĥ0

+ ~∆câ
†â + ~∆aσ̂+σ̂− + ~g(r)(σ̂+ + σ̂−)(â + â†)︸ ︷︷ ︸

V̂

where

∆a = ω0 − ωa

and

∆c = ω0 − ωc

represent	the	detunings	of	the	the	uncoupled	systems	from	the	driving	field.

We	transform	to	a	frame	rotating	with	the	driving	field	using

Ĥsys = U †
0 V̂ U0;

U0 = e−i(Ĥ0)t/~

and	the	Hamiltonian	for	the	Jaynes-Cummings	system	in	the	interaction	picture

becomes:

Ĥsys = ~∆câ
†â + ~∆aσ̂+σ̂− + ~g(r)(âσ̂+ + â†σ̂− + e2i~ω0σ̂+â† + e−2i~ω0σ̂−â).
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The	Rotating	Wave	Approximation

In	the	rotating	frame, the	terms σ̂+â† and σ̂−â acquire	a	time	dependence, that

is	very	fast	compared	to	the	other	relevant	rates	in	the	system. Equation	(2.15)

employs	the rotating	wave	approximation where	these	terms	have	been	dropped.

We	can	see	that	the	coupling	term	is	now	energy	conserving, so	that	the	annihi-

lation	of	a	photon	in	the	cavity	mode via the	operator a is	always	accompanied

by	the	raising	of	the	atomic	energy	with σ̂+, and vice	versa.

Ĥsys = ~∆câ
†â + ~∆aσ̂+σ̂− + ~g(r)(âσ̂+ + â†σ̂−) (2.15)

2.3.2 The	Master	Equation

In	the	absence	of	dissipation, the	Jaynes-Cummings	model	(2.15)	can	be	solved

exactly, however	such	a	simplification	brings	limitations. A more	accurate	model

includes	 the	dissipation	of	energy	 that	occurs	both	as	a	 result	of	 spontaneous

emission	from	the	excited	state	of	the	two-level	atom	into	modes	other	than	the

cavity	mode	and	the	loss	of	photons	from	the	cavity	mode via transmission, scat-

tering	and	absorption	in	the	mirrors. When	these	dissipative	processes	are	added

to	the	Jaynes-Cummings	model, the	system	dynamics	are	found	using	solutions

to	the master	equation.

A complete	derivation	of	 the	master	equation	 is	a	 lengthy	process, and	 is

covered	well	in	a	number	of	quantum	optics	textbooks. A particularly	thorough

derivation	is	given	by	Doherty	and	Mabuchi	inOptical	Microcavities, [139]. Here

I will	present	a	summary	of	that	derivation	since	it	is	satisfying	to	see	the	origin

of	the	equation	that	is	central	to	the	modelling	work	in	this	thesis.

The	purpose	of	the	master	equation	is	to	analyse	the	evolution	of	an	open

quantum	system, that	 is, one	which	 is	not	 isolated	 from	its	environment. The

environment	is	modelled	as	an	infinite	reservoir, or	bath, connected	weakly	to

the	system via an	interaction	Hamiltonian, Ĥint, so	that	the	complete	Hamiltonian

may	be	represented	as Ĥtot = Ĥsys + Ĥb + Ĥint, where Ĥsys is	the	Hamiltonian

of	 the	system	and Ĥb is	 that	of	 the	bath. In	 the	Schrödinger	picture, the	 total

density	operator	for	the	system	and	bath	together, obeys	the	usual	Hamiltonian

dynamics:

ρ̇tot = − i

~
[Ĥtot, ρtot]. (2.16)
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However, with	 this	approach	we	wish	 to	derive	 information	about	 the	 system

only, by	tracing	out	the	many	degrees	of	freedom	of	the	bath. We	are	interested,

therefore, in	the reduced	density	operator,

ρ(t) = Trb {ρtot(t)} . (2.17)

By	transforming	first	to	the	interaction	picture, (2.16)	becomes

ρ̇I = − i

~
[Ĥ, ρI ] (2.18)

and	the	reduced	density	matrix	in	the	interaction	picture	is

ρ(t) = Trb {ρI(t)} . (2.19)

Here

ρI = U †
0ρU0

Ĥ = U †
0ĤintU0

with	the	transformation	matrix

U0 = e−i(Ĥsys+Ĥb)t/~.

To	find	a	solution	to	(2.18), we	first	integrate	from 0 to t to	obtain:

ρI(t) = ρ(0) +
−i

~

∫ t

0

[Ĥ(t1), ρI(0)] dt1

A second	iteration	gives:

ρI(t) = ρI(0)+
−i

~

∫ t

0

[Ĥ(t1), ρI(0)] dt1+(
−i

~
)2

∫ t

0

∫ t1

0

[Ĥ(t1), [Ĥ(t2), ρI(t2)]] dt1dt2.

Now	differentiating	with	respect	to t,

ρ̇I(t) = − i

~
[Ĥ(t), ρI(0)] + (

−i

~
)2

∫ t

0

[Ĥ(t), [Ĥ(t1), ρI(t1)]] dt1. (2.20)

We	now	make	several	key	assumptions:
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• We	assume	that	the	system	and	bath	are	only	weakly	correlated	at	an	initial

time, t0, when	the	interaction	and	Schrödinger	pictures	coincide, so	that

the	total	density	operator	can	be	factored	into	a	direct	product:

ρI(0) = ρtot(0) = ρ(0) ⊗ ρb

Also, if	 the	 reservoir	 is	 sufficiently	 large, its	 statistical	properties	 are	not

changed	by	the	system-reservoir	coupling, and	its	density	matrix, ρb is	es-

sentially	time-independent.

• We	choose	the	interaction	Hamiltonian	such	that	it	has	no	diagonal	ele-

ments	in	the	basis	in	which Ĥb is	diagonal. These	assumptions	allow	us	to

conclude

Trb
{

Ĥ(t)ρI(0)
}

= 0, (2.21)

and	so, taking	the	trace	over	the	bath	variables, for	both	sides	of	(2.20), and

making	use	of	the	identity	(2.19):

ρ̇(t) = − 1

~2

∫ t

0

Trb
{

[Ĥ(t), [Ĥ(t1), ρI(t1)]]
}

dt1. (2.22)

• The Born	approximation: If	the	interaction	between	the	bath	and	system	is

much	weaker	than	any	interactions	between	components within the	bath

or	system	(in	other	words, V is	very	much	less	than Ĥsys or Ĥb), then	we

can	legitimately	replace ρI(t1) with	the	approximation ρI(t1) ≈ ρ(t1) ⊗ ρb

in	the	above	expression.

• We	note	that	for	the	weak	interaction	assumption, the	rate	of	change	of	the

system	density	matrix	(in	the	interaction	picture), will	be	much	slower	than

that	of	the	bath	operators, and	so	the	term ρ(t1) changes	insignificantly	over

the	relevant	correlation	time, t of	(2.22). Thus	we	set ρ(t1) → ρ(t) to	obtain:

ρ̇(t) = − 1

~2

∫ t

0

Trb
{

[Ĥ(t), [Ĥ(t1), ρ(t) ⊗ ρb)]]
}

dt1. (2.23)

Finally	we	recognise	that	there	is	a	remaining	rate	to	consider	-	the	thermal

correlation	time, τ -	that	measures	the	speed	at	which	energy	is	dissipated
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within	the	bath	modes. When	this	is	much	faster	than	the	speed	at	which	it

is	coupled	back	into	the	system	(t ≫ τ ), the	system	is	described	as	having

a	‘short	memory’. If	this	is	the	case	we	can	change	the	limits	of	the	time

integral	as	follows	to	conclude:

ρ̇(t) = − 1

~2

∫ ∞

0

Trb
{

[Ĥ(t), [Ĥ(t − τ), ρ(t) ⊗ ρb)]]
}

dt1. (2.24)

This	final	set	of	assumptions	is	known	as	the Markov	approximation, and

the	final	equation	at	which	we	have	arrived	(2.24)	is	a	common	form	of	the

master	equation.

Master	Equation	for	the	Atom-Cavity	System

For	the	system	at	hand, we	have

Ĥtot = Ĥsys + Ĥb + Ĥint

where Ĥsys is	the	Jaynes-Cummings	Hamiltonian	given	by	equation	(2.15).

The	bath	in	this	case	is	an	infinite	set	of	harmonic	oscillators, b̂(ω) that	con-

stitutes	the	electromagnetic	field	modes	of	the	environment:

Ĥb = ~
∫ ∞

−∞
ωb̂†(ω)b̂(ω) dω.

The	bath	is	coupled	to	this	system via two	processes: (1)	the	spontaneous	decay

of	the	atomic	excited	state	to	a	mode	outside	the	cavity, dissipating	at	a	rate γ,

and	(2)	the	loss	of	photons	through	the	cavity	mirrors, with	dissipation	operator

κâ.

Ĥint = i~
∫ ∞

−∞
γ[b̂†(ω)σ̂− − σ̂+b̂(ω)] dω + i~

∫ ∞

−∞
κ[b̂†(ω)â − â†b̂(ω)] dω.

Here	we	have	again	employed	the	rotating	wave	approximation	used	in	the	cou-

pling	term	of	equation	(2.15), this	time	for	the	interaction	of	the	system	with	the

modes	outside	the	cavity. Note	that	both γ and κ are field (or	amplitude), rather

than	intensity	(number)	decay	rates, although	the	linewidths	that	are	observed	in

typical	experimental	scenarios	measure	intensity	decay	rates.

With	the	appropriate	substitutions, the	master	equation	for	the	damped	atom-
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cavity	system	can	be	found:

d

dt
ρ(t) = − i

~
[Ĥ, ρ] +

κ

2
(2âρâ† − â†âρ − ρâ†â)

+
γ

2
(2σ̂−ρσ̂+ − σ̂+σ̂−ρ − ρσ̂+σ̂−) (2.25)

The	master	 equation	can	be	 solved	 to	find	 the	evolution	of	 the	 (reduced)

density	matrix ρ, and	expectation	values	for	system	operators	can	subsequently

be	determined	using	the	density-operator	relation:

⟨Ô⟩ = Tr
{

ρÔ
}

.

This	is	the	procedure	employed	in	our	detection	modelling	discussed	in	the	fol-

lowing	chapter.

2.3.3 A Pumped	Cavity: The	Driven	Jaynes-Cummings	Hamilto-

nian

The	 Jaynes-Cummings	Hamiltonian with dissipation	necessarily	 leads	 to	a	de-

pletion	of	photons	 from	 the	cavity	mode; the	photon	number	decays via loss

through	the	cavity	mirrors	and	atomic	spontaneous	emission. In	practice, most

experiments	drive	the	cavity	mode	with	a	laser	field	providing	constant	power

at	the	input	mirror	that	replenishes	photons	lost	from	the	system. This	allows	us

to	find	a	steady-state	for	the	density	matrix	(2.25)	by	including	a	constant	pump

term.

The	Hamiltonian	we	use	is	the driven Jaynes-Cummings	Hamiltonian:

Ĥ = ~∆câ
†â + ~∆aσ̂+σ̂− + ~g(r̃)(âσ̂+ + â†σ̂−) + ~ε(â + â†). (2.26)

The	pump-rate	is	related	to	the	incident	power	and	the	transmissivity	of	the

input	mirror. For	a	resonant	cavity, with	intracavity	photon	number, nres

ε2 = nresκ
2

If, without	changing	the	pumping	rate ε, the	cavity	is	detuned, then	the	intracavity
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photon	number n0 will	reduce

n0 =
nres

1 + (
∆

κ
)2

= κ2 nres

κ2 + ∆2

= ε2 1

κ2 + ∆2

∴ ε =
√

n0(κ2 + ∆2
c). (2.27)



CHAPTER

THREE

SINGLE-ATOM DETECTION

The	first	step	to	analysing	the	value	of	an	optical	cavity	as	a	single-atom	detec-

tor, is	 to	consider	 the	best	possible	single-to-noise	ratio	 that	one	could	expect

for	optimal	detection	conditions. There	are	other	metrics	that	are	necessary	to

consider	in	the	analysis	but	they	are	often	considerably	dependent	on	the	style	of

detection	used	(for	example, detection time may	be	an	important	factor	in	some

atom	number	measurements, but	is	one	that	is	not	taken	into	consideration	at	all

in	absorption	and	MCP measurements). Signal-to-noise	and	fidelity	are	univer-

sal	figures	of	merit, useful	when	comparing	different	types	of	detection. In	the

following	chapter, we	present	a	thorough	analysis	of	signal	atom	detection	using

optical	cavities.

Much	of	this	chapter	has	been	published	as	reference	[110]: R.	Poldy, B.	C.

Buchler, J.	D.	Close, Single-atom	detection	with	optical	cavities, Physical	Review

A,	2008	volume	78	(1). A large	set	of	parameters	that	influence	the	signal-to-

noise	 ratio	 for	cavity	detection	 is	considered, with	an	emphasis	on	detunings,

probe	power, cavity	finesse	and	photon	detection	schemes. Real	device	operating

restrictions	 for	 single	photon	counting	modules	and	standard	photodiodes	are

included	in	our	discussion, with	heterodyne	detection	emerging	as	 the	clearly

favourable	technique, particularly	for	detuned	detection	at	high	power.

The	cavity	detection	process	has	been	considered	in	several	previous	studies.

Work	by	Horak et	al. investigates	optical	cavity	detection	of	single	atoms	using

microcavities	[73]. The	authors	use	a	semiclassical	model	to	analyse	the	signal-

to-noise	ratio	of	cavity	based	detection	for	a	variety	of	parameters. Pinkse et	al.

31
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use	a	quantum	model	to	calculate	the	signal-to-noise	ratio	for	an	atom	passing

through	 a	 cavity	 [109]. They	 consider	 a	 broader	 range	of	 detection	 regimes,

exploring	the	effect	of	the	detuning	of	the	probe	laser	independently	from	both	the

empty-cavity	resonance	(cavity-probe	detuning)	and	bare-atom	resonance	(atom-

probe	detuning). However, their	results	do	not	consider	variation	of	the	probe

power, since	they	are	interested	in	the	single	atom and	single	photon regime	that

is	the	usual	focus	of	cavity	quantum-electrodynamics	(QED) experiments.

Here	we	engage	in	a	more	complete	investigation	that	thoroughly	explores

the	detection	‘parameter	space’. We	analyse	the	signal-to-noise	ratio	of	cavity

single	atom	detection	by	providing	contour	plots	for	the	signal-to-noise	ratio	as	a

function	of	cavity	finesse, probe	laser	intensity, cavity-probe	detuning, and	atom-

probe	detuning. The	goal	is	to	provide	detailed	information	for	the	design	and

implementation	of	cavity	based	single	atom	detection	that	is	appropriate	for	given

requirements	of	quantum	efficiency	and	detection	bandwidth. This	is	the	only

investigation	that	covers	such	a	complete	range	of	parameters	for	this	technology.

3.1 Introduction

Figure 3.1 is	a	schematic	representation	of	a	possible	measurement	process	for

cavity	detection	of	 single	atoms. A shot-noise	 limited	probe	 laser	 is	 transmit-

ted	through	an	empty	cavity	and	the	power	is	measured. A detection	signal	is

observed	when	an	atom	falls	 through	the	cavity, interacting	with	the	field	and

causing, for	example, a	reduction	in	transmitted	power, as	shown	in	the	hyper-

thetical	data	of	figure 3.1(b). The	interaction	may	also	be	measured	in	other	ways

such	as	a	phase	shift	in	the	probe	beam, or	an increase in	transmitted	power, and

these	possibilities	are	discussed	in	later	sections	of	this	chapter.

Cavity	QED is	generally	separated	into	two	parameter	regimes, those	of	strong

and	weak	coupling. These	define	the	relative	strengths	of	couplingwithin the	sys-

tem	compared	to	the	coupling	of	the	system	to	external	reservoir	modes. ‘Strong

coupling’	refers	to	systems	in	which	the	processes	of	interest	are	largely	deter-

mined	by	the	atom-field	dipole	coupling	rate, g0; it	is	this	regime	that	has	attracted

much	of	the	consideration	in	cavity	QED.	Consequently, recent	investigations	and

experimental	designs	have, for	the	most	part, been	restricted	to	those	that	achieve

the	required	strong	coupling	conditions. The	focus	of	the	present	work	is	not	to

investigate	properties	of	the	strong	coupling	regime, but	to	analyze	the	cavity	de-
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Figure 3.1: Single	atom	detection	with	an	optical	cavity	showing	(a)	schematic	dia-
gram	of	cavity	set-up. (b)	typical	photon	counts	for	a	detection	event. The	dashed	line
indicates	the	threshold	for	an	atom	detection	event.

tection	process	in	order	to	determine	the	best	designs	and	operating	conditions

for	high	quantum	efficiency	single	atom	detection. We	show	that	many	(although

not	all)	of	the	same	features	of	strong-coupling	experiments	are	necessary	for	a

good	signal-to-noise	ratio	in	single	atom	detection. It	is	therefore	worth	clearly

defining	this	regime.

For	strong	coupling, the	exchange	of	energy	within	the	system	occurs	on	a

time	scale	much	shorter	than	other	processes, so	that g0 > max[Γ, T−1], where Γ

is	the	set	of	decoherence	rates	for	the	system, and T is	the	interaction	time. In

the	atom-cavity	system, Γ = {γ, κ} with γ the	rate	of	decay	of	the	atomic	dipole,

and κ that	of	the	cavity	field, as	defined	in	chapter	2. To	achieve	strong	coupling,

it	is	necessary	to	ensure	the	atom-field	interaction	time, T , is	long	with	respect

to	other	system	dynamics [102]. The	atom-field	coupling	and	the	cavity	decay

rates	are	also	important, and	the	coupling	regime	is	often	characterised	in	more

specific	terms	with	two	dimensionless	parameters; the	critical	photon	number

m0 ≡
γ2

2g2
0

and	the	critical	atom	number

N0 ≡
2γκ

g2
0

= C−1.

These	values	indicate	the	number	of	quanta	necessary	to	significantly	influence

the	system. Strong	coupling	is	usually	defined	when	both N0 and m0 are	less	than
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one.

The	critical	photon	number	is	the	number	of	intra-cavity	photons	necessary

to	saturate	the	atom	in	a	resonant	transition. For	our	purposes, it	is	not	an	impor-

tant	value	since	we	are	unconcerned	with	the	number	of photons needed	for	the

successful	detection	of	a single	atom. The	critical	atom	number	refers	to	the	nec-

essary	number	of	atoms	required	to	significantly	affect	the	cavity	field. For	single

atom	detection, it	is	desirable	to	work	with N0 . 1, since	this	implies	the	pres-

ence	of	a single atom	will	have	a	significant	influence	on	the	cavity	transmission

and	be	easily	measured. N0 is	often	inverted, and	refered	to	as	the	co-operativity

parameter, C [82].

Single-atom	detection	need	not	be	performed	in	the	strong	coupling	regime

-	where both N0 and m0 are	small	-	as	has	been	highlighted	in	work	by	several

authors	 [60, 73]. The	main	objective	 is	 to	minimise N0 subject	 to	 real	world

experimental	constraints.

Short	cavities	may	be	used	to	increase g0, which	scales	 inversely	with	the

square	root	of	the	cavity	volume. As	a	result, short	cavities	lead	to	a	reduction

of m0. Cavity	length	does	not, however, influence N0, since κ also	scales	with

the	inverse	of	cavity	length, and	thus	the	length	dependence	is	cancelled	in	the

presence	of κ and g2
0. Motivated	by	the	strong	coupling	regime, and	at	times	by	the

complementary	requirements	of	restricted	geometry	in	chip	experiments, recent

work	in	cavity	QED has	tended	towards	very	short	cavities, tens	to	hundreds	of

micrometers	[93, 70, 103, 60, 102, 138]. Although	limiting	cavity	length	will	not

improve	single	atom	detection, it	is	possible	to	reduce	the	mode	volume	in	ways

that	do	help. Reducing	the	beam	diameter	in	the	cavity	is	one	such	possibility

[60, 138].

As	well	as	reducing	cavity	length, considerable	efforts	have	been	made	to	pro-

duce	cavities	with	ultra-high	finesse. This	results	in	diminished	cavity	linewidth,

κ, without	an	accompanying	reduction	in g0, so	is	an	ideal	way	to	manipulateN0.

Whispering	gallery	mode	cavities	have	reached	a	finesse	of F > 107 [126]	and

open	optical	cavities	with	finesses	in	excess	of F = 3 × 105 have	been	demon-

strated	using	custom	built	mirrors	 [102, 103]. Custom	design	and	 fabrication

can	be	a	costly	and	arduous	task, however	reasonably	high	finesses	of	around

F ∼ 104 are	within	reach	even	with	commercial	mirrors	(Newport	‘SuperMirror’

10CV00SR.40F).	Although	this	is	a	trade-off	in	mirror	quality	for	ease	and	expense
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of	construction, we	will	show	that	it	is	still	possible	to	achieve	a	good	signal-to-

noise	ratio	for	single	atom	detection	using	such	a	finesse, provided	the	system

is	operated	in	appropriate	regions	of	parameter	space. Determining	where	these

regions	are	is	the	motivation	for	the	work	covered	in	this	chapter.

The	layout	is	as	follows:

◦ Section	3.2 reviews	the	atom-cavity	field	model	presented	in	chapter	2 as

the	essence	of	an	ideal	atom	detector	using	direct	photon	counting.

◦ The	signal-to-noise	ratio	in	the	entire	parameter	space	is	then	analysed	in

section 3.3.

◦ In section	3.4.1, we	introduce	the	limitations	of	real	photon	detectors	based

on	single	photon	counting	modules, and	consider	the	implications	for	the

cavity	operating	regime.

◦ An	alternative	photon	detection	scheme	based	on	heterodyne	detection	is

presented	in section	3.4.2.

◦ Section 3.4.4 discusses	the	susceptibility	of	the	atom	detection	process	to

frequency	noise	in	the	system	for	different	operating	conditions.

◦ Finally, in section 3.4.5, we	consider	the	conversion	of	signal-to-noise	ratio

to	detector	quantum	efficiency	(QE) and	other	limits	to	detection	quality.

3.2 Cavity	QED Model
The	system	we	are	interested	in	is	illustrated	in	figure 3.1(a). It	consists	of	a	single

two-level	atom	with	an	excited	state	resonance	at ωa coupled	to	the	TEM00 mode

of	an	optical	cavity	with	resonant	frequency ωc.

The	system	is	driven	with	a	classical	 (coherent)	field	at ω0 and	dissipation

occurs via spontaneous	decay	of	 the	 atomic	 excited	 state, γ, and	 cavity	 field

decay, κ. The	 cavity	 decay	 comprises	 transmission	 through	 input	 and	output

mirrors	as	well	as	scattering	losses: κ = κin + κout + κloss giving	a	cavity	linewidth

(FWHM) of 2κ.

The	Hamiltonian	for	this	system	is	that	of	the	driven	Jaynes-Cummings	model.

In	a	reference	frame	rotating	with	the	driving	field, as	presented	in	section	2.3:

Ĥ = ~∆câ
†â + ~∆aσ̂+σ̂− + ~g(r)(âσ̂+ + â†σ̂−) + ~ε(â + â†).
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The	 position-dependent	 atom-field	 coupling	 constant	 is	 given	 by g(r) =

g0U(r) where U(r) is	the	normalised	magnitude	of	the	electric	field, and g0 is

the	single-photon	field-atom	coupling	constant, a	measure	of	the	maximum	cou-

pling	strength. For	a	Gaussian	standing-wave	of	waist	size w0 and	cavity	length L,

U(r) = cos(2πz/λ) exp(−(x2 + y2)/w0). The	effective	mode	volume, integrated

over	the	cavity	length, is V = πw2
0L/4. The	single-photon	electric	field	coupling

constant	 for	 this	mode	is g0 ≡
√

µ2ωc/(2~ϵ0V ), where µ is	 the	electric-dipole

moment	of	the	atom	aligned	in	the	field. The	coupling	can	also	be	expressed

as g0 =
√

σ0cγ/V for	atomic	cross-section σ0 = 3λ2/(2π), and γ the	free	space

atomic	decay	rate.

Expectation	values	for	system	operators, Ô, are	determined	using	the	density-

operator	relation:

⟨Ô⟩ = Tr
{

ρÔ
}

,

where	the	density	matrix, ρ, is	found	from	the	steady-state	solution	to	the	master

equation:

d

dt
ρ(t) = − i

~
[Ĥ, ρ] + κ(2âρâ† − â†âρ − ρâ†â)

+
γ

2
(2σ̂−ρσ̂+ − σ̂+σ̂−ρ − ρσ̂+σ̂−). (3.1)

3.2.1 A little	bit	of	code

We	model	the	cavity	mode	with	a	truncated	Fock	state	basis, |0⟩,|1⟩,|2⟩…|k⟩ that	is
valid	provided k is	significantly	larger	than	the	mean	intra-cavity	photon	number.

The	result	is	a	set	of 2(k+1) linear	equations	(k+1 photon	states, and	two	atomic

states)	that	are	solved	to	find	the	steady-state	density	matrix, ρ(tss).

We	express	the	matrix	elements	of ˙̂ρ making	use	of	equation	(3.1), and

˙̂ρmn,ij = ⟨n, j| ˙̂ρ|m, i⟩ (3.2)

Here, m,n represent	the	initial	and	final	photon	occupation, and i, j the	atomic

excitation	(g or e). We	need	equations	for	the	matrix	elements	for 0 < (m,n) < k

as	well	as	the	cases	when	eitherm or n is	the	lowest	or	highest	occupation	number

(0 or k)	and	for	(i = j = e), (i = j = g),(i = g, j = e), and	(i = e, j = g). An

example	is, for 0 < (m,n) < k and i = j = g:
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˙̂ρmn,gg = −i∆aρ̂mn,gg

−iε[
√

n + 1ρ̂mn+1,gg +
√

nρ̂mn−1,gg −
√

mρ̂m−1n,gg −
√

m + 1ρ̂m+1n,gg]

−ig[
√

nρ̂mn−1,gg −
√

mρ̂m−1n,gg]

+γρ̂mn,ee

+κ[2
√

(n + 1)(m + 1)ρ̂m+1n+1,gg − (m + n)ρ̂mn,gg].

A sample	of	the	Mathematica® code	used	in	these	simulations	is	given	in	appendix

A.

The	 size	 of	 the	 Fock	 basis	 we	 used	 varied	 depending	 on	 the	 simulation.

A smaller	basis	 improves	 the	computational	speed, but	 is	only	appropriate	 for

very	small	values	of	the	mean	intra-cavity	photon	number. We	found	the	small-

est	 workable	 size	 depended	 on	 the	 input	 photon	 number, Nin, and	 the	 cou-

pling	 of	 the	 cavity	 input	mirror. For Nin < 20, we	used	 a	 basis	 size	 of k =

(3 + 11.5
√

Nin/(κ/2)), and	otherwise	used k = (26.2 + 1.45Nin/(κ/2)) -	where

values	for k were	rounded	up	to	the	nearest	integer. With	these	values, our	simu-

lations	provided	numerical	results	that	did	not	change	with	increased	basis	sizes.

The	atom	is	detected	 inside	 the	cavity via its	 influence	on	 the	cavity	field

and	subsequently	the	cavity	transmission. The	number	of	photons	detected	at	the

output	mirror	in	a	measurement	interval, τ , is N = nκoutτ , where n = ⟨â†â⟩ is
the	steady-state	intra-cavity	photon	number. For	a	cavity	containing	no	atoms,

with	an	intracavity	photon	number n0, Nempty = n0κoutτ . The	signal	for	an	atom

detection	event	 is	 the	difference	 in	 these	photon	numbers, and, assuming	 the

statistics	remain	Possionian	during	an	atom	transit, the	signal-to-noise	ratio	of	the

measurement	is

SNR =
(Nempty − N)√

Nempty + N
. (3.3)

As	well	as n = ⟨â†â⟩, other	expectation	values	that	we	are	interested	in	are
⟨â⟩, ⟨â†⟩ and ⟨−i(â − â†)⟩ as	we	will	discuss	in	sections	3.4.2 and	3.4.3.

The	assumption	of	Poissonian	noise	can	break	down	in	extreme	regimes	of

high	finesse	and	large	atom	cavity	coupling	where	anti-bunching	and	squeez-

ing	can	occur	[30]. We	will, however, concentrate	on	regimes, where	we	have

confimed	that	these	effects	are	minimal.
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3.3 Detection	Parameter	Space
By	‘parameter	space’	for	single	atom	detection, we	refer	to	variations	in	cavity-

probe	(∆c = ω0 − ωc), and	atom-probe	(∆a = ω0 − ωa)	detunings, cavity	finesse

(F = πR1/2/(1−R)), and	probe	power	(related	to ε). In	this	section, we	present

numerical	data	for	the	signal-to-noise	ratio	of	atom	detection	with	a	maximally

coupled	atom-cavity	system	(g(r) = g0). We	find	these	data	are	naturally	sepa-

rated	into	two	broad	detection	regimes: resonant	detection	at	low	probe	powers,

and	non-resonant	detection	at	higher	powers. These	regions	of	parameter	space

are	addressed	separately	in	sections	3.3.1 and	3.3.2.

3.3.1 Resonant	Detection

Initially, we	consider	the	resonant	condition, a	point	in	parameter	space	where

all	three	system	frequencies	are	coincident; ω0 = ωc = ωa.

The	system	we	model	is	for	a	transition	in	the	rubidium	87	D2	line	(52S1/2 →
52P3/2, λ = 780nm: refer	to	figure	2.1)	with	a	decay	rate	of γ = 2π×6MHz	[134].

The	cavity	length	is L = 100µm, and	mode	waist w0 = 20µm. For	a	cavity	with

approximately	planar	mirrors	 the	described	geometry	means	 the	Purcell	effect

can	be	ignored. The	system	has	an	atom-field	coupling	of g0 ∼ 2π × 26MHz	and

a	cavity	decay	rate	that	scales	inversely	with	finesse. We	have	chosen	to	present

data	for	these	parameters	because	they	are	in	the	range	of	realistic	experimental

design	[103], however, the	qualitative	results	that	are	presented	in	this	work	are

common	to	a	wide	range	of	design	choices.

The	data	presented	here	are	for	an	impedence-matched	cavity, where κout =

κin = (1/2)κ, and	the	empty-cavity	transmission	is	100%. In	an	experimental

set-up, it	 is	 the	 input	probe	power, rather	 than	 transmitted	power, that	 is	kept

constant	during	an	atom	detection	event, so	data	are	parameterised	in	terms	of

this	input	photon	flux. In	the	results	presented, we	consider κloss = 0, a	reason-

able	approximation	for	cavities	of	moderate	finesse. We	also	note	that	one	could

immediately	gain	a	factor	of
√

2 in	the	signal-to-noise	ratio, [equation	(3.3)], by

using	an	undercoupled	cavity	with κin ≪ κout, instead	of	the	impedence-matched

cavity	modelled	here. In	chapter	5, we	discuss	the	parameters	for	the	actual	ex-

perimental	cavity, where	we	have	chosen	mirrors	with	the	transmissivity	favouring

the	output	mirror	by	a	factor	of	three.

Figure	3.2 shows	how	the	signal-to-noise	ratio	varies	with	probe	power	and
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Figure 3.2: Signal-to-noise	ratio	for	resonant	atom	detection	with	ideal	photon	count-
ing. The	cavity	has	 a	 length	of 100µm, and	waist	of 20µm. κin = κout, κloss = 0,
γ = 2π×6MHz, τ = 20µs. Panel	(b)	corresponds	to	a	cross	section	along	the	dashed	line
in	(a), showing	the	positions	of	optimum	SNR.	The	dashed	line	indicates	the	SNR and
solid	line	the	power	as	a	function	of	cavity	finesse. Panel	(c)	corresponds	to	the	solid	line
at F = 104 and	(d)	to	a	cross	section	along	the	dotted	line	in	(a)	at	flux= 10photons/µs.

cavity	finesse. In	figure 3.2(a), the	dashed	line	traces	the	position	of	maximum

SNR.	For	a	given	finesse, there	is	a	clear	optimum	power	at	which	to	operate,

shown	for F = 104 in	figure 3.2(c). As	the	finesse	increases, the	maximum	value

of	the	signal-to-noise	ratio	improves.

At F ∼ 3000, there	is	a	transition	in	the	system’s	behaviour; as	this	value	is

approached	from	the	low-finesse	side, the	optimum	signal-to-noise	ratio	occurs

at	lower	probe	power, while	in	the	limit	of	high-finesse, the	reverse	is	true, and

increasing	cavity	finesse	beyond 3000 requires	increases	in	power	to	achieve	the

maximum	signal-to-noise	ratio. The	transition	can	be	understood	in	context	of

the	critical	atom	number, N0, and	we	can	separate	the	plot	into	regions	of	(i) high

and	(ii) low	critical	atom	number.

High	Critical	Atom	Number: Atom	as	a	Saturable	Absorber

In	the	low-finesse	limit, the	critical	atom	number	is	large	(> 1), so	multiple	atoms

are	necessary	to	substantially	influence	the	cavity	transmission. An	equivalent

statement	is	to	say	that	in	this	regime	the	effect	of	a	single	atom	on	the	transmitted

power	is	only	perturbative. In	this	limit, the	atom	can	be	modelled	classically	as

a	saturable	absorber	with	absorption	cross-section, σ, that	scales, on	resonance,
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as

σ =
σ0

I/Isat + 1
.

I is	the	intensity	of	light	incident	on	the	atom	and Isat is	the	atomic	saturation

intensity.

We	can	describe	the	detection	process	as	follows. In	free	space, the	detected

signal, Sdet, is	a	measure	of	the	atom’s	effect	on	a	photon	beam, and	is	propor-

tional	to	the	photon	flux, F , and	the	ratio	of	the	atomic	cross-section	to	the	beam

area, A:

Sdet = F
σ

A
.

With	the	atom	and	probe	beam	inside	a	cavity, several	changes	are	observed.

Each	photon	now	passes	the	atom	more	than	once, effectively	increasing F . The

atom	therefore	has	a	greater	chance	of	absorbing	each	photon, and	has	a	more

significant	effect	on	the	probe	beam	when	the	absorption	happens	inside	a	cavity.

As	the	finesse	increases, so	too	does	the	number	of	round	trips	for	each	photon

before	it	decays	from	the	cavity	mode, so	the	signal	improves	with	finesse.

A second	effect	of	 the	 intensity	amplification	by	 the	cavity, is	a	 reduction

in	atomic	cross-section. Increases	 in	finesse	 therefore	mean	 that	 the	 external

probe	power	necessary	to	saturate	the	atom	(inside	the	cavity)	is	reduced, and

the	maximum	signal-to-noise	ratio	requires	lower	power	as	the	finesse	increases,

in	accordance	with	the	dashed	line	in	region	(i)	of	figure 3.2(a).

Low	Critical	Atom	Number: Coupled	Resonators

In	contrast	with	the	low-finesse	regime, the	high-finesse	regime	requires	increas-

ing	probe	powers	with	increasing	finesse	in	order	to	achieve	the	maximum	signal-

to-noise	ratio.

In	region	(ii)	of	figure	3.2(a), the	critical	atom	number, N0, is	less	than	one, so

a	single	atom	significantly	influences	the	system. The	smaller N0 becomes, the

more	significant	an	effect	a	single	atom	will	have. In	this	regime, we	consider	the

quantum	mechanical	model	in	more	detail. That	model	concerns	the	coupling

of	two	resonators, the	bare	two-level	atom	and	the	empty	cavity, giving	coupled

(dressed)	states, |n+⟩ and |n−⟩, that	are	linear	combinations	of	the	uncoupled

states: |n+⟩ = sinα|n−1⟩|e⟩+cosα|n⟩|g⟩ and |n−⟩ = cosα|n−1⟩|e⟩−sinα|n⟩|g⟩.
The	Jaynes-Cummings	energy	spectrum	of	these	dressed	states	has	eigenenergies
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given	by

E(n)± = ~ωc(n − 1/2) ± 1

2
~
√

4g2n + (∆c − ∆a)2, (3.4a)

that	reduce, in	the	case	of	resonant	atom	and	cavity	driving, ∆c = ∆a = 0, to

E(n)± = ~ω0(n − 1/2) ± ~g
√

n. (3.4b)

A good	review	of	the	dressed	states	for	this	resonant	condition	is	given	in	refer-

ence [6].

Figure 3.3 shows	the	mode-splitting	of	the	resonant	dressed	atom-cavity	sys-
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tem. When	the	driving	laser	is	resonant	with	the	uncoupled	system	(~ω0 = ~ωa =

~ωc), it	is	detuned	from	the	dressed	state	resonances	in	an	intensity-dependent

manner. The	detuning, δ(n), is	found	by	considering	the	addition	of	a	photon

from	the	probe	beam	(~ω0)	to	the	excited	modes	in	the	coupled	system:

δ(n) = E(n + 1)± − [E(n)± + ~ω0]

= ±~g(
√

n + 1 −
√

n)

The	detuning	 is	 largest	at	 low	power. As n increases, the	difference	between
√

n + 1 and
√

n is	reduced	(
√

n + 1 −
√

n → 0 as n → ∞), so	at	sufficiently	high

excitation δ(n) vanishes	and	the	resonant	condition	of	the	uncoupled	system	is

recovered. Consequently, in	 the	high-power	limit, there	is	no	discernable	dif-

ference	between	the	transmission	of	an	empty	cavity	and	the	cavity	during	an

atom	transit, and	the	signal	is	lost. It	might	therefore	be	expected	that	the	best

signal-to-noise	ratio	is	obtained	at	low	excitation, however	the	relative	shot	noise

improves	with	increasing	photon	flux, so	in	fact	the	optimum	SNR occurs	at	an

intermediate	power	that	is	a	compromise	of	these	limits.

More	generally, from	equation	(3.4a), we	find	the	detuning, δ(n), when	the

bare-states	are	not	degenerate, is	given	by:

δ(n) = E(n + 1)± − [E(n)± + ~ω0]

= ±~[
√

4g2(n + 1) + (∆c − ∆a)2 −
√

4g2n + (∆c − ∆a)2] − ∆c

and	(once	again)	we	find	that	at	high	power	levels, when n + 1 → n, the	de-

tuning	of	the	uncoupled	cavity	(∆c)	is	recovered. Figure	3.4 shows	the	energy

spectrum	of	the	dressed	states	as	a	function	of	the	frequency	difference	between

the	uncoupled	system	components. The	centre	at ∆c = ∆a corresponds	to	the

mode-splitting	shown	in	figure	3.3.

The	 detuning, δ(n), must	 be	 considered	 in	 the	 context	 of	 the	 system	de-

cay	rates	that	determine	the	linewidth	of	the	dressed	modes. Figure 3.5 shows

the	mode-splitting	 for F = 103, 104 and 105, at	probe	powers	of 1 and 102.3

photons/µs.

In	a	system	with	large	decay	rates, or	low	finesse	[figure 3.5(a)], the	dressed

state	resonant	frequencies	are	not	distinctly	different	from	the	uncoupled, empty

cavity, resonance. Since	there	is	little	contrast, the	signal	is	lost	easily	with	in-
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creases	in	intra-cavity	photon	number	[figure 3.5(b)]. As	the	finesse	increases, the

dressed	state	energies	become	more	distinct	from	the	uncoupled	resonance	[fig-

ure 3.5(e)]. In	the	high-finesse	regime, the	probe	power	must	be	increased	con-

siderably	before	the	high-intensity	detuning	limit	(n + 1 → n)	comes	into	effect.

Consequently, increasing	finesse	requires	increasing	probe	powers	to	achieve	the

maximum	signal-to-noise	ratio, as	indicated	with	the	dashed	line	in	region	(ii)	of

figure 3.2(a).

If	we	choose	to	limit	the	probe	power	with	which	the	cavity	is	driven	(the	flux

limit	of	single	photon	counting	modules	is	discussed	in	section 3.4.1), then	the

signal-to-noise	ratio	no	longer	improves	with	finesse, as	shown	in	figure 3.2(c).

In	this	high-finesse	regime, the	mode-splitting	results	in	a	complete	black-out	of

cavity	 transmission	during	an	atom	 transit	 (shown	as	 the	 long	arrow	 (i)	 in	fig-

ure 3.5(e)). Further	increases	in	finesse	narrow	the	resonances	but	cannot	im-

prove	the	signal	 that	 is	already	maximized. In	 this	regime, the	signal-to-noise

ratio	only	improves	by	increasing	the	probe	power.



44

(e) (f)

T

T

T

δ /κδ /κ

(iii)

(i)(ii)

0.0

1.0

(b)

-1.0 -0.5 0.0 0.5 1.0

(a)

-1.0 -0.5 0.0 0.5 1.0
0.0

1.0

(d)

- 4 - 2 0 2 4

(c)

- 4 - 2 0 2 4
0.0

1.0

- 4 - 2 0 2 4 - 4 - 2 0 2 4

Figure 3.5: Relative	photon	transmission, T,	for	the	atom-cavity	system	as	a	function	of
probe	detuning. Dashed	traces	are	for	the	empty	cavity	and	solid	lines	represent	the
dressed	modes. The	cavity	finesse F is	 (a,b) 103, (c,d) F = 104 and	(e,f) 105. The
left	plot	for	each	value	of F is	for	a	driving	flux	of 1 photon/µs, the	right	is	for 102.3

photons/µs.

3.3.2 Non-Resonant	Detection

By	detuning	the	probe, we	open	the	possibility	of	both	‘positive’	and	‘negative’

signals. The	sign	is	arbitrarily	defined	by	equation (3.3), and	is	not	important:

‘Positive’	signals	correspond	to	decreases	in	cavity	transmission	(since	these	are

the	natural	signals	observed	with	resonant	detection, and	therefore	probably	the

most	intuitive	to	understand). Both	positive	and	negative	signals	have	been	ob-

served	in	previous	cavity	detection	work	[70]. The	arrows	on	figure 3.5(e)	show

examples	of	the	sign	and	magnitude	of	the	signal	for	various	detunings. Arrows

pointing down are	an	indication	of	positive	signals, while	an	upwards	pointing
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arrow	implies	an	increase	in	transmission	during	an	atom	detection	event. For	a

resonant	probe	(i), the	signal	is	always	seen	as	a	reduction	(‘dip’)	in	transmitted

power, since	the	atom	effectively	detunes	the	system	from	resonance. A dip	may

also	be	observed	if	the	probe	is	detuned	from	the	empty	cavity	(ii). Alternatively,

if	the	probe	is	detuned	to	a	position	corresponding	to	a	resonance	of	the	dressed

system, the	atom	will	bring	the	system	onto	resonance	with	the	detuned	probe,

resulting	in	an	increase	(‘peak’)	in	the	power	transmitted	(iii).

Combining	the	choice	of	probe	power	with	the	possibility	of	detunings	dra-

matically	increases	the	parameter	space	for	atom	detection. We	therefore	limit

the	remaining	discussion	to	the	cavity	design	already	introduced	(cavity	length

L = 100µm, and	waist w0 = 20µm), and	consider	a	modest	finesse F = 104.

Figure	3.6 presents	a	selection	of	data	for	the	signal-to-noise	ratio, with	the

resonant	 condition	of	 section 3.3.1 represented	by	 the	 position	A in	 the	cen-

tre	of	figures	3.6(a)	and	(b). Other	positions	correspond	to	non-zero	detunings.

At	low	probe	power, the	best	signal-to-noise	ratio	occurs	on-resonance	and	for

higher	powers, the	maximum	shifts	to	detuned	operating	conditions. Figure 3.6(c)

shows	the	signal-to-noise	ratio	as	a	function	of	power	for	positions	A,	B and	C in

figure 3.6(a)	and	(b).

The	global	maximum	for	the	signal-to-noise	ratio	(ie: the	best	SNR obtainable

over	the	whole	parameter	space)	is	the	peak	of ∼ 13 that	occurs	on	resonance,

at	A.	Nonetheless, it	may	be	advantageous	to	work	with	red-detuned	(∆a > 0)

conditions, due	to	the	benefits	of	the	dipole	force	that	can	be	used	to	manipulate

the	atom’s	position	in	the	cavity	[104]. This	process	and	the	benefits	it	affords	the

detection	efficiency	are	the	essence	of	the	following	chapter.

The	mode-splitting	 shown	 in	figure 3.5 is	 a	useful	picture	 for	 the	dressed

states	of	a	 resonant	system. It	 is	also	a	good	description	of	 the	dressed	states

of	a	system	with	equal	detunings, ∆a = ∆c, accessed	when	the	probe	laser	fre-

quency	is	scanned	but	the	cavity	is	kept	resonant	with	the	atom	(ωc = ωa), but	for

more	general	detunings	and	at	high	power, the	split	modes	do	not	provide	useful

intuition	about	the	atom’s	influence	on	the	system.

Figure 3.6(d)	 shows	 the	output	flux	 for	 the	empty	cavity	 and	 the	coupled

atom-cavity	system	at	a	driving	flux	of 104 photons/µs	with	the	data	normalised

to	the	empty	cavity	transmission. The	probe	frequency	is	scanned	giving	atom-

probe	and	cavity-probe	detunings	 indicated	on	 the	 top	and	bottom	axes. For
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Figure 3.6: Signal-to-noise	ratio	for	a	range	of	cavity	and	atom	detunings. F = 104,
other	parameters	as	in	figure	3.2. The	probe	power	is	(a) ∼ 40 photons/µs, (b) ∼ 6300
photons/µs. (c)	 Signal-to-noise	 ratio	 as	 a	 function	 of	 probe	 power	 positions	 in	 de-
tuning	 space	 marked	 A (∆c = 0κ,∆a = 0γ), B (∆c = 1κ,∆a = 10γ)	 and	 C
(∆c = −1κ,∆a = 25γ)	in	(a)	and	(b). (d)	normalised	cavity	transmission, T,	at	a	probe
power	of 104 photons/µs, through	the	cross-section	shown	with	the	white	dashed	line
in	(b). The	atom	shifts	the	cavity	resonance	from	the	dashed	to	solid	line, giving	a	signal
represented	with	the	short	arrow.

these	detuning	and	power	conditions, the	atom	has	a	dispersive	effect, shifting

the	cavity	resonance	as	shown	by	the	solid	line	in	figure 3.6(d). At	the	resonant

peak	there	is	almost	no	change	in	transmitted	power, since	here	the	amplitude

gradient	is	zero, but	on	the	side	of	the	resonance	the	small	frequency	shift	means	a

signal	is	observed, indicated	with	the	short	arrow	in	the	inset	of	3.6(d). The	signal

relative	to	the	empty	cavity	transmission	is	small, but	since	it	occurs	at	high	probe

power	the	relative	shot	noise	is	also	small	so	the	signal-to-noise	ratio	can	be	large.

In	3.6(c), the	magnitude	of	the	optimum	signal-to-noise	ratio	at	position	B is ∼ 9.

This	is	not	as	good	as	the	signal-to-noise	ratio	achievable	on-resonance	but	is	still
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very	satisfactory.

It	should	be	mentioned	of	course, that	achieving	the	shot-noise	limit	when

operating	on	the	side	of	a	resonance	-	where	frequency	noise	in	the	apparatus

translates	 to	amplitude	noise	at	 the	detection	-	 is	usually	experimentally	chal-

lenging, and	consequently	avoided. We	will	discuss	this	further	in	section	3.4.4,

but	also	note	that	there	are	other	possibilities	for	taking	advantage	of	detuned	de-

tection, without	having	to	work	on	the	flanks	of	a	resonant	feature. Work	by	Lye et

al. [91]	and	Horak et	al. [73]	considered	the	signal-to-noise	ratio	for	far-detuned

detection	in	a	different	way; the	dispersive	interaction	of	the	atom	with	the	cavity

field	can	be	measured	as	a	phase	shift, rather	 than	a	variation	 in	 transmission

amplitude. The	phase	angle	measures	the	difference	between	the	phase	of	the

transmitted	probe	and	the	input	laser. For	the	empty	cavity, the	phase	response	is

zero	at	the	resonant	frequency, and	it	is	here	that	the	phase	gradient	is	largest, as

shown	in	figure	2.5. The	frequency	shift	that	the	atom	induces	therefore	has	the

greatest	effect	on	the	phase	at	the	transmission	intensity	peak, rather	than	the	side

of	the	transmission	where	the	amplitude	gradient	is	maximum. Phase	quadrature

detection	with	a	heterodyne	set-up	is	discussed	in	section	3.4.3.

3.4 Photon	Counting	Practicalities

3.4.1 Single	Photon	Counting	Modules

In	section	3.3 we	presented	data	for	an	ideal	atom	detection	system	where	all	the

transmitted	photons	at	the	cavity	output	mirror	are	detected. In	practice, this	will

never	be	the	case, and	optimization	of	atom	detection	is	critically	influenced	by

the	photon	measurement	process.

A typical	single	photon	counting	module	is	an	avalanche	photodiode	(APD),

for	example Perkin	Elmer	SPCM-AQRH [4]. This	 type	of	device	has	been	em-

ployed	in	experiments	by	several	research	groups	[103, 102, 74]. The	quantum

efficiency	(QE) of	an	APD is	typically	around 50%	at 780nm, but	is	non-linear	with

power. We	will, however, continue	to	assume	an	efficiency	of	50%, noting	that

this	generous	value	is	limited	to	low	photon	flux. An	acceptible	incident	photon

flux	limit	 is	about 20 photons/µs, giving	an	APD count	rate	of 10 photons/µs.

The	net	result	of	50%	efficient	detection	is	a	reduction	by	a	factor	of
√

2 in	the

signal-to-noise	ratio. The	detector	flux	limit	means	that, even	for	the	moderate

finesse	of F = 104 considered	here, we	cannot	reach	the	probe	power	required
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for	optimal	detection	using	an	APD.

3.4.2 Heterodyne	Detection

So	far	we	have	considered	the	detection	of	cavity	transmission	by	direct	photon

counting, measuring	the	observable, ⟨â†â⟩. Saturation	of	real	single	photon	de-
tectors	means	we	are	obliged	to	limit	the	probe	power, and	consequently	cannot

access	the	optimum	signal-to-noise	ratio	of	an	ideal	atom	detector. An	alternative

is	to	use	heterodyne	detection	with	photodiodes	that	do	not	saturate	at	the	probe

power	discussed	here, but	is	still	capable	of	measuring	the	very	low	powers	with

which	we	are	concerned [93]. A possible	set-up	is	indicated	in	figure	3.7.

Â

ĉ

d̂

PD1

PD2

sin(Ωt)

cos(Ωt)

b̂ = βe−iφ

BS

Figure 3.7: Schematic	representation	of	heterodyne	photodetection.

Input	fields Â and b̂ are	combined	on	a	50-50	beam-splitter. Here, Â =

â
√

κoutτ is	the	field	at	the	cavity	output	mirror	and b̂ = βe−iϕ is	that	of	a	strong

coherent	local	oscillator, whose	frequency	is	shifted	from	the	probe	laser	by Ω.

The	phase	of	the	local	oscillator	(LO) can	then	be	expressed	as ϕ = Ωt+φ, where

Ω is	the	explicit	frequency	difference, and φ is	an	arbitrary	phase	difference. We

require	the	heterodyne	signal	to	detect	the	influence	of	the	atom	on	the	transmit-

ted	probe	power. The	process	must	be	independent	of	any	variations	in φ. To

avoid	an	involved	locking	procedure, mixing	the	signal	with	appropriate sin(Ωt)

and cos(Ωt) components	removes	the	phase	dependence	as	follows:

The	beam-splitter	output	fields, ĉ = 1/
√

2(Â + b̂) and d̂ = 1/
√

2(Â − b̂), are



49

measured	as	currents	at	photodiodes	PD1	and	PD2:

ĉ†ĉ =
1

2
(Â†Â + b̂†b̂ + Â†b̂ + b̂†Â),

d̂†d̂ =
1

2
(Â†Â + b̂†b̂ − Â†b̂ − b̂†Â).

Subtracting	these	photocurrents	we	find

ĉ†ĉ − d̂†d̂ = β(Â†e−iϕ + Âeiϕ). (3.5)

Mixing	the	signal	with	sine	and	cosine	functions	that	oscillate	at Ωt gives	terms

Î = cos(Ωt) × β(Â†e−i(Ωt+φ) + Âei(Ωt+φ))

= (β/2)[X̂+ cos(φ) − X̂− sin(φ)

+X̂+ cos(2Ωt + φ) − X̂− sin(2Ωt + φ)]

= (β/2)(X̂−φ + X̂−(2Ωt+φ)), (3.6)

Q̂ = sin(Ωt) × β(Â†e−i(Ωt+φ) + Âei(Ωt+φ))

= (β/2)[−X̂+ sin(φ) − X̂− cos(φ)

+X̂+ sin(2Ωt + φ) + X̂− cos(2Ωt + φ)]

= (β/2)(X̂−(φ+π/2) + X̂−(2Ωt+φ−π/2)) (3.7)

where	we	have	used	the	amplitude, X̂+ = (Â†+Â), and	phase, X̂− = −i(Â−Â†),

quadratures	of Â and	expressed	the	results	with X̂ϑ = X̂+ cos(ϑ) + X̂− sin(ϑ).

Equations	(3.6)	and	(3.7)	are	used	to	generate	the	final	measurement,

⟨Î ⟩2 + ⟨Q̂⟩2 = (β2/4)[⟨X̂+⟩2 + ⟨X̂−⟩2]

= (β2/4)[⟨Â + Â†⟩2 − ⟨Â − Â†⟩2]

= β2⟨Â⟩⟨Â†⟩. (3.8)

Terms	with 2Ωt dependence	in Î and Q̂ are	vacuum	terms	[151, 150]. They	do

not	contribute	to	the	signal	but	add	to	the	noise	which	is	determined	by	examining
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the	variance	of Î and Q̂. The	variance VÎ ≡ (∆Î )2 is	given	by

VÎ = ⟨Î 2⟩ − ⟨Î ⟩2

= (β2/4)[⟨(X−φ)2⟩ − ⟨X−φ⟩2

+⟨(X−(2Ωt+φ))2⟩ − ⟨X−(2Ωt+φ)⟩2]

= (β2/4)[V φ + V 2Ωt+φ]

= β2/2,

with	an	identical	result	for VQ̂. Here, we	have	assumed	the	field	remains	coher-

ent, so	 the	variances	of	 the	measured	and	vacuum	fields	are	both	one: V φ =

V 2Ωt+φ = 1.

The	total	noise	on	the	measurement	is

∆(⟨Î ⟩2 + ⟨Q̂⟩2) =

√
(2⟨Q̂⟩∆Q̂)2 + (2⟨Î ⟩∆Î )2

= β2

√
2⟨Â⟩⟨Â†⟩. (3.9)

The	expressions	for	 the	measurement	[equation (3.8)]	and	noise	[equation

(3.9)]	replace N = κoutτ⟨â†â⟩ in	equation (3.3), and	a	similar	approach	is	taken

for	the	empty	cavity	coherent	field	where ⟨â⟩0⟨â†⟩0 = ⟨â†â⟩0 = n0. The	signal-to-

noise	ratio	for	atom	detection via field	amplitude	measurement	with	a	heterodyne

set-up	 is	 therefore	of	a	 slightly	different	 form	 to	 that	of	direct	photon	number

(intensity)	detection;

Shet =

√
κoutτ(n0 − ⟨â⟩⟨â†⟩)√

2(n0 + ⟨â⟩⟨â†⟩)
. (3.10)

The	noise	includes	the	familiar	factor	of
√

2 of	heterodyne	measurements	[151,

150]. However, the	signal-to-noise	ratio	for	heterodyne	detection	is	not	neces-

sarily	smaller	by
√

2 than	for	direct	detection, since	the	signal	and	noise	now	both

contain	expectation	values	of	different	quantum	operators.

3.4.3 Phase	Quadrature	Detection

Instead	of	the	cavity	field	amplitude	or	intensity, we	can	also	use	the	heterodyne

set-up	to	measure	the	phase	of	the	probe	beam	with	respect	to	the	LO.	Changes

in	phase	due	to	the	presence	of	a	single	atom	can	be	observed	in	the	dispersive
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regime	discussed	 in	 section	3.3.2. The	 relevant	observable	 in	 this	case	 is	 the

expectation	value	of	the	phase	quadrature, ⟨X̂−⟩ = ⟨−i(Â − Â†)⟩, and	since	the
initial	phase	response	of	the	cavity without atom	is	given	by	the	imaginary	part

of	the	field, the	detection	signal-to-noise	ratio	becomes:

SNRpq =

√
κoutτ

2

[
Im
{√

n0[1 + (∆c/κ)2]

1 + i(∆c/κ)

}
+ ⟨i(â − â†)⟩

]
(3.11)
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Figure 3.8: Signal-to-noise	ratio	of	phase	quadrature	detection	for	a	range	of	cavity
and	atom	detunings. F = 104, other	parameters	as	in	figure	3.2. The	probe	power
is	(a) ∼ 1 photons/µs, (b) ∼ 6300 photons/µs. (c)	Signal-to-noise	ratio	as	a	function	of
probe	power	for	the	positions	in	detuning	space	marked	A (∆c = 0κ,∆a = 0γ)	and
B (∆c = 0κ, ∆a = −2γ)	in	(a)	and	(b). (d)	Normalised	cavity	phase	shift, at	a	probe
power	of 104 photons/µs, along	the	cross-section	shown	with	the	dashed	white	line	in
(b). The	atom	shifts	the	cavity	resonance	giving	a	phase	shift	from	the	dashed	(empty
cavity)	to	solid	line	(atomic	influence). The	absolute	size	of	the	signal	is	proportional	to
the	amplitude	of	the	probe	beam. The	normalised	signal	is	divided	by	the	empty-cavity
amplitude.
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Phase	quadrature	detection	yields	the	largest	signals	and	best	signal-to-noise

ratios	on	the	cavity	resonance, since	this	 is	 the	position	for	which	there	is	 the

greatest	phase	gradient	in	the	cavity	response	function, as	discussed	in	section

2.2. Selected	data	over	the	detuning	and	photon	flux	parameter	space	for	phase

quadrature	detection	are	shown	in	figure	3.8.
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Figure 3.9: A comparison	of	the	signal-to-noise	ratio	for	atom	detection	with	(a)	ideal
photon	counting	(APD) and	ideal	heterodyne	detection	of	intensity	(Het)	and	phase	(PQ).
(b)	The	same	detection	methods, for	non-ideal	photon	detection: an	APD with 50%	QE
and	a	saturation	flux	of 20 photons/µs, and	a	 realistic	heterodyne	set	up	using 95%
efficient	photodiodes. Traces	at	high	power	are	for	detection	at	the	detuned	position,
C,	in	figure 3.6 and	B in	figure	3.8.

Figure 3.9 shows	a	comparison	of	the	detection	schemes. The	solid	curves

are	for	detection	of ⟨â†â⟩, using	an	APD,	and	the	dashed	curves	represent	het-
erodyne	detection; ⟨â†⟩⟨â⟩. The	Dot-dashed	curves	are	for	the	heterodyne	phase
quadrature	detection, ⟨−i(Â− Â†)⟩. Traces	that	peak	at	low	probe	power	are	for
the	resonant	condition	and	those	that	peak	at	higher	power	represent	detection

in	the	detuned	region	marked	C in	figure 3.6, and	B in	figure	3.8. In	figure	3.9(a),

the	comparison	 is	between	 ideal	direct	detection	and	 ideal	heterodyne	detec-

tion, using	photon	detectors	with 100%	QE.	For	resonant	detection	the	maximum

signal-to-noise	ratio	is	similar	in	both	intensity	detection	schemes, although	the

probe	power	that	is	necessary	to	achieve	it	varies	somewhat, whereas	the	signal

(and	signal-to-noise	ratio)	for	resonant	phase	detection	is	zero.

Figure 3.9(b)	includes	the	quantum	efficiencies	of	real	detectors; APD effi-

ciency	is 50%	and	the	photodiodes	used	in	the	heterodyne	set-up	are	assumed

to	be 95%	efficient. The	shaded	region	indicates	the	probe	powers	that	are	in-
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accessible	to	real	APDs	due	to	their	flux-limit. These	realities	show	a	significant

difference	between	the	two	detection	schemes. On-resonance, the	best	signal-

to-noise	ratio	for	the	flux-limited	APD is	about 8, whereas	using	heterodyne	de-

tection	at	a	higher	power	can	achieve	a	signal-to-noise	ratio	of	approximately 12

for	power, or > 15 for	phase	quadrature	detection.

The	maximum	signal-to-noise	ratio	of	APD and	heterodyne	detection	are	in

principle	very	similar. However, since	the	maximum	occurs	at	high	power, APDs

are	not	appropriate	for	detection	in	that	regime.

3.4.4 Noise	Susceptibility

The	 signal-to-noise	 ratios	 presented	 in	 our	 data	 are	 determined	 using	 photon

statistics	that	are	always	shot-noise	limited. The	ability	to	achieve	this	depends

on	the	stability	of	the	system	as	well	as	the	choice	of	operating	regime. For	probe

intensity	(or	amplitude)	measurements, the	operating	condition	least	sensitive	to

frequency	noise	is	the	resonant	position	(∆c = 0)	at	the	peak	of	the	cavity	trans-

mission	line	since	here	small	changes	in	detuning	have	little	effect	on	the	trans-

mitted	power. Detuned	detection	at	the	side	of	the	transmission	line, as	suggested

in	figure 3.6(d), is	more	sensitive	to	frequency	noise	since	here	the	gradient	on	the

amplitude	is	large, so	even	small	fluctuations	in	cavity	detuning	can	significantly

influence	the	power	transmitted.

In	the	previous	sections, two	broad	detection	regimes	have	been	presented.

Section 3.3.1 covered	the	signal-to-noise	ratio	behaviour	for	resonant	detection

where	the	observed	signal	is	seen	as	a	significant	drop	in	amplitude	at	the	trans-

mission	peak	due	to	Jaynes-Cummings	mode	splitting. In	section 3.3.2 the	signal

is	observed	due	to	a	small	frequency	shift	of	the	resonance	that	causes	a	change

in	 transmitted	 light	at	 the	detuned	detection	 frequency, or	a	phase	shift	 in	 the

probe	laser	with	respect	to	a	LO.

Frequency	noise	enters	the	system via variations	in	the	probe	laser	frequency

as	well	as	the	cavity	length. To	eliminate	noise	(in	the	measured	amplitude, in-

tensity	or	phase), these	components	must	be	extremely	stable. The	cavity	design

emphasised	 in	 this	work	has	a	 length	of 100µm	and	finesse F = 104, giving

a	 linewidth	of 150MHz. Assuming	 frequency	 locking	on	 the	order	of 100kHz

(easily	achieved	with	a	diode	laser	and	low	locking	bandwidth), amplitude	fluc-

tuations	at	the	position	of	the	signal	marked	by	the	short	arrow	in	figure 3.6(d)	are

roughly	one	part	in 1000. The	transmitted	power	at	this	position	is	approximately
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5000 photons/µs, with	shot	noise	of	about	one	part	in	100, so	the	amplitude	fluc-

tuations	due	to	frequency-locking	limitations	are	well	below	the	shot	noise	limit.

Measuring	phase	rather	than	intensity	in	the	detuned	regime	is	also	sensitive

to	frequency	noise	at	the	transmission	resonance	since	the	gradient	of	the	cav-

ity	phase	response	on	the	resonance	transmission	peak	is	zero, as	discussed	in

sections	3.4.2 and	2.2.

For	longer	cavities	or	for	cavities	with	higher	finesse, the	transmission	linewidth

decreases, so	the	frequency	stability	needs	to	be	improved. For	some	operating

conditions	and	cavity	designs, therefore, the	influence	of	frequency	noise	may

become	difficult	to	eliminate. In	such	cases, if	the	noise	can	be	measured, it	can

be	simply	subtracted	from	the	signal. Measuring	the	noise via an	error	signal	is	an

ideal	solution, since	a	possible	mechanism	for	locking	the	laser, atom	and	cavity

set-up	involves	the	use	of	a	far-detuned	stabilisation	laser	and	‘transfer	cavity’	in

addition	to	the	probe	beam. This	technique	is	described	in	reference [104], and

will	be	covered	in	chapter	5.

3.4.5 Detection	Efficiency

Discriminator	Position

Having	identified	regions	of	parameter	space	that	maximize	the	signal-to-noise

ratio, a	further	question	for	signal	analysis	regards	the	separation	of	a	detection

event	 from	the	shot-noise	of	 the	empty	cavity	transmission, indicated	with	the

dotted	‘discriminator’	line	in	figure 3.1(b).

Variations	in	the	number	of	photons	counted	in	a	measurement	interval	of

20µs, for	an	empty	cavity, are	photon	shot-noise	fluctuations. So	far, we	have

considered	the	same	to	be	true	of	the	number	of	counts	from	the	cavity	during

an	atom	transit, and	the	two	Poissonian	distributions	are	related	by	the	signal-to-

noise	ratio. The	quantum	efficiency	and	false	count	rate	of	the	atom	detection

depend	on	the	value	chosen	to	distinguish	between	these	photon	distributions. As

an	illustration, for	a	resonant	signal	(where	the	detected	photon	number	during	an

atom	transit	is	less	than	that	of	an	empty	cavity) raising the	discriminator	increases

the	efficiency	 since	 it	 includes	more	of	 the	distribution	of	 ‘signal’	counts, but

more	of	the	empty-cavity	counts	are	also	included, so	the	false	counts	increase.

A detailed	discussion	of	this	concern	is	the	subject	of	the	following	chapter.
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Limits	to	Efficiency

It	is	important	to	note	the	limitations	of	our	model	with	respect	to	detection	effi-

ciency. We	have	considered	maximal	coupling	between	the	atom	and	cavity	field

(g(r) = g0), neglecting	any	variation	in	coupling	strength	(and	corresponding	sig-

nal	strength)	that	occurs	when	the	atom	transits	the	cavity	away	from	the	intensity

maximum	of	the	light	field. In	a	real	system, this	variation	critically	affects	the

quantum	effiency. If	the	low	field	intensity	around	the	nodes	of	a	standing-wave

cavity	can	be	avoided, the	coupling	strength	seen	by	each	atom	can	be	made

substantially	more	uniform. This	can	be	achieved	in	two	ways:

(i) For	a	non-resonant	red-detuned	probe, the	electric	dipole	force	can	be

used	 to	pull	 the	atoms	 through	the	 intensity	maxima	of	 the	cavity	mode. The

dipole	potential	is	proportional	to	the	field	gradient, so	the	rapid	intensity	changes

of	a	standing-wave	can	create	a	strong	force	along	the	cavity	axis. On	the	basis

of	our	modelling, we	expect	the	regime	of	point	B in	figure 3.6 would	provide

both	a	strong	axial	dipole	potential	and	a	reasonable	signal-to-noise	ratio	 that

is	reduced	by	a	factor	of	about	1.4	compared	to	best	case	resonant	detection.

There	is	also	a	weaker	dipole	force	in	the	radial	direction	due	to	the	Gaussian

beam	profile. In	principle, this	could	increase	the	effective	width	of	 the	atom

detector. Assuming	reasonable	atom	speeds	of	about	1m/s, however, the	radial

dipole	force	is	not	strong	enough	to	substantially	influence	the	atom	trajectories.

This	is	true	both	for	the	regimes	considered	here	and	in	other	work	[104].

(ii) Only	 linear	cavities	have	axial	mode	structure. A travelling-wave	ring

cavity	has	a	field	that	is	uniform	along	the	cavity	axis. Consequently	all	atoms

transiting	the	field	on-axis	generate	signals	of	the	same	strength. In	this	config-

uration, there	is	little	to	be	gained	from	using	red-detuned	light	since	the	dipole

force	acting	on	the	atoms	will	only	be	in	the	radial	direction, and, as	discussed

above, unable	to	significantly	influence	atom	trajectories. A travelling-wave	cav-

ity	therefore	seems	highly	suited	to	resonant	detection	where	the	signal-to-noise

ratio	is	maximised. The	only	downside	is	that	the	lack	of	standing-wave	struc-

ture	yields	a	mode	volume	twice	that	of	a	linear	cavity	with	the	same	round-trip

length. This	reduces g0 by	a	factor	of
√

2. Our	modelling	indicates	that	for	both

resonant	and	detuned	detection	with	optimum	probe	power, travelling-wave	cav-

ities	lose	a	factor	of	1.3	to	1.5	in	signal-to-noise	ratio	compared	to	standing-wave

cavities	with	otherwise	identical	properties.
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In	summary, non-resonant	detection	allows	one	to	use	a	linear	cavity	with	a

standing	wave	and	higher g0, but	one	is	forced	to	consider	red-detuned	detection,

which	has	lower	potential	signal-to-noise	ratio	than	the	resonant	system. Alterna-

tively, a	ring	cavity	with	no	standing	wave, is	better	suited	to	resonant	detection,

but	comes	at	a	cost	of	potential	signal-to-noise	ratio	due	to	the	reduction	in g0.

The	end	result	is	that	both	options	give	similar	performance.

Although	there	are	many	experimental	details	that	we	have	not	considered

in	 the	present	work, our	model	 is	 still	 useful	 for	 comparing	 real	 set-ups. For

example, Öttl et	al. detected	single	atoms	 in	a	rubidium	87	atom	laser	beam

using	a	high	finesse	 (F = 3.5 × 105)	 optical	 standing-wave	cavity, with L =

178µm, w0 = 25.5µm	[104]. Their	detection	made	use	of	 the	dipole	 force	 to

channel	the	atoms	through	antinodes	of	the	cavity	field, and	optimum	detection

efficiency	occured	for	detunings	of ∆a = 3γ and ∆c = 0.5κ with	a	driving	photon

flux	of 70 photons/µs. In	our	simulations, these	cavity	parameters	and	operating

conditions	suggest	an	ideal	signal-to-noise	ratio	for	single	atom	detection	of	about

10. Their	cavity	is	appropriate	for	many	experiments	besides	single	atom	counting

since	it	accomplishes	strong	coupling	conditions	[103]. The	cavity	design	that

we	have	discussed	here	has	a	finesse	that	is	an	order	of	magnitude	lower	(F =

104)	than	the	cavity	presented	in	the	work	by	Öttl et	al. Nonetheless, we	have

demonstrated	that	for	our	moderate	finesse, there	exist	operating	regimes, in	both

resonant	and	detuned	conditions, where	the	achievable	signal-to-noise	ratio	is

as	good	as	that	of	the	higher	finesse	cavity. The	critical	difference	between	the

optimum	operating	regimes	used	in	reference [104]	and	those	shown	in	this	work,

is	the	use	of	high	probe	powers	necessitating	detection	with	a	heterodyne	set-up.

3.5 Conclusions

In	this	chapter, we	have	presented	a	thorough	analysis	of	factors	influencing	the

signal-to-noise	ratio	for	single	atom	detection	using	optical	cavities. The	parame-

ter	space	considered	includes	cavity-probe	and	atom-probe	detunings	as	well	as

variable	probe	power, and	we	have	shown	that	the	signal-to-noise	ratio	for	single

atom	detection	is	critically	dependent	on	the	choice	of	operating	regime	within

this	space.

Our	modelled	data	suggest	the	parameter	space	be	divided	into	two	regimes:

resonant	and	non-resonant	detection. Resonant	detection	with	moderate	to	high-
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finesse	cavities	(systems	with	low	critical	atom	number)	is	best	described	with	the

Jaynes-Cummings	mode-splitting. Non-resonant	detection	results	in	a	frequency-

pulling	of	the	cavity	transmission	line	that	can	be	observed via a	change	in	trans-

mitted	power, or	phase.

The	best	signal-to-noise	ratio	occurs	on-resonance. However, very	reason-

able	signal-to-noise	ratios	are	also	available	with	non-resonant	conditions, pro-

vided	the	atom	and	cavity	detunings	are	chosen	wisely	and	combined	with	ap-

propriately	high	probe	powers. With	a	standing-wave	configuration, red-detuned

detection	brings	 the	benefit	of	 the	dipole	potential	 that	 improves	 the	effective

atom-cavity	 coupling, however, equivalent	 signal-to-noise	 ratios	 are	 achieved

with	resonant	detection	in	a	travelling-wave	ring	cavity.

We	have	shown	that	accessing	the	maximum	values	for	the	signal-to-noise

ratio	for	both	resonant	and	non-resonant	conditions	requires	photon	fluxes	that

are	in	excess	of	APD saturation	limits, so	heterodyne	detection	is	a	more	desir-

able	detection	technique, as	well	as	allowing	the	possibility	of	phase	measure-

ments. Working	in	high	power	regimes	means	that	for	a	cavity	of	moderate	fi-

nesse, F = 104, we	can	achieve	a	signal-to-noise	ratio	comparable	or	better	than

those	achieved	in	previous	experiments	using	cavities	with	significantly	higher	fi-

nesse.

In	the	next	chapter, we	will	extend	our	analysis	to	atom	trajectories	through

the	cavity	field, taking	into	account	the	dipole	force	as	well	as	the	cavity	mode

structure	and	experimental	data	for	the	spatial	profile	of	our	atom	laser	beam.
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CHAPTER

FOUR

DETECTION QUALITY:	MEASURING SQUEEZING IN

AN ATOMIC BEAM

In	this	chapter, we	analyse	the	quantum	efficiency	and	dark	noise	of	our	mod-

elled	 single-atom	detector, with	particular	emphasis	on	 the	ability	 to	measure

number	 squeezing	 in	 an	 atom	 laser	 beam. We	consider	 the	 influence	of	 the

electric-dipole	force	on	an	atom	in	a	red-detuned	detection	beam, and	discuss

the	much	improved	detection	efficiency	for	detuned	probes, with	respect	to	reso-

nant	probes, resulting	from	this	influence. We	find	that	for	the	detection	scheme

introduced	in	chapter	3, and	working	in	the	regimes	suggested	from	the	data	pre-

sented	there, a	noise-floor	clearance	of	more	than 20dB is	achievable. Cavities

allow	real-time	monitoring	of	atomic	flux, with	single-atom	resolution, but	they

are	much	slower	than	their	analogue	in	photonics	-	the	avalanche	photodiode,

so	flux	limits	must	be	imposed. The	proposed	detector	operates	at	a	maximum

flux	of	5000	atoms/second, but	with	the	available	shot-noise	clearance, the	full

advantage	afforded	by	number	squeezing	in	particle	flux	can	be	observed.

4.1 Introduction
Interferometry	using	massive	particles	is	receiving	increasing	interest	as	a	means

to	precision	measurement	because	of	the	possibility	of	hugely	improved	precision

offered	by	devices	using	massive	particles	over	their	traditional	photonic	equiv-

alents	[59]. At	its	core, atom-interferometery	relies	on	a	quantum	system	that	is

prepared	in	a	super-position	of	two	states	which	evolve	under	a	given	Hamilto-

59
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nian	at	different	rates [39]. After	some	free	evolution	the	populations	of	each	state

are	measured. The	key	observable	is	then	inferred	from	the	measured	population

difference	between	the	two.

As	with	optical	measurements, signal-to-noise	ratios	-	and	the	resulting	inter-

ferometric	sensitivity	-	improve	with	increasing	particle	flux. Sensitivity	can	be

enhanced	using	‘squeezed’	states	in	which	the	fluctuations	in	a	particular	vari-

able	are	below	the	standard	quantum	limit	 [57]; the	corollary	being	 that	 they

are	larger	in	the	conjugate	variable, in	accordance	with	Heisenberg’s	uncertainty

principal	[41, 84]. Although	squeezing	the	quantum	noise	on	optical	lasers	has

been	an	active	field	of	research	for	more	than	20	years, and	the	field	has	produced

many	beautiful	results, it	has	never	improved	the	sensitivity	of	a	practical	mea-

surement	apparatus. The	reason	is	simple. Coherent	photons	are	cheap	and	easy

to	produce, and	it	has	always	proved	better	to	turn	up	the	photon	flux	rather	than

squeeze	the	source	to	improve	the	precision	and	accuracy	of	a	measurement. This

may	change	in	the	near	future	with	the	implementation	of	squeezed	sources	in	ad-

vanced	LIGO [50, 54]. Atom	sources	are	somewhat	different, and	the	prospects

for	exploiting	squeezing	in	practical	measurements	look	rather	more	promising

since	cold	atoms	are	expensive	to	produce.

A laser	pointer	 that	you	can	buy	 for	a	 few	dollars	produces 1016 photons

per	second	and	fits	in	the	palm	of	your	hand. In	contrast, a	cold	atom	source

appropriate	for	precision	measurement	has	a	flux	eight	orders	of	magnitude	below

the	laser	pointer, a	cost	five	orders	of	magnitude	higher	and	the	apparatus	is	three

orders	of	magnitude	larger. Unless	we	find	new	technology	to	increase	the	flux

of	cold	atom	sources, whether	they	are	Bose	condensed	or	cold	thermal	sources,

it	is	unlikely	that	we	will	be	able	to	substantially	increase	the	signal-to-noise	in

atom	based	measurements	simply	by	turning	up	the	atom	flux.

Squeezing	becomes	a	viable	candidate	with	such	a	set	of	conditions. There

are	other	aspects	that	make	squeezing	look	promising. Mechanisms	for	squeezing

proceed vai interactions	or	non	linear	terms	in	the	Hamiltonian. Photons	do	not

interact	with	photons	in	vacuum	and	require	a	substantial	engineering	effort	to

produce	a	non-linear	medium	capable	of	substantial	squeezing. Atoms	interact

with	each	other	and	squeeze	for	free, and	a	variety	of	mechanisms	has	been	pro-

posed	for	the	production	of	squeezing	in	atomic	beams	[62, 26, 43, 132, 90, 84].

A further	complexity	in	optical	squeezing	is	the	immense	susceptibility	to	loss	due
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to	scattering	and	absorption	in	a	typical	lab	environment. The	vacuum	chamber

required	for	a	cold	atom	experiment	is	a	sunk	cost. We	may	as	well	 take	ad-

vantage	of	 it	 and	use	 this	 low	 loss, clean	environment	with	 squeezed	atomic

sources. The	realisation	of	spin-squeezed	states	of	a	two-component	Bose	Ein-

stein	condensate	have	recently	been	demonstrated	experimentally	[57, 116].

As	well	as	interferometric	measurements, there	is	great	interest	in	the	produc-

tion	of	entangled	atomic	beams	for	quantum-information	processing	and	funda-

mental	tests	of	quantum	mechanics	with	massive	particles. In	quantum	optics,

many	important	validations	of	quantum	mechanics	have	occurred	using	photons

and	photon	counters	including	Bell	state	measurements	and	realisation	of	the	EPR

gedanken	experiment	[12], quantum	teleportation	[20]	and	Bell-type	inequality

violation	for	single	particles	[89]. In	contrast	to	interferometric	set-ups	that	use

photodiodes	 (PDs)	 to	measure	high	photon	fluxes, these	exotic	quantum	phe-

nomena	are	observed	with	the	aid	of	single	photon	detectors	such	as	avalanche

photo	diodes	(APDs). Demonstrations	of	such	effects	using	atomic	sources	re-

quire	the	atom-optics	equivalent	of	an	APD.	Micro-channel	plate	detectors	are

a	good	option	for	energetic	atoms	[127, 148], but	currently	no	options	exist	for

neutral	atomic	species.

One	standard	tool	for	detecting	cold	atoms, is	absorption	imaging, a	tech-

nique	that	might	be	considered	analogous	to	PDs	used	in	quantum	optics	since

imaging	of	large	numbers	at	the	shot-noise-limit	is	possible. With	sufficient	op-

tical	depth	and	an	optimised	imaging	set-up, fluxes	of 107 atoms/sec	have	been

measured	[8]. However, the	technique	does	not	lend	itself	well	to	the	detection

of	dilute	atomic	samples, so	cannot	be	extended	to	the	regime	of	high	efficiency

single-atom	counting. Also, unlike	PDs, absorption	detection	is	not	continuous,

as	the	acquisition	of	an	image	takes	on	the	order	of	100ms, limited	by	the	down-

load	time	of	the	camera	used.

In	this	chapter, we	will	show	that	cavity-based	atom	detection	could	fill	this

technological	gap. Additionally, even	relatively	moderate	finesse	cavity	detectors

can	be	designed	to	have	a	quantum	efficiency	close	to	unity, compared	to 80%

for	 the	best	available	single	photon	detectors. Consequently, cavity-based	de-

tectors	could	also	be	used	for	continuous	variable	quantum	measurements	(e.g.

squeezing)	where	high	quantum	efficiency	is	crucial	[13].

No	matter	what	 its	nature, in	any	device	aiming	 to	probe	 the	 statistics	of
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an	atomic	ensemble, it	 is	 important	 to	detect	atom	numbers	at	 the	shot-noise

limit. The	head-room	between	the	atomic	shot-noise	and	the	inherent	noise	of

the	detector	-	 the	 ‘noise-floor	clearance’	-	will	determine	the	sensitivity	of	 the

device. This	will	be	our	figure	of	merit	in	analysing	our	detector. Cavity-based

single-atom	detectors	have	already	been	successfully	used	to	probe	the	statistics

of	a	coherent	atomic	source	in	real-time [103], but	a	clear	demonstration	of	their

further	potential	has	yet	to	be	presented.

In	the	previous	chapter, we	investigated	the	signal-to-noise	ratio	for	the	de-

tection	of	an	atom maximally coupled	to	the	single-mode	of	an	optical	cavity. In

reality, not	all	atoms	falling	through	a	detection	cavity	experience	maximal	cou-

pling, and	an	analysis	of	the	atomic	trajectories	is	important	in	determining	the

quantum	efficiency	of	the	detector	and	its	ability	to	measure	number	squeezing.

Our	aim	in	this	chapter	is	to	develop	our	understanding	of	the	optimal	signal-to-

noise	ratios	into	a	full	discussion	of	the	achievable	noise-floor	clearence	offered

by	this	system	of	single-atom	detection.

◦ We	begin	in section	4.2 with	a	general	discussion	of	squeezing	measure-

ments, considering	the	variance	of	a	Poisson	distribution	as	compared	with

a	squeezed	source	of	any	quanta	-	atoms, or	photons.

◦ In section	4.3 we	outline	the	sequence	of	processes	used	in	our	modelling

to	determine	the	quantum	efficiency	and	dark	noise	of	the	detector.

◦ In section	4.4 forces	influencing	the	atomic	trajectories	through	the	cavity

are	discussed.

◦ The	role	of	these	trajectories	in	optimising	the	detection	efficiency	is	pre-

sented	in section	4.4.3.

◦ Section	4.4.4 discusses	the	use	of	a	discriminating	threshold	for	signal	de-

termination	and section	4.4.5 its	influence	on	noise-floor	clearance.

◦ We	finish	the	discussion	in section	4.5 by	consideration	of	the	geometric

overlap	of	the	atom	laser	beam	and	optical	detection	mode.

In	the	work	presented	in	this	chapter, where	reference	is	made	to	‘resonant’

and	 ‘detuned’	 detection, it	 is	 to	 the	 following	 operating	 regimes, determined

from	the	investigations	of	chapter	3, that	we	refer: for	resonant	detection, where
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∆c = ∆a = 0, the	optimal	operating	power	is	roughly 40 photons/µs	or	an	intra-

cavity	photon	number	of n0 = 0.08, and	the	best	attainable	snr	is	about 13. Non-

resonant, or	‘detuned’	detection	can	give	good	snrs	provided	the	probe	power	is

increased. Detuned	detection	covers	a	large	parameter	space. Here	we	refer	to

the	values: ∆c = −1κ, ∆a = 25γ and	an	input	photon	flux	of ∼ 6300 photons/µs

(n0 = 6.7), giving	an	optimal	detection	snr	of	approximately 8.

4.2 Measuring	Squeezing
An	atom-laser	beam, like	an	optical	laser, exhibits	a	Poisson	distribution	in	the

number	of	particles	measured	in	a	fixed	time	[85]. Indeed, the	following	discus-

sion	concerning	squeezing	measurements	merely	follows	statistical	arguments.

The	nature	of	the	particles	(photons	or	atoms)	is	irrelevant, and	the	analysis	ap-

plies	to	any	detector	that	displays	the	usual	physical	constraints	of	limited	effi-

ciency	and	fidelity, and	saturation.

4.2.1 Counting	Statistics: What	Do	We	Measure?

The	mean	number	of	particles, N , counted	in	a	fixed	measurement	period	(let

us	say	one	second	of	data	collection)	depends	on	the	power	in	the	atom-laser

beam	-	that	is, the	atomic	flux. The	fluctuations	in	this	number, over	repeated

measurements, are	given	by	its	variance, V . For	a	coherent	source, exhibiting

Poissonian	statistics, the	variance	is	equal	to	the	mean, whereas	in	a	squeezed

beam	it	is	reduced, so	that	the	numbers	found	in	each	measurement	are	more

closely	distributed	about	 the	mean. It	 is	 convenient	 to	define	 the	normalised

variances	for	coherent	and	squeezed	sources	as Vc = 1 and Vs < 1. With	this

representation, the	real	variance, which	scales	with	the	power, is V1 = NVs for	a

squeezed	source, and V2 = NVc for	a	coherent	source.

To	measure	squeezing	it	is	necessary	to	determine	the	difference	in	observed

variance	 to	 that	of	 a	Poisson	distribution, and	 the	parameter	of	 interest	 is	 the

ratio V1/V2. For	a	coherent	source, V1/V2 = 1, and	the	ratio	decreases	as	 the

squeezed	variance	is	reduced. The	amount	of	squeezing	on	the	atomic	source

can	be	defined	in	decibels	by	the	parameter

S = −10Log10(V1/V2)dB. (4.1)

However, the	variance	 that	 is	measured	at	 the	detector	differs	 from	the	actual
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variance	of	 the	 atomic	 source: False, or	 ‘dark’, counts	occur	 at	 a	 rate	 that	 is

influenced	by	the	position	of	a	discriminating	threshold, illustrated	in	Fig. 3.1(b).

They	have	a	Poisson	distribution, with	variance Vdark, since	the	probe	laser	in	the

empty	cavity	is	itself	a	coherent	source. Also	influencing	the	measured	statistics,

is	the	fact	that	some	atoms	are	not	counted	if	the	quantum	efficiency, η (whose

value	is	also	determined	with	the	position	of	the	discriminator)	is	not 100%.

The	observed	variance	of	a	squeezed	source, measured	with	imperfect	effi-

ciency η, is	therefore	given	by	[25]

V1 = Vdark + ηN(ηVs + (1 − η)Vc) (4.2)

As	squeezing	is	reduced	to	zero, Vs → Vc. For	a	coherent	source	the	mea-

sured	variance	becomes

V2 = Vdark + ηNVc (4.3)

The	Poissonian	statistics	of	the	dark	counts	will	dominate	if	the	false-count

rate	is	too	high	or	the	detection	efficiency, η, is	too	low, and	deviations	in	the

atomic	flux	statistics	will	be	obscured. The	squeezing	parameter S, is	therefore

an	indicator	of	the	amount	of	squeezing measured for	a	given	squeezed	source.

Our	aim	is	to	find	a	position	for	the	discriminating	threshold	that	results	in	the

best	measurement	for	a	fixed	amount	of	squeezing	in	the	source	by	optimising

the	squeezing	parameter.

4.2.2 Detector	Saturation: Limiting	the	Atomic	Flux

Since	the	measured	statistics	depend	on	the	atomic	flux, we	first	need	to	choose

a	reasonable	value	of N to	suit	the	detector. We	consider	a	coherent	source	of

atoms	and	a	‘perfect’	detector	with	no	dark	noise	(Vdark = 0), and	an	efficiency

of 100% (η = 1). The	limitation	to	the	performance	of	such	a	device	is	the	mea-

surement	 time	 in	 the	detection	process. A reasonable	 integration	 time	 for	 the

cavity-detector	that	we	model	is 20µs [55]. Faster	detection	times	are	certainly

possible, but	require	higher-finesse	cavities.

For τ = 20µs, there	are 50000 measurement	‘bins’	per	second	of	data	collec-

tion, each	of	which	we	assume	can	count	the	presence	of	at	most	one	atom. This

does	not	mean	we	can	accept	a	flux	of 50000 atoms/s, since	for	a	source	with	a

Poissonian	distribution, this	would	result	in	multiple	atoms	arriving	at	the	cavity
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in	the	same	time	bin, and	unresolved	transits.

The	probability, P , that	an	individual	time-bin	measures	a	transit, increases

with	the	atomic	flux	as

P = 1 −
(

m − 1

m

)N

(4.4)

where N is	the	number	of	atoms	arriving	at	the	cavity	per	second, and m is	the

number	of	 time	bins	per	 second, which	we	have	fixed	 to 50000, for	our 20µs

detection	time. Here, the	denominator	accounts	for	the mN possible	ways	that

an	atomic	transit	can	be	distributed	into	a	random	time	bin: the	distribution	is

random	since	we	start	by	considering	the	Poissonian	distribution	of	a	coherent

atomic	source. The	numerator	counts	the	number	of	possible	distributions	into

remaining	empty	bins	after N such	randomly	distributed	transits.

Alternatively, the	probability P ′ = 1−P that	there	remain	unfilled, or	empty,

time	bins	(that	the	detector	is	not	‘saturated’)	decreases	with	flux:

P ′ =

(
m − 1

m

)N

(4.5)

As	the	atomic	flux	increases, the	detector	saturates, and	the	measured	variance

(P ′×V )	drops	to	zero. This	is	because	when	all	the	time	bins	are	filled, increasing

the	atomic	flux	does	not	change	the	number	of	counts. We	know	that	the real

variance	for	a	Poisson	distribution	must	grow	continually, since V = VcN = N .

Figure	4.1 shows	the	deviation	of	the	measured	variance	from	the	real	variance,

for	 a	 perfectly	 efficient, noiseless	 detector. If	we	use	 a	 high	 atomic	 flux	 that

saturates	the	detector, the	measured	variance	is	lower	than	that	of	a	Poisson	dis-

tribution, despite	the	lack	of	squeezing	in	the	source.

We	would	like	the	atomic	flux	to	be	the	highest	possible	before	the	detector

saturates, since	the	signal-to-noise	ratio	improves	as N1/2. The	optimum	value	is

established	when	the	measured	variance	does	not	deviate	too	far	from	the	actual

value: the	inset	in	Fig. 4.1 shows	where	the	difference	between	the	measured

variance	and	the	actual	variance	starts	to	become	significant. At	a	value	of N =

5000 (ie: a	flux	of 5000 atoms/s)	the	deviation	is	about 5%.

We	emphasise	this	flux-limit: restricting	flux	will	limit	the	atomic	signal-to-

noise	ratio	of	a	measurement, and	sensitivity	of	an	interferometric	measure. If

a	squeezed	source	is	used	(and	provided	the	squeezing	can	be	measured	at	the
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Figure 4.1: Measured	and	actual	variance	of	atoms	 for	one	second	of	measurement
time, as	a	function	of	atomic	flux. The	inset	indicates	the	atomic	flux	at	which	these
values	begin	to	differ	significantly. The	dashed	line	indicates	deviation	of 5% from	the
actual	variance.

detector)	then	the	signal-to-noise	ratio	can	be	regained, and	even	improved. The

experimental	 difficulty	 is	 therefore	 transferred	 from	one	 challenge	 to	 another:

rather	than	striving	for	high	atomic-flux, we	require	squeezed	sources.

It	is	worth	noting	that	our	imposed	atomic	flux-limit	is	much	lower	than	pho-

ton	fluxes	measured	with	instruments	such	as	avalanche-photo	diodes. However,

APDs do saturate	and	are	limited	to	lower	photon-fluxes	than	photodiodes	used

in	heterodyne/homodyne	set-ups. Ultimately	the	limitation	arises	from	the	de-

tector	measurement	 time, τ . The	cavity-based	detector	discussed	here	 is	slow

(20µs)	in	comparison	to	photon	detectors, but	dramatically	faster	than	other	atom-

detection	processes, such	as	absorption	imaging, and	they	allow	continuous	mon-

itoring	in	real-time. A higher	finesse	cavity	can	operate	with	a	faster	detection

time	[110], potentially	allowing	much	less	restrictive	limitations	on	the	atomic

flux.

4.3 Modelling	Detection	Quantum	Efficiency
Having	established	an	acceptable	value	for	atomic	flux, we	return	to	equations

(4.2)	and	(4.3), to	evaluate	the	ratio V1/V2 for	our	real	detector	-	with	false	counts

and	limited	quantum	efficiency	included. These	imperfections	are	variables	in-
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fluenced	by	the	chosen	position	of	the	discriminating	threshold, illustrated	in	Fig.

3.1(b). To	quantitatively	determine	the	optimal	position, an	understanding	of	the

statistical	distribution	of	real	and	false	signals	is	required.

The	modelling	of	these	quantities	is	involved. Let	us	summarise	the	sequence

of	procedures	used	in	characterising	the	detector:

1. The	photon	number	in	the	cavity	is	calculated	(using	equation	(3.1), and

the	process	described	in	section	3.2.1), for	a	three-dimensional	grid	of	atom

positions	in	the	cavity	mode. Interpolating	these	values	gives	a	function	for

the	field	intensity. That	function	includes	changes	in	the	intensity	due	to

the	presence	of	the	atom, as	well	as	the	Gaussian, standing-wave	structure

of	the	cavity	mode.

2. An	atom	 is	 assigned	an	 ‘entrance	position’	 to	 the	cavity	mode, at	 some

position	in	the x, y-plane. The	height	above	the	cavity	axis	at	which	we

consider	‘entrance’	is	twice	the	cavity	beam-waist	size: z(0) = 2w0.

3. A trajectory	 (and	 its	 resulting	signal	 strength)	 is	calculated	 for	 this	atom,

taking	into	account	the	deterministic	forces	as	well	as	the	stochastic	spon-

taneous	 emission	events, and	a	 ‘mean’	path	 is	 determined	by	averaging

several	such	stochastic	paths. The	process	is	repeated	for	a	range	of	atomic

entrance	positions.

4. The	 likelihood	of	each	entrance	position	depends	on	 the	 transverse	spa-

tial	profile	of	the	atomic	source. Taking	this	into	account	we	can	assign	a

probability	of	a	given	signal	strength.

5. Quantum	efficiency	and	false	counts	are	established	by	considering	signal

strength	in	conjunction	with	a	discriminating	threshold.

4.4 Forces: Atomic	Trajectories
The	position-	and	consequent	time-dependent	forces	on	the	atom, and	the	result-

ing	centre-of-mass	motion	during	a	transit, are	calculated	using	a	series	of	steady-

state	solutions	to	the	master	equation. This	is	therefore	a semi-classical	model	in

which	the	exchange	of	energy	quanta	between	the	cavity	field	and	atom	is	treated

quantum	mechanically	using	equations	(2.25)	and	(2.15), but	the	atomic	motion

is	found	using	classical	formulae	for	the	gravitational	and	electric-dipole	forces,
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discussed	 in	 the	 following	sections. The	approach	 is	 justified	because	 the	 lo-

calisation	of	the	atom	upon	entering	the	cavity	mode	is	rapid	with	respect	to	its

motion	and	transit	time	[19, 117]. In	other	words, the	atom	enters	the	cavity	as

a	waveform	that	is	spatially	extended	over	the	cavity	mode, with	a	probability

distribution	determined	by	the	atom	laser	beam	profile. However, once	the	first

photon	is	scattered	during	the	detection	process, the	atom	can	be	thought	of	as

a	classical	particle, localised	within	the	cavity. The	process	can	be	considered

as	an	unread	measurement: if	the	scattered	photon	were	to	be	detected	(for	ex-

ample, with	a	fluorescence	detection	set-up), the	atomic	wave	function	would

be	projected	onto	a	particular	location. Thus	classical	parameters	describing	the

atomic	motion	are	appropriate. The	greater	the	scattering	decoherence	term, γ,

the	faster	this	localisation	occurs, even	when	the	photon	is	not	detected.

4.4.1 The	Gravitational	Force	and	Spontaneous	Emission

In	the	simplest	model, corresponding	to	resonant	detection, the	gravitational	force

determines	the	centre-of-mass	motion	of	atoms	in	the	cavity	volume, providing	a

constant	acceleration	in	the	downwards	vertical	direction. The	atom	also	experi-

ences	‘kicks’	in	random	directions	due	to	the	conservation	of	momentum	during

spontaneous	emission. In	our	system, the	number	of	spontaneous	emission	events

during	a	transit	is	not	so	large	as	to	result	in	significant	accumulated	momentum,

but	kicks	do	have	the	ability	 to	skip	atoms	the	small	 longitudinal	distance	be-

tween	nodes	and	antinodes. The	spontaneous	emission	rate	(proportional	to	the

atomic	saturation)	scales	with	the	field	intensity, so	it	changes	during	the	transit,

as	the	atom	passes	through	different	positions	within	the	mode.

Figure	4.2(a)	shows	example	transits	of	atoms	through	different	regions	of	the

cavity	mode, with	a	resonant	probe	beam. The	variations	of	paths	demonstrate

the	stochastic	 influence	of	spontaneous	emission	on	atoms	entering	 the	cavity

at	 the	position	of	an	antinode	 (0.1λ/4 from	a	node)	 in	blue	 (red). In	 the	case

of	atomic	transits	that	pass	close	to	a	node, the	field	amplitude	and	atom-field

coupling	strength	are	near	zero, and	such	transits	are	detected	only	weakly	if	at

all. For	optimum	detection	efficiency	then, it	 is	clearly	important	to	avoid	the

nodes	of	the	cavity	mode.
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Figure 4.2: Atom	trajectories	through	the	resonator	mode. The	conditions	modelled	are
for	(a)	resonant	and	(b)	detuned	detection. The	atom	entrance	velocity	is v = −1(m/s)ŷ.
Blue	traces	are	trajectories	of	those	atoms	entering	the	mode	directly	above	an	antin-
ode, and	on-axis	in	the	radial	direction, while	red	traces	show	atomic	transits	for	atoms
entering	the	cavity	a	longitudinal	distance	of 0.1λ/4 from	a	node. Ellipses	represent	the
cavity	mode	at	positions	where	the	field	intensity	is	half	its	maximum. Note	the	vastly
different	scales	on	the	plot	axes: the	cavity	waist, w0 = 20µm, while	the	standing-wave
structure	is	on	the	order	of	the	wavelength	used	(less	than	one µm).

4.4.2 The	Electric-Dipole	Force

Generally, atomic	trajectories	are	influenced	by	more	than	the	gravitational	force

and	 spontaneous	 emission	 alone. When	 the	 probe	 light	 is	 detuned	 from	 the

atomic	transition, atoms	may	experience	a	strong	electric-dipole	force	resulting

from	the	interaction	between	their	induced	dipole	moment	and	the	electric	field.

This	force	is	important	to	inspect	since	it	can	be	large, and	is	influenced	directly

by	the	field	intensity	and	by	the	detuning	of	the	probe	from	the	atomic	transition.

Classically, it	is	given	by	[56]

F dip(r) =
1

2ϵ0c
Re(α)∇I(r) (4.6)
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whereα is	the	complex	susceptibility	of	the	atom	and I(r) is	the	position-dependent

intensity	of	the	field:

α = 6πϵ0c
3 γ/ω2

a

ω2
a − ω2

0 − i(ω3
0/ω

2
a)γ

I(r) =
4n~ω0c

πw2
0L

cos(2πz/λ) exp(−(x2 + y2)/w2
0).

The	magnitude, but	also	the	sign	of	the	force, depends	on	the	frequency	of

the	probe	light	[equation	(4.6)]. A red-detuned	probe	(for	which ∆a > 0)	results

in	an	electric-dipole	force	that	 is	positive	and	attracts	atoms	towards	positions

of	high	field	intensity, and	consequently	high	atom-field	coupling. Blue-detuned

light	(∆a < 0)	results	in	a	negative	force	whence	the	reverse	is	true, and	atoms

are	repelled	from	such	regions. For	the	situation	at	hand, in	which	we	attempt

to	avoid	the	nodes	of	the	resonator	mode	to	increase	the	quantum	efficiency, we

will	consider	only	red-detuned	light.

The	net	force	on	the	atom	during	its	transit	is	a	combination	of	the	constant

gravitational	force	and	the	dipole	force	that	varies	with	field	intensity	and	there-

fore	with	atomic	position, as	well	as	the	stochastic	spontaneous	emission	events.

The	complexity	of	the	situation	is	compounded	by	the	fact	that	the	intra-cavity

photon	number	(intensity)	is	itself	influenced	by	the	coupling	of	the	atom	to	the

field, the	strength	of	which	we	know	to	be	position-dependent.

An	 atom	 falling directly through	 nodes	 or	 antinodes	 sees	 no	 longitudinal

force, since	the	gradient	of	the	potential	is	zero	at	these	positions. For	all	other

positions, the	dipole	potential	provides	a	restoring	force	towards	the	nearest	in-

tensity	maximum	 (for	 a	 red-detuned	field), and	 the	atom	oscillates	 about	 that

antinode	as	it	falls	through	the	mode.

Figure	4.2(b)	shows	examples	of	atomic	transits	of	the	cavity	mode	for	a	red-

detuned	probe	laser. We	find	that	for	the	beam	parameters	modelled, all near-

axial	atoms	falling	through	the	detuned	beam	are	channelled	into	local	intensity

maxima	(antinodes)	of	 the	field, even	when	the	longitudinal	entrance	position

is	very	close	 to	a	node	 (red	 traces). This	 is	 important: consider, for	example,

comparing	the	red	traces	in	figure	4.2(b)	with	4.2(a). With	a	detuned	probe, the

average	coupling	strength	experienced	by	an	atom	during	its	transit	is	higher	than

that	for	the	transit	of	a	resonant	probe	beam, with	an	identical	entrance	position.

The	effect	has	been	observed	experimentally	 in	 the	group	of	Tilman	Esslinger,
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Figure 4.3: Atom	trajectories	through	the	resonator	mode. The	conditions	modelled	are
for	(a)	resonant	and	(b)	detuned	detection. The	atom	entrance	velocity	is v = −1(m/s)ŷ.
Blue	traces	are	trajectories	of	those	atoms	entering	the	mode	directly	above	an	antinode,
and	on-axis	in	the	radial	direction, while	red	traces	show	atomic	transits	for	atoms	en-
tering	the	cavity	a	radial	distance	of	one	cavity-waist	from	the	axis. The	view	is	shown
looking	down	 the	cavity	axis, and	 the	circles	 represent	 the	cavity	mode	at	positions
where	the	field	intensity	is	half	its	maximum.

that	reported	improved	detection	efficiency	for	red-detuned	probes, on	account

of	effective	channelling	of	atoms	into	cavity	antinodes	[104].

The	dipole	force along the	cavity	axis	can	be	tremendously	significant, since

the	 intensity	of	 the	field	varies	 rapidly	with	 the	standing-wave	structure	of	 the

mode, resulting	in	a	large	value	for ∇I(r). The	scale	of	the	standing-wave	is	de-

termined	by	the	wavelength, λ, of	the	light	used, which	at	optical	frequencies, is

less	than	one	micrometer. In	the	radial	direction, perpendicular	to	the	cavity	axis,

the	field	strength	changes	less	rapidly, dropping	to	the	half-maximum	intensity	at

r = w0. Consequently	the	force	is	much	weaker	in	that	direction.

For	the	system	we	consider, w0 is	typically	around 20µm, and λ = 780nm.

The	maximum	dipole	force	in	the	radial	direction	is	numerically	determined	to

be	on	the	order	of 10−22N,	while	along	the	cavity	axis	it	can	be	up	to 10−19N,

except	 at	 the	 exact	positions	of	nodes	 and	antinodes	where	 the	potential	 has

zero	gradient. The	gravitational	force	is	about 10−24N for	a	rubidium	87	atom,

which	weighs 10−25kg. In	 the	 radial	direction, the	dipole	 force	deflects	 some

atomic	transits, but	is	not	sufficient	to	channel	far-off-axis	atoms	through	the	radial
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intensity	maximum. Figure	4.3 shows	example	trajectories	of	atoms	that	fall	on-

and	off-axis.

4.4.3 Atomic	Distribution: The	Atom	Laser	Profile

In	this	section, we	are	concerned	with	attributing	a	‘weighting’	or	probability	to

each	possible	atomic	transit. The	weighting	given	to	each	trajectory	depends	on

the	spatial	distribution	of	the	atomic	source. We	model	an	atom	laser	beam	with

a	Gaussian	profile	propagating	orthogonal	to	the	cavity	axis, and	with	its	own

axis	passing	directly	through	the	cavity	axis. The	atom	optics	group	here	at	the

Australian	National	University	has	a	history	of	experimental	work	concerning	the

profile	of	a	rubidium	atom	laser, and	we	achieve	atom	laser	profiles	that	come

very	close	to	this	model, using	Raman	outcoupling	[78]. An	atom	laser	produced

via an	optical	Raman	transition, rather	than	radio-frequency	(rf)	outcoupling, can

have	a	high	beam	quality	and	avoid	the	significant	divergence	that	usually	results

from	the	lens	effect	of	the	condensate	on	the	outcoupled	atoms: by	using	near-

counter	propagating	Raman	beams, the	momentum	transferred	to	the	outcoupled

atoms	approaches 2~k, rather	than	the	zero	momentum	transfer	of	rf	outcoupling.

This	means	that	atoms	leave	the	condensate	much	faster	than	if	they	are	simply

falling	 under	 the	 influence	of	 gravity, and	 there	 is	 no	 substantial	 time	 for	 the

condensate	mean	field	to	interrupt	the	outcoupled	beam	profile.

Figure	4.4 shows	a	histogram	of	the	relative	probability	of	transmitted	photon

numbers	measured	at	 the	cavity	output	mirror	during	an	atomic	transit	 from	a

Gaussian	atom	laser	beam	with	a	waist	of	10µm	(half	the	cavity	waist	size). The

atoms	are	travelling	at	1m/s. We	also	show	the	histogram	for	photon	numbers

from	the	empty-cavity.

These	plots	contain	a	lot	of	information. The	empty-cavity	photon	distribu-

tion	(red, dashed	trace)	is	Poissonian, reflecting	the	fact	that	we	have	modelled

the	probe	 as	 a	 coherent, shot-noise	 limited	beam. The	histogram	 for	 photon

numbers	measured during an	atom	detection	event	(solid, blue	trace)	includes

the	Poissonian	statistics	of	the	probe	beam	but	is	convoluted	with	the	distribution

of	effective	coupling	strengths, determined	by	the	atomic	entrance	positions	and

resulting	trajectories. In	the	case	of	a	resonant	probe	beam	[figure	4.4(a)], the

histogram	for	detection	events	is	a	good	indication	of	the	variation	in	coupling-

and	signal-strengths	experienced	by	atoms	whose	transits	are not influenced	by

a	dipole	force. A large	range	of	possible	output	photon	numbers	may	be	mea-
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Figure 4.4: Photon	distributions	for	an	empty	cavity, and	a	cavity	with	weighted	atom
transits. The	y-axis	shows	the	relative	probability	of	measuring	a	certain	photon	count
(x-axis)	within	the	set	integration	time. The	cavity	mode	waist	is w0 = 20µm	and	atom
laser	beam	waist wa = 10µm. The	dashed	traces	represent	the	Poissonian	distribution
of	photons	measured	in τ = 20µs	from	the	empty	cavity. The	solid, blue	traces	are	for
(a)	resonant	detection, and	(b)	detuned	detection. The	solid	trace	is	a	convolution	of
Poissonian	distributions	about	the	various	output	values	for	different	atom	transits, and
the	probability	distribution	of	those	transits. Shaded	regions	represent	discriminating
detection	thresholds	placed	(a) ∼ 3.3 and	(b) ∼ 3.9 standard	deviations	below	the	mean
photon	number	of	the	empty-cavity.

sured, depending	on	the	atom	entrance	position. The	significant	distribution	of

weak	signal	strengths	(close	to	the	empty-cavity	photon	number)	reflects	the	fact

that	there	are	more	possibilities	of	an	atom	transit	experiencing	weak	coupling,

rather	than	strong. Strong	coupling	is	achieved	only on-axis	and in	the	vicinity

of	an	antinode, whereas	weaker	coupling	results	from	the	wide	range	of	off-axis

positions, regardless	of	longitudinal	location	with	respect	to	the	standing-wave

structure.

In	figure	4.4(b), the	advantage	to	signal	strength	afforded	by	the	dipole	force

is	evident. In	this	scenario, most	atoms	experience	similar	coupling	strengths,

close	to	the	maximum	value, g0, regardless	of	their	entrance	position, since	they

are	very	effectively	channelled	 into	oscillations	about	 the	high-intensity, high-

coupling	 locations	 in	 the	 resonator	mode, as	shown	in	figure	4.2(b). There	 is

consequently	very	little	variation	in	the	signal	strengths, and	the	histogram	for

these	detection	events	is	much	less	extended, and	more	closely	represented	by	a

Possionian	distribution	centred	on	a	unique	value.
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4.4.4 Discriminating	 Threshold, Quantum	 Efficiency	 and	Dark

Noise

The	detection	quantum	efficiency	compares	the	number	of	atom	transits	that	are

measured, to	 the	 total	number	 that	 take	place, and	depends	on	 the	choice	of

discriminator	position	(the	dashed	and	dotted	lines	in	figure	3.1(b)	are	examples

of	two	possible	positions). We	could	choose	to	place	the	discriminator	very	close

to	the	empty-cavity	intensity	level	(heavy, dotted	line). This	would	ensure	that all

atomic	transits	are	counted, since	even	those	that	experience	only	weak	coupling,

will	generate	signals	that	lie	below	the	chosen	threshold. Clearly, this	is	not	a

reasonable	procedure. Although	the	quantum	efficiency	is	increased, so	too	is

the	false-count	rate: shot	noise	from	the	empty-cavity	photon	signal	may	also	fall

below	the	discriminating	value, and	contribute	to	‘false’, or	dark, counts	that	do

not	correspond	to	real	transit	events. To	reduce	these	false	counts, it	is	preferable

to	move	the	discriminating	threshold away from	the	empty-cavity	intensity	level

(light, dashed	line	in	figure	3.1(b)). The	chosen	discriminating	threshold	position

must	be	a	compromise	of	these	considerations. A good	compromise	requires	the

distributions	of	power	levels	from	the	empty-cavity	and	the	cavity	during	an	atom

transit, to	be	well	separated. This	allows	us	to	achieve	high	quantum	efficiency

in	conjunction	with	a	low	false-count	rate.

The	shaded	regions	in	the	plots	of	figure	4.4 indicate	discriminating	thresh-

olds	 at	 roughly 3.3 standard	 deviations	 below	 the	mean	 empty-cavity	 photon

number	for	the	resonant	probe	beam, and 3.9 standard	deviations	below	the	mean

for	detuned	detection. That	is	to	say	that	even	when	the	atomic	flux	is	zero, and

the	cavity	is	definitely	empty	of	atoms, < 0.1%	of	the	time	the	measured	photon

intensity	will	be	recognised	as	corresponding	to	an	atom	transit. These	signals

are	 the	false	counts. The	particular	choices	of	discriminating	threshold	values

stated	here	will	be	discussed	in	the	following	section. The	reader	is	reminded	of

the	difference	between	detection	efficiency	and	fidelity, as	defined	in	chapter	1.

The	importance	of	choosing	a	discriminating	threshold	that	is	a	compromise	be-

tween	the	conflicting	requirements	of	these	parameters	will	be	discussed	shortly.

A different	choice	may	be	made, depending	on	the	requirements	of	the	detector.

For	the	resonant	probe, in	figure	4.4(a), the	distributions	of	photon	numbers

for	the	empty	cavity, and	for	the	cavity	during	atom	transits	are	not	well	separated,

and	with	the	discriminator	position	indicated	by	the	shaded	area, the	quantum
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Figure 4.5: Variation	in	quantum	efficiency, η, and	dark	noise, as	a	function	of	discrim-
inating	threshold	position	for	detection	parameters	as	in	figure	4.4. In	(a)	and	(b), the
shaded	regions	represent	a	discriminating	detection	thresholds	at	positions −2,−1 and
0 standard	deviations	below	the	empty-cavity	mean	photon	number. In	(c)	and	(d)	the
quantum	efficiency	is	seen	to	increase	as	the	false-count	rate	increases, although	for	the
detuned probe	in	(b)	and	(d)	it	is	already	very	high, even	at	a	threshold	position	with
negligible	false-counts.

efficiency	is η ∼ 0.86. With	the	detuned	probe	[figure	4.4(b)]	the	distributions

are	very	much	more	distinct. This	means	that	a	threshold	photon	number	lying

between	the	distributions	can	be	chosen	to	give	low	false-counts	and	high	quan-

tum	efficiency. For	the	discriminating	threshold	at	the	chosen	level, almost	all

(η > 99.5%)	of	the	real	atom	transits	are	measured.

Figures	4.5(a)	and	(b)	indicate	how	shifting	the	position	of	the	discriminator

(the	shaded	region	in	photon	number	histograms)	changes	the	percentage	of	tran-

sits	that	are	measured; that	is, the	quantum	efficiency, for	(a)	a	resonant	probe,

and	(b)	detuned	detection. In	figures	4.5(c)	and	(d)	these	data	are	represented

graphically	(left-hand	axes), as	well	as	the	influence	of	the	discriminating	thresh-
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old	position	on	 the	dark	count	 rate	 (right-hand	axes). In	 these	plots, the	dark

counts	are	shown	as	a	fraction	of	the	distribution	of empty-cavity	signals that	fall

below	the	threshold. The	discriminating	threshold	is	calibrated	as	a	number	of

standard	deviations	from	the	mean	empty-cavity	photon	number. For	the	reso-

nant	probe	in	(c), shifting	the	discriminator	position	changes	the	false-count	rate

as	well	as	significantly	influencing	the	quantum	efficiency	of	detection, since	the

empty-cavity	photon	distribution	is	not	well	separated	from	the	photon	distribu-

tion	of	real	signals. In	(d)	there	is	very	little	change	in η because	the	distributions

are	quite	distinct.

4.4.5 Discriminating	Threshold	and	Measurable	Squeezing

We	have	by	now	assimilated	all	the	necessary	variables	to	reconsider	Eqs. (4.1),

(4.2)	and	(4.3). We	set Vs = 0, to	simulate	an	‘infinitely	squeezed’	source, for

which	the	quantum	fluctuations	in N are	zero, and	calculate	the	value	of	squeez-

ing	that	would	actually	be	measured	using	(4.1). This	tells	us	how	much	clearance
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Figure 4.6: Measurable	squeezing	for	a	detection	integration	time	of τ = 20µs	and
an	atomic	flux	of 2400 atoms/s. (a)	shows	the	dark	noise	clearance	using	resonant	and
detuned	detection, with	parameters	as	in	figure	4.4. (b)	and	(c)	show	the	discriminating
threshold	positions	at	which	 the	squeezing	measurement	 is	optimised, for	 these	 two
detection	schemes.
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we	have	over	the	dark-noise	of	the	detector. From	the	previous	section	we	know

that	 the	values	 for η and Vdark depend	on	 the	position	of	 the	discriminator, so

we	need	to	consider	the	measured	squeezing	as	a	function	of	the	discriminating

threshold.

Figure	4.6 shows	the	data	 in	 the	plots	 in	figures	4.5(b)	and	(c)	 in	 terms	of

the	squeezing	parameter, S [equation	(4.1)], rather	than	the	quantum	efficiency

and	dark	noise. We	find	the	maximum	measured	squeezing	for	 the	modelled

detuned	detection	is 23dB,	when	the	discriminating	threshold	is	set	to	a	drop	in

transmission	of	approximately 3.9 times	the	standard	deviation	(σ)	of	the	empty-

cavity	photon	shot	noise. For	resonant	detection	the	maximum	value	is	about 8dB,

with	the	discriminator	position	around −3.3σ. The	dark	noise	clearance	is	lower

using	 resonant	detection, compared	 to	detuned	detection, since	 the	quantum

efficiency	for	that	scenario	is	lower, as	discussed	in	section	4.4.4.

We	can	consider	the	improvement	in	sensitivity	of	an	interferometric	measure

with	the	use	of	a	squeezed	source	as	follows:

SNR =
ηN + Ndark√

V1

(4.7)

This	relation	must	be	solved	numerically	since η, Ndark and V1 are	implicitly	con-

nected via the	position	of	the	signal	discrimination	threshold.

Figure	4.7 shows	the	atomic	signal-to-noise	ratio	using	the	cavity	detector

with	a	squeezed	source. The	detection	conditions	are	the	same	as	those	already

defined	for	(a)	resonant	and	(b)	detuned	detection. As	one	would	expect, in	both

cases, the	signal-to-noise	ratio	improves	as	 the	atomic	squeezing	is	 increased.

The	dashed	horizontal	 line	 in	 these	plots	 indicates	 the	experimentally	 feasible

value	of	10dB of	squeezing	on	the	atomic	beam	(V1 = 0.1). 8.2dB of	squeezing

has	recently	been	observed	in	a	BEC [57]. We	note	that	for	a	perfect	detector,

where	all	the	squeezing	on	the	source	is	measured, 10dB squeezing	results	in	a

signal-to-noise	ratio	corresponding	to	a	flux	an	order	of	magnitude	greater SNR =√
50000 ∼ 224. As	it	is, the	measured	squeezing	depends	on	the	position	of	the

discriminating	threshold	and	the	resulting	noise-floor	clearance	of	the	detector. In

the	case	of	detuned	detection	where	we	have	seen	the	noise-floor	clearance	can

be	significant, the	atomic	signal-to-noise	ratio	goes	from	70	for	an	unsqueezed

beam	(N = 5000), up	to ∼220	for	10dB of	squeezing: close	to	the	theoretical
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Figure 4.7: SNR for	different	squeezing	levels	and	varying	positions	for	the	signal	dis-
crimination	threshold. The	squeezing	level	is	parameterised	with	the	normalised	vari-
ance, VS , as	defined	in	Sec. 4.2.1. The	‘discriminating	threshold’	represents	a	number
of	standard	deviations	below	the	empty-cavity	photon	number. (a)	Resonant	and	(b)
detuned	detection	conditions	are	the	same	as	Fig. 4.2.

maximum. For	resonant	detection	the	increase	can	be	up	to	SNR ∼ 140.

4.5 ‘Mode-matching’: Atomic	Beam	Waist

We	have	discussed	the	strength	of	the	dipole	force	in	the	axial	direction, and	the

data	presented	in	section	4.4.4 show	how	beneficial	this	force	can	be	in	improv-

ing	the	atom-field	coupling, and	detection	quantum	efficiency. The	efficacy	of

this	longitudinal	force	drops	with	the	radial	position	of	the	atom, since	the	field

and	coupling	strength	diminishes	as exp (r−2). It	is	therefore	important	to	ensure

the	atom	laser	profile	is	positioned	carefully	within	the	Gaussian	distribution	of

the	resonator	mode, and	 is	not	 too	 large	 for	 the	probe	beam	waist. Although

the	physical	mechanism	if	entirely	different, one	might	consider	this	process	as

analogous	to	the	mode-matching	of	a	signal-beam	and	local-oscillator	in	photon

quantum-optics: a	necessary	procedure	for	quality	detection.

Figure	4.8 shows	how	 the	distribution	of	 detection	 signals	 changes	when

the	ratio	of	 the	atom	laser	beam	width	to	 the	cavity	mode	width	is	varied. In
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our	modelling, we	fix	the	optical	waist, and	vary	the	atom	laser	beam	profile,

since	 this	 process	 rather	 than	 the	 inverse	 is	 experimentally	 easier	 to	 perform.

For	fixed	discriminating	 thresholds	 (established	 for	both	resonant	and	detuned

detection	in	the	previous	section), the	proportion	of	real	atom	transit	signals	that

pass	the	threshold, and	are	measured, changes	as	the	overlap	between	the	atom

laser	beam	and	cavity	mode	is	varied. In	figures	4.8(a)	and	(b)	 the	atom	laser

waist	 is wa = 10µm, half	 the	cavity	waist	 size, and	 the	quantum	efficiency	 is
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Figure 4.8: Photon	distributions	for	an	empty	cavity	(dashed	traces), and	a	cavity	with
atom	transits	through	all	possible	positions	(solid	traces), for	cavity	mode	waist w0 =
20µm	and	atom	laser	profile	waist	of wa (a)-(b)10µm, (c)-(d)20µm	and	(e)-(f)30µm.
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approximately 85% for	resonant	detection	and > 99% for	detuned	detection. In

figures	4.8(c)	and	(d)	the	atom	laser	waist	is wa = 20µm, and	in	(e)	and	(f)30µm.

The	respective	quantum	efficiencies	are 81% (88%)	and 73% (71%)	for	resonant

(detuned)	detection.

Real	atom	lasers	are	produced	with	either	a	radio	frequency	(rf)	or	a	coherent

multiphoton	(Raman)	transition	to	out-couple	from	a	BEC,	and	the	beam	profiles

can	differ	markedly	depending	on	the	method	used	as	well	as	the	nature	of	the

atomic	species	[78, 115]. Using	a	Raman	transition, atoms	receive	a	momentum

kick	from	the	absorption	and	emission	of	photons. This	causes	them	to	leave	the

condensate	more	quickly	than	when	using	an	rf	transition. Consequently	they	are

subjected	to	mean-field	repulsion	of	the	BEC for	a	shorter	time, and	the	atom	laser

beam	profiles	show	substantial	improvements. In	reference	[78]	measurements	of

the	beam	quality	using	Raman	outcoupling	show	atom	laser	beams	with	profiles

approaching	the	Heisenberg	limit. Figure	4.9 is	a	sequence	of	absorption	images

presented	in	that	work. Atom	lasers	are	outcoupled	from	the	centre	of	the	BEC

with	 (a)	negligible	momentum	kick	 -	 rf	outcoupling	 -	and	 (b)	a	kick	of 0.5~k,

and	(c) 1.9~k, using	Raman	beams	at	angles	of	30° and	140° respectively. The

divergence	of	the	atom	laser	beams	for	these	outcoupling	conditions	is	shown

in	figure	4.10. For	the	high-momentum	transfer	Raman	beams, the	divergence

of	the	atom	laser	beam	is	low, and	we	can	anticipate	narrow	atom	laser	widths

even	well	below	the	condensate.

The	data	in	figure	4.8 are	summarised	in	figure	4.11(a), and	the	measurable

squeezing	they	represent, in	4.11(b). In	general, the	trend	is	intuitive: the	better

one	is	able	to	fit	the	atom	laser	beam	within	the	optical	detection	beam, the	higher

the	quantum	efficiency. Perhaps	what	is	surprising, is	that	it	is	not	necessary	to

‘match’	the	atom	laser	and	optical	laser	beam	waist	sizes, only	to	place	the	atom

beam	entirely	within	the	optical	waist; the	plots	in	figure	4.11 show	asymptotal

behaviour, rather	than	optima.

To	understand	this	trend, we	need	to	consider	the	specific	nature	of	the	cav-

ity	operating	regime: In	the	classical	model	of	an	atom	blocking	the	probe	light

inside	the	cavity	with	a	finite	cross-sectional	area, one	might	assume	that	a	cavity

waist	any	larger	than	the	atomic	beam	waist	will	lead	to	excess	photon	noise.

Yet	this	is	not	the	case. It	is	important	to	remember	that	the	atomic-beam	waist,

and	 the	atomic	cross-sectional	 area	are	 two	 separate	 things. The	beam	waist
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(a) (b) (c)

Figure 4.9: Atom	laser	beam	profiles. The	beams	are	produced	with	(a)	rf	outcoupling,
and	Raman	outcoupling	with	 photon	 kicks	 of	 (b)0.5~k and	 (c) 1.9~k. Experimental
(dashed)	and	theoretical	(solid)	beam	profiles 500µm	below	the	condensate	are	shown
in	the	lower	sequence.

determines	the	probability	distribution	for	atomic	entrance	positions, while	the

cross-sectional	area	is	a	classical	measure	of	the	‘size’	of	a	single	atom. In	the

operating	regimes	that	we	consider	in	this	work, that	classical	model	simply	does

not	apply	for	cavities	above	a	certain	finesse; the	reader	is	referred	to	our	dis-
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Figure 4.10: Atom	laser	beam	profiles	for	(a)	rf	outcoupling, and	(b)-(c)	Raman	cout-
coupling	with	photon	kicks	of 0.5~k and 1.9~k corresponding	to	Raman	laser	beams	at
angles	of	30° and	140° respectively.

cussion	of	the	limitations	of	the	classical	model, in	section	3.3.1. For	our	work,

the	single-atom	detection	signals	are	so	strong	(one	might	like	to	consider	that

the	effective	atomic	cross-section	scales	with	Finesse)	that	there	is	no	theoretical

lower	limit	to	the	size	of	the	atom	laser	beam	that	will	result	in	high	quantum

efficiency	detection	-	indeed, this	is	the	objective	of single-atom	detection.

It	is	worth	considering	some	real	experimental	results. Öttl et	al. detected

single	atoms	from	a	rubidium 87 atom	laser	beam	using	a	high	finesse	cavity, with

the	detection	threshold	set	to	a	drop	in	transmission	of	four	times	the	standard

deviation	of	the	empty-cavity	photon	shot	noise	[104]. For	the	detection	power

used, this	discriminating	value	gave	a	false	atom-detection	rate	of	less	than 0.5s−1.

The	probe	beam	used	was	red-detuned	by	three	atomic	linewidths, in	an	attempt

to	channel	atoms	into	the	antinodes	of	the	resonator	mode. Even	so, the	overall

detection	efficiency	of	atoms	extracted	from	a	BEC was	measured	to	be	roughly

25%. This	was	recognised	as	due	almost	entirely	to	poor	overlap	of	the	atom	laser

beam	profile	with	the	cavity	mode. The	1/e-diameters	of	the	atom	laser	beam

were	determined	to	be 80µm	and 110µm	(the	beam	cross-section	was	elongated,
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Figure 4.11: Variation	in	(a)	quantum	efficiency	and	(b)	the measured squeezing	for
an	infinitely	squeezed	source, as	a	function	of	cavity	and	optical	mode	over-lap. The
discriminator	 threshold	 is −3.9σ (−3.4σ)	of	 the	empty	cavity	photon	distribution	 for
detuned	(resonant)	detection. The	optical	mode	waist, w0, is 20µm. The	dashed	lines
correspond	to	the	parameters	used	in	figure	4.6: an	atomic	beam	waist	of	10µm

not	circular), while	the	cavity	mode	waist	was w0 = 25.5µm. In	this	case	many

atoms	enter	the	mode	far	off-axis. The	radial	dipole	force	is	not	enough	to	deflect

transits	 into	high-coupling	 (axial)	 regions, so	 the	effective	coupling	and	signal

strength	remain	negligible.

4.6 Conclusions
In	this	chapter, we	have	extended	our	discussion	of	a	single-atom	detector	based

on	an	optical	cavity	with	moderate	finesse, from	a	consideration	of	the	signal-

to-noise	 ratio	of	an	optimal	detection	signal, to	an	analysis	of	 less	 ideal	atom

transits.

The	ability	to	measure	number	squeezing	depends	on	the	detection	efficiency

and	 false	count	 rate. In	a	cavity-based	atom-detection	system, these	are	both

influenced	by	the	position	of	a	discriminating	threshold	that	determines	which

values	of	photon	counts	are	considered	to	correspond	to	atom	transits	and	which

to	the	empty	cavity	power	level. We	have	analysed	hypothetical	measurements

on	an	atomic	beam	using	resonant	and	detuned	detection. The	optimal	positions

for	the	discriminator	were	determined	numerically	by	finding	the	highest	values

for	the	squeezing	parameter, in	these	two	regimes.

We	found	in	the	case	of	detuned	detection, atoms	experience	a	strong	electric-

dipole	force	that	channels	them	efficiently	into	regions	of	strong	coupling, leading

to	distinctly	separated	photon	distributions	for	empty-cavity	and	detection	events.

The	separation	allows	us	to	define	a	threshold	value	that	produces	high	detection
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quantum	efficiencies	concurrent	with	low	false-counts, and	a	noise-floor	clear-

ance	of	up	to 23dB can	be	achieved. For	a	resonant	probe, in	which	no	dipole

force	exists, the	photon	distributions	are	not	so	clearly	separable, and	the	dark-

noise	clearance	is	roughly 8dB.

The	measurement	time	for	the	modelling	in	this	work	was 20µs, as	necessi-

tated	by	the	choice	of	a	10000	finesse	cavity. At	the	cost	of	greater	experimental

complexity	and	expense, much	higher	finesse	cavities	are	available, and	the	time

scale	for	the	detection	process	can	be	dramatically	reduced. The	measurement

time	limits	the	allowable	atom	flux, and	for τ = 20µs	we	accept	only	5000	atoms

per	second, since	higher	fluxes	saturate	the	detector. Nevertheless, if	a	squeezed

source	can	be	used, cavity	detection	is	capable	of	signal-to-noise	ratios	compa-

rable	fluxes	an	order	of	magnitude	great, and	has	the	advantage	of	operating	in

real-time	with	a	continuous	rather	than	pulsed	source.
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CHAPTER

FIVE

EXPERIMENTAL APPARATUS AND CONTROL

One	of	the	goals	for	our	preliminary	modelling	work	was	to	deduce	whether	a

cavity	of	only	moderate	finesse	could	be	used	successfully	for	high	quantum	ef-

ficiency	single-atom	detection. The	presumption	was	that	such	a	cavity	would

be	both	cheaper	to	build	and	easier	to	work	with	than	the	ultra-high-finesse	res-

onators	of	cavity	QED experiments. While	this	is	indeed	the	case, the	complexity

and	expense	of	any	cold-atom	experiment	should	not	be	underestimated. Vac-

uum	requirements	make	for	intriguing	architecture	-	with	often	restrictive	optical

access	-	and	polarisation, power	and	frequency	of	light	generally	need	to	be	care-

fully	controlled. This	chapter	outlines	the	practicality	of	the	design	and	operation

of	the	experiment, with	a	particular	focus	on	frequency	control	of	key	compo-

nents.

◦ We	begin	in sections	5.1 and 5.2 with	a	description	of	the	configuration

of	the	optical	components	and	the	locking	procedure	we	use	for	stabilising

the	detection	cavity.

◦ An	overview	of	the	detection	cavity	is	given	in section	5.3.

◦ Sections	5.4 and 5.5 detail	the	data	acquisition	process, including	a	descrip-

tion	of	the	photon	detection	method	and	the	digital	demodulation	proce-

dure, as	well	as	a	preliminary	power	calibration	routine.

87
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5.1 Optical	Layout
Ultimately	the	detection	cavity	must	have	its	frequency	(cavity	length)	stabilised	to

the	rubidium	87	transition	with	which	we	are	concerned, but	the	process	is	not

as	straight	 forward	as	 locking	 the	cavity	directly	 to	 the	spectroscopy-stabilised

780nm	probe	laser. There	are	two	reasons	for	this: firstly, the	ideal	amount	of

power	in	the	probe	laser	is	on	the	order	of	a	few	to	hundreds	of	picoWatts, de-

pending	on	the	detection	regime	that	is	chosen, as	discussed	in	chapter	3. While

it is possible	to	lock	to	very	low	light	levels	[102], it	is	by	no	means	an	easy	feat,

and	much	more	stable	locks	are	achieved	when	more	power	is	used, generating

better	signal-to-noise	on	the	error	signal. Secondly, in	order	to	have	the	two	de-

tunings	(cavity-probe ∆c = ω0 − ωc and	atom-probe ∆a = ω0 − ωa)	variable	and

independent, the	cavity	cannot	be	locked	directly	to	the	probe	laser.

Some	cavity	experiments	are	performed	without	active	locking, when	the	pas-

sive	stability	of	the	system	is	sufficient	and	frequency	drifts	occur	much	slower

than	the	relevant	time	scales	of	the	experiment	[138, 24, 72]. For	the	system	that

we	are	investigating, atom	transits	of	the	cavity	mode	are	predicted	to	take	no

longer	than 20µs. We	expect	the	passive	frequency	stability	of	our	detection	cav-

ity	and	probe	laser	to	be	maintained	on	this	time-scale. However, for	a	versatile

system	to	measure	an	atom	flux	on	time	scales	anywhere	from	milliseconds	to

hours	or	days, active	locking	is	desirable.

Generally	the	solution	to	the	problem	of	detection	cavity	locking	is	to	use

a	second	laser	with	a	substantially	different	 frequency	as	a	 ‘stabilisation’	 laser

[104, 135, 23, 70, 100]. Provided	it	is	far-detuned	from	the	atomic	resonance,

this	laser	can	have	more	power	in	it	than	the	probe	laser	-	in	order	to	achieve	a

good	cavity	lock	-	but	will	not	interfere	with	atom	transits. This	second	laser	also

needs	to	be	frequency-stabilised.

The	stabilisation	 laser	can	either	be	 locked	to	an	 ‘absolute’	 frequency	ref-

erence, such	as	a	different	atomic	transition	(for	example	using	caesium	spec-

troscopy), or	have	its	frequency	stability	transferred	from	the	probe	laser. We	use

a	locking	chain	that	employs	a	so-called	‘transfer	cavity’	to	link	the	frequencies

of	the	two	lasers. We	subsequently	make	use	of	a	fibre	electro-optic	modulator

(EOM) to	allow	a	sufficient	 frequency	tuning	range	of	 the	stabilisation	laser	 in

order	to	achieve	co-resonance	in	both	cavities. The	locking	chain	is	discussed	in

the	next	section.
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A simplified	schematic	diagram	of	the	layout	of	the	optical	components	of

the	experiment	(as	opposed	to	the	components	comprising	the	atomic	source)	is

shown	in	figure	5.1 and	a	photograph	of	the	real	optics	table	in	figure	5.2.

Probe

AOM

LO

AOM

6. Heterodyne

Detection

4. Science 

Cavity Lock

1. 780nm laser

Lock

3. 820nm laser

Lock

2. Transfer Cavity Lock

Q

Q

Q

Rb87

820nm

780nm

grating

EOM

H

Vacuum

Chamber

5. Frequency

Control

PD1

PD2

PD3

PD4

Q

Figure 5.1: Simplified	layout	of	the	optical	experimental	set-up. Important	components
are	the	Accousto-Optic	Modulators	(AOMs)	and	the	Electro-Optic	Modulator	(EOM).
Half	and	quarter	wave-plates	are	labelled	H and	Q,	and	photodiodes, PD.	Other	ele-
ments	are	named. Two	modulations	are	used	to	provide	the	error	signal	for	four	locks.
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Figure 5.2: Photograph	of	the	experiment	for	the	optical	components. The	two	boxes
at	the	top	of	the	image	are	grating	stabilised	external	cavity	diode	lasers	used	to	probe
and	stabilise	the	detection	cavity, which	resides	on	a	different	table, with	the	atomic
source.

One	could	consider	six	fundamental	components	to	the	optical	experiment:

1. 780nm	probe	laser	lock	to	a	rubidium	cell

2. Transfer	cavity	lock	to	the 780nm	laser

3. 820nm	stabilisation	laser	lock	to	the	transfer	cavity

4. Science	cavity	lock	to	the 820nm	stabilisation	laser

5. Frequency	(and	power)	control	of	the	probe	and	local	oscillator	beams

6. Heterodyne	detection	of	the	probe	beam
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Function	generators	provide	modulation	frequencies	at	approximately	9MHz

and	23MHz	for	our	locking	loops. Each	signal	is	then	split	with	analogue	voltage

dividers, and	used	to	create	frequency	modulation	on	the	two	lasers	beams via

current	modulation	 for	 the	780nm	beam	and	electro-optic	modulation	on	 the

820nm	light. The	remaining	modulation	signals	from	the	output	of	the	two	initial

splitters	are	then	split	again	and	passed	to	analogue	mixers	-	one	for	each	lock	-	to

be	multiplied	with	the	ac	component	of	the	relevant	photodetector	current. Thus

the	four	unique	error	signals	used	in	the	locking	of	two	cavities	and	two	lasers

are	generated	with	two	distinct	frequency	sources. The	particular	frequencies	for

these	locking	modulations	are	not	important, provided	they	are	independent, and

do	not	share	strong	higher-order	harmonic	frequencies.

Our	transfer	cavity	is	a	three-mirror	‘ring	cavity’	with	a	path	length	of	approx-

imately 40cm. The	input	and	output	mirrors	are	planar	dielectric	mirrors, custom

coated	for	a	finesse	of	1000	for s-polarisation	and	about	100	for p-polarisation

(ATFilms). The	third	cavity	mirror	is	a	high	finesse, ultra-low	loss, spherical	mirror

(Newport	‘SuperMirror’	10CV00SR.40F),	with	a	reflectivity	of	about 99.9%, and

radius	of	curvature	of 1m. The	mirrors	are	mounted	in	an	invar	spacer, which

has	a	low	coefficient	of	thermal	expansion	(approximately 1.2ppm/K) to	provide

low	temperature	sensitivity	of	the	cavity	length. The	finesse	of	a	ring	cavity	is	re-

lated	to	its	linewidth	and	free	spectral	range	in	the	same	way	as	for	a	Fabry-Pérot

resonator	described	by	equation	 (2.9)	and	 the	 free	spectral	 range	 is	 still	given

by	equation	(2.8). For	a	ring-cavity, L now	represents	half	the	round-trip	length,

rather	than	the	cavity	length:

νFSR =
c

2L
(2.8)

F =
νFSR

∆ν
(2.9)

A selection	of	resonances	of	the	stabilisation	and	probe	lasers	on	reflection

from	the	transfer	cavity	are	shown	in	figure	5.3. Our	laser	power	is	derived	from

two	home-built	external	cavity	diode	lasers	(ECDL) that	are	controlled	using	com-

mercial MOGLabs controllers	[3]. These	controllers	include	an	internal	locking

servo	that	stabilises	the	laser	frequency	with	feedback	to	the	diode	current	and

voltage	across	the	piezoelectric	transducer	on	which	the	grating	is	mounted. Our

780nm	probe	laser	uses	a 90mW diode	(Roithner	ADL-78901TX),	and	the	stabili-
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Figure 5.3: Transfer	cavity	resonances. Sidebands	produced	with	the	fibre	EOM on	the
stabilisation	laser	(not	switched	on	in	this	scan)	are	used	to	measure	the	free	spectral
range, and	calibrate	the	other	cavity	parameters.

sation	laser	is	currently	running	with	an	anti-reflection	coated 100mW diode	(Ea-

gle	Yard	EYP-RWE-0840-06010-1500-SOT02-0000). We	have	found	the	diodes

for	 the	 stabilisation	wavelength	more	problematic	and	more	variable	 than	 the

780nm	model, with	some	diodes	operating	better	at 840nm	and	others	closer	to

820nm. Nevertheless, for	our	purposes	the	specific	wavelength	of	the	stabilisa-

tion	laser	is	not	important	provided	it	is	sufficiently	far-detuned	from	the	atomic

resonance.

5.2 Locking	Chain
The	ultimate	reference	frequency	for	the	experiment	is	the |F = 2⟩ → |F ′ = 3⟩ hy-
perfine	transition	in	rubidium	87. In	figure	5.4 the	saturated	absorption	spectrum

for	the	5S1/2	to	P3/2	transition	in	rubidium	87	is	shown. The 780nm	probe	laser

is	current-modulated	and	locked	to	the |F = 2⟩ → |F ′ = 1⟩ , |F = 2⟩ → |F ′ = 3⟩
hyperfine	cross-over	line	(the	1,3	cross-over)	in	a	rubidium	87	vapour	cell	satura-

tion	absorption	spectroscopy	set-up. The	probe	laser	frequency	is	later	up-shifted

by (212+∆a)MHz	with	an	acousto-optic	modulator	to	the	required	frequency	for
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Figure 5.4: Saturated	absorption	spectrum	for	 the	5S1/2	to	P3/2	transition	in	rubid-
ium	87(below)	and	the	error	signal	used	to	lock	the	probe	laser	(above). The	abscissa
measures	the	frequency	above	the |F ′ = 0⟩ state, with	the	frequency	of	each	hyperfine
resonance	and	‘cross-over’	labelled	on	the	upper	axis. (The	reader	may	wish	to	com-
pare	this	spectrum	to	the	energy	level	structure	shown	in	figure	2.1). The	laser	is	locked
to	the	1,3	cross-over	indicated	with	the	dashed	line.

resonant	or	detuned	detection. ∆a = ω0−ωa is	the	detuning	of	the	laser	detection

frequency	from	atomic	resonance.

Figure	5.5 shows	a	schematic	of	the	chain	of	locks. The	resonance	of	the

stabilised	probe	is	observed	on	reflection	from	the	transfer	cavity	which	is	then

locked	 to	 the	 laser. The	detection	 cavity	 length	 is	 then	 tuned	 to	 transmit	 the

probe	laser, and	the	stabilisation	frequency	is	tuned	so	that	it, too, is	resonant	in

the	detection	cavity.

Since	both	lasers	need	to	be	resonant	in	the	detection	cavity	and	the	transfer

cavity	simultaneously, we	must	be	able	to	tune	at	least	one	of	them	independently

in both cavities. To	achieve	this	required	tuning	flexibility, we	add	strong	high

frequency	sidebands	to	the	stabilisation	laser	using	a	fibre-coupled	electro-optic

modulator	(EOM) (ultra	low-loss	Lithium	Niobate	phase	modulator: EOSpace	PM-

0K5-10-PFA-PFA-852). These	sidebands	are	typically	at	radio	frequencies	(rf)	-
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Figure 5.5: Schematic	diagram	of	the	cavity	locking	set-up, using	a	transfer	cavity	to
bridge	the	large	frequency	difference	between	the	probe	and	stabilisation	lasers. The
solid	arrows	represent	the	stabilisation	processes, with	the	arrow	heads	pointing	towards
the	component	that	is	to	be	locked, while	the	dashed	arrows	indicate	the	transmission
of	both	lasers	in	both	cavities.

well	outside	the	cavity	linewidth	-	and	the	ability	to	tune	the	frequency	is	impor-

tant. We	use	the	laser	current	control	to	shift	carrier	and	sidebands	together	until

the	carrier	 is	 resonant	with	 the	detection	cavity. A small	modulation	at	much

lower	frequency	is	also	added	to	the	EOM control	voltage	in	order	to	generate

the	required	error	signals.

The	detection	cavity	is	locked	to	the	carrier	of	the	stabilisation	laser	light. We

then	tune	the	relative	frequency	between	the	stabilisation	sidebands	and	carrier

using	the	EOM controller	so	that	one	of	the	sideband	frequencies	is	resonant	in

the	transfer	cavity	(remember, the	transfer	cavity	is	already	locked	to	the	probe

laser)	and	lock	the	stabilisation	laser	to	the	transfer	cavity	using	this	frequency.

We	need	 the	 EOM because	we	have	no	other	way	of	 tuning	 the	 stabilisation

laser	to	the	transfer	cavity	once	the	detection	cavity	is	locked. The	transfer	cavity

free	spectral	range	is	approximately 800MHz, and	the	function	generator	(Hameg

HM8134-31.2	GHz	RF-Synthesizer)	with	which	we	drive	the	EOM allows	us	first

order	sidebands	from	zero	to 1.224GHz, giving	more	than	sufficient	tuning	range.
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This	locking	chain	avoids	additional	phase-locked	lasers	as	used	in	other	set-ups

[104], or	the	need	for	a	frequency	comb	[105]	or	a	highly	tuneable	but	expensive

Ti:Sapphire	laser	[100]	to	stabilise	frequencies	separated	by	tens	of	nanometers.

Figure	5.6 shows	 the	resonance	of	 the	probe	and	stabilisation	 light	on	re-

flection	from	the	detection	cavity. The	signal	from	the	transmitted	probe, mixed

with	the	local	oscillator	at	the	heterodyne	detectors	is	also	shown, as	well	as	the

error	signal	on	the	stabilisation	laser. For	these	plots	the	detection	cavity	length

is	changed	slowly	by	scanning	the	voltage	on	a	piezoelectric	stack	on	which	one

of	the	mirrors	is	mounted. The	abscissa	corresponds	to	the	piezo	voltage. This

is	also	a	measure	of	the	resonant	frequency	of	the	cavity, but	since	the	voltage

to	length	conversion	of	the	piezo	is	not	strictly	linear, we	have	chosen	not	to	use

that	measure	in	these	figures.

For	the	stabilisation	laser	two	sets	of	resonances	are	seen	in	the	cavity	spec-

trum. The	larger	of	the	two	sets	(shown	expanded	in	the	insets	in	both	subfigures)

is	the	TEM00 mode	and	the	set	at	lower	voltage	is	a	higher-order	mode	due	to	mis-

alignment	of	the	laser	with	the	cavity	mirrors. With	the	term	‘set’, I refer	to	the

collection	of	features	comprised	of	the	carrier	frequency	as	well	as	first	order	and

weaker	second	order	sidebands	of	each	mode. Note	that	the	strong	rf	sidebands

on	the	stabilisation	laser	are	those	introduced	with	the	fibre	EOM as	discussed

previously. These	sidebands	are	well	outside	the	cavity	linewidth	and	are	not	the

modulation	used	to	generate	the	error	signal. That	modulation	is	much	weaker

and	at	a	frequency	of	roughly 20MHz: within	the	cavity	linewidth. The	modu-

lation	is	carried	on	all	components	of	the	stabilisation	light, so	that	each	of	the

EOM sidebands	as	well	as	the	carrier	frequency	generate	a	unique	error	signal.

The	traces	in	figure	5.6(a)	show	the	carrier	of	the	stabilisation	laser	and	the

(weaker)	 probe	 light	 are	 resonant	 at	 different	 cavity	 lengths. After	 tuning	 the

stabilisation	 laser	current, the	 two	are	co-resonant	and	cannot	be	resolved	on

the	cavity	spectrum	in	(b).

Once	the	co-resonance	condition	is	achieved, the	cavity	scan	is	stopped	and

its	frequency	(length)	is	locked. Figure	5.7 shows	the	corresponding	power	and

error	signals	and	the	beatnote	signal	of	the	probe	and	local	oscillator. When	per-

forming	the	atom-detection	experiment, the	power	in	the	probe	laser	is	too	small

to	be	seen	on	the	reflected	signal, and	too	weak	to	produce	visible	heterodyne

fringes. However, it	is	necessary	to	use	enough	power	to	observe	these	manifes-
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Figure 5.6: Resonances	in	the	detection	cavity. In	(a)	and	(b)	the	upper	traces	are	the
reflected	signals	containing	both	probe	and	stabilisation	laser	power. The	red	trace	is
the	error	signal	of	the	stabilisation	laser	obtained	by	demodulating	the	reflected	signal
at	the	modulation	frequency	carried	on	this	laser. The	blue	trace	is	not	an	error	signal,
but	a	few	fringes	from	the	heterodyne	signal	of	the	transmitted	probe	laser	beating	with
the	local	oscillator. In	(a)	the	two	lasers	are	resonant	at	different	cavity	lengths, while
in	(b)	they	are	co-resonant: the	reflected	carriers	are	unresolved, and	the	transmitted
probe	signal	peak	overlaps	with	the	centre	of	the	stabilisation	error	signal.
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tations	of	the	probe	while	searching	for	the	co-resonance	condition. The	probe

power	is	reduced	to	the	detection	level	after	the	locking	chain	is	completed.

780nm probe heterodyne sig.

re�ected sig.

840nm error sig.

0 20 40 60 80 100 120 140 160

Time (milliseconds)

Figure 5.7: The	locked	cavity	signals: the	upper	trace	and	error	signal	are	stable	in	time
-	since	the	cavity	is	held	on	resonance	-	with	a	steady	power	reflected	(and	transmitted).
The	fringes	in	the	heterodyne	signal	are	due	to	the	transmitted	probe	beam	mixed	with
the	local	oscillator. For	these	fringes	to	be	visible	the	probe	power	is	well	beyond	that
which	is	used	in	the	detection	experiment.

5.3 The	Detection	Cavity

5.3.1 Apparatus	and	Assembly

The	input	and	output	mirrors	of	our	detection	cavity	have	different	transmission

coefficients	giving	an	‘under-coupled’	Fabry-Pérot	cavity	with	the	output	mirror

transmission	 three	 times	higher	 than	 the	 input. This	 reduces	 the	 loss	of	 intra-

cavity	photons via decay	through	the	input	mirror. Mirror	substrates	and	coatings

were	custom	designed	and	machined	at ATFlims [2]. The	input	mirror	transmis-

sion	was	designed	with	a	coefficient	of	transmission T ∼ 0.0105% and	the	output

T ∼ 0.0314% at	780nm, and	similar	values	for	the	far-detuned	stabilisation	wave-

length. Appendix	B shows	one	of	the	preliminary	modelled	transmittance	curves
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for	the	lower	finesse	(output)	mirror	substrate. The	mirrors	have	a	radius	of	curva-

ture	of 50cm	that	gives	a	mode	waist	of 40µm	when	they	are	separated	by 200µm,

following	equation	 (2.10). They	are 5mm	in	diameter, ‘coned’	 to 2mm	at	 the

mirror	surface	as	shown	in	figure	5.8(a).

Each	mirror	 is	 glued	 into	 an	 end	 cap	 of	 a	 ceramic	mount, using	 a	 low-

outgasing	vacuum-compatible	glue. The	two	end	caps	are	separated	with	a	cylin-

drical	ceramic	spacer	with	four	optical	(and	atomic)	access	ports; they	also	sand-

wich	a	 voltage	controlled	piezoelectric	 transducer	 (pzt)	 that	 allows	 the	cavity

length	to	be	adjusted. The	ceramic	mount	was	custom	designed	and	machined	in

our	department	workshop. The	assemblage	is	held	together	with	a	non-magnetic

stainless	steel	clamp	using	vacuum-compatible	o-rings	to	support	the	end	caps.

Our	choice	of	material	(a	machinable	ceramic: Macar®)	fit	the	requirements	of	a

rigid	structure	and	a	non-magnetic	environment. A photograph	of	the	clamped

mount	holding	the	mirrors	is	shown	in	figure	5.8(b).

(a)
2 mm

(b)

end caps

pzt 

spacer O-Ring

Cavity axis

Mirror substrates

Figure 5.8: (a)	A schematic	of	cavity	mirror	substrates	with	their	mount	and	pzt	and	(b)
a	photograph	of	the	mount	and	clamp. Four	windows	in	the	mount	[one	shown	in	(b)]
provide	atomic	and	optical	access	orthogonal	to	the	cavity	axis.

5.3.2 Cavity	Parameters

From	equations	(2.8)	and	(2.9), we	can	deduce	the	length	and	finesse	of	the	de-

tection	cavity	if	we	measure	the	linewidth	and	free	spectral	range, by	calibrating

the	frequency	axis	of	the	cavity	spectrum. The	easiest	way	to	do	this	is	to	put

known	‘frequency	markers’	on	the	cavity	spectrum	using	the	sidebands	from	the
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EOM on	the	stabilisation	light	and	higher	order	spatial	modes	resulting	from	sub-

optimal	mode-matching. Examples	of	these	markers	are	shown	in	the	spectra	of

figure	5.9. First-order	sidebands	with	a	frequency	of	1.2GHz	are	used	to	deduce

(a)	the	linewidth	and	(b)	the	apparent	frequency	separation	of	the	TEM00 mode

from	higher	spatial	order	resonances. In	figure	5.9(b)	the	third-order	sidebands

of	adjacent	transverse	modes	overlap. We	therefore	determine	the	apparent	fre-

quency	difference	between	the	carriers	of	the	TEM00 mode	and	the	TEM10 mode

to	be 6×1.2 = 7.2GHz. Note	that	this	is	not	a real frequency	difference; different

spatial	orders	have	the	same	longitudinal	mode	number	-	which	is	what	deter-

mines	the	wavelength	or	frequency	-	as	discussed	in	section	2.2.2. However, they

are	resonant	at	different	cavity	lengths	and	are	consequently	observed	at	different

positions	on	the	cavity	spectrum. These	mis-alignement	modes	are	subsequently

used	in	(c)	to	measure	the	FSR of	the	cavity.

Although	the	above	procedure	is	the	most	straight	forward	method	for	fre-

quency	measurements, it	is	not	particularly	accurate. The	approach	assumes	a

linear	conversion	between	 the	pzt	voltage	and	 the	cavity	 length, which	 is	not

strictly	true, particularly	at	the	extent	of	the	voltage	range. In	addition, changes

in	cavity	length	due	to	thermal	effects	in	the	mirror	substrates	when	the	cavity	is

filled	with	high	intensity	resonant	light	have	been	observed	in	high	finesse	cav-

ities	[117]. However, for	a	finesse	of	only 104 we	do	not	expect	the	intra-cavity

power	 to	be	so	high	as	 to	 induce	an	observable	effect	 -	even	with	our	use	of

higher	probe	powers. In	any	event, such	an	effect	is	a	minor	perturbation	when

compared	to	the	uncertainty	introduced	with	the	non-lineararity	of	the	pzt. Scan-

ning	at	low	voltages, where	the	voltage-to-length	conversion	on	the	pzt	is	most

linear, as	well	as	taking	several	spectral	measurements	and	averaging, minimises

the	measurement	uncertainty.

A similar	process	using	frequency	markers	is	employed	to	determine	the	pa-

rameters	of	our	transfer	cavity. This	cavity	is	so	much	longer	than	the	detection

cavity	and	consequently	the	entire	free	spectral	range	can	be	scanned directly

with	the	sidebands	from	the	EOM on	the	stabilisation	laser. The	first-order	side-

bands	from	adjacent	modes	are	co-resonant	in	the	transfer	cavity	when	they	are

394.5MHz	from	the	820nm	carrier	frequency. The	free	spectral	range	of	the	cav-

ity	is	therefore	twice	this	frequency: 2 × 394.5 = 789MHz.

For	our	measured	detection	cavity	parameters, we	can	deduce	the	various
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Figure 5.9: Detection	cavity	spectra	with	‘frequency	markers’	derived	from	the	EOM
sidebands. First-order	sidebands	with	a	frequency	of	1.2GHz	are	used	to	deduce	(a)
a	linewidth	of 86MHz	(b)	the	apparent	frequency	separation	of	the	TEM00 mode	from
the	next	higher	spatial	order	resonance, 7200MHz, and	subsequently	(c)	the	FSR of	the
cavity: about 820GHz.



101

atom-cavity	coupling	variables, using	the	relations	given	in	chapter	3. Our	de-

tection	cavity	does	not	operate	in	the	strong	coupling	regime; that	was	not	the

intention	of	this	experiement. The	parameters	for	both	cavities, and	the	decay

and	coupling	rates	are	summarised	in	table	5.1:

Detection	Cavity Transfer	Cavity
(p-polarisation)

linewidth	(MHz) 86 8
FSR 820GHz 789MHz
cavity	length 180µm 38cm
Finesse 9500 100
mirror	curvature 50cm 1m
waist	size	(µm) 41 300
g0 (MHz) 9.45 × 2π
κ (MHz) 83.3 × 2π
Γ (MHz) 6 × 2π

Table 5.1: Cavity	parameters	as	detailed	in	text
.

5.4 Cavity	Control
The	length	of	our	detection	cavity	is	controlled	by	applying	a	voltage	to	a	piezo-

electric	ring	actuator	(Piezomechanik	HPSt	150/15-8/3)	that	sits	between	the	cav-

ity	mirrors	(see	figure	5.8). These	actuators	are	vacuum	compatible	(so	can	with-

stand	the	‘baking’	of	our	vacuum	chamber	at	several	hundred	degrees)	and	have

a	ring	geometry	that	is	necessary	for	optical	access	along	the	cavity	axis.

The	actuator	is	operated	between	-30	and	150V and	the	data	sheets	for	the

device	suggest	a	maximum	stroke	of 3 − 4µm. When	we	scan	the	full	voltage

range	of	 the	actuator, we	measure	 just	over	 seven	 free	 spectral	 ranges	on	 the

detection	cavity	using	the 780nm	probe	laser. This	tells	us	the	maximum	stroke	is

indeed	of	the	suggested	approximate	length: 7 × λ/2 = 7 × 780nm/2 ∼ 3µm.

We	control	the	piezo	voltage	source	and	monitor	the	cavity	response	using

a	field-programmable	gate	array	(FPGA) card	(NI PXI-7852R).	A real-time	code

written	in	LabVIEW® acts	as	an	interface	between	the	user	and	the	FPGA.	Signals

are	sent	from	a	low	speed	(750kHz)	analogue	output	channel	on	the	FPGA to	the

cavity	pzt via a	high-voltage	amplifier, and	the	dc	component	of	the	photodiode
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that	monitors	 the	cavity	 response	 is	 sent	 to	a	 low	speed	analogue	 input. The

output	signal	can	be	operated	in	‘scan’	or	‘lock’	mode. In	scan	mode, the	interface

allows	the	user	to	adjust	the	amplitude	and	speed	of	a	triangular	voltage	scan.

In	lock	mode	the	scan	is	stopped, and	the	gain	and	polarity	of	the	offset	and	the

proportional	(P )	and	integral	(I)	feedback	can	be	adjusted.

Appendix	C provides	detail	of	the	front-face	of	the	LabVIEW user	interface.

5.5 Data	Acquisition

5.5.1 Laser	Frequency	Separation

All	our	locking	and	preliminary	monitoring	of	the	detection	cavity	resonance	con-

ditions	are	observed	on	the	beams reflected from	the	cavity	input	mirror	(PD4	in

figure	5). The	output	mirror	is	then	used	as	the	port	at	which	to	collect	probe	pho-

tons	for	signal	analysis. That	analysis	requires	us	to	separate	the	co-propagating

stabilisation	and	probe	beams	before	detection. This	can	be	achieved	with	(1)	a

diffraction	grating	or	(2)	optical	frequency	filters:

(1)	Diffraction	gratings	obey	the	‘grating	equation’	(5.1), which	governs	the

angular	positions	of	intensity	maxima	for	a	given	wavelength, λ

mλ = d(sinα + sin β). (5.1)

Here, α is	the	incident	angle, measured	from	the	grating	normal, β is	the	refracted

angle, m is	the	diffraction	‘order’, and d is	the	groove	spacing	-	or	the	inverse	of

the	groove	frequency G. From	this	relation	we	can	derive	the	angular	dispersion

of	co-propogating	polychromatic	light, that	is, the	change	in	diffracted	angle	per

unit	wavelength, for	constant α:

D =
dβ

dλ
=

mG

cos β
(5.2)

In	our	apparatus, we	use	a	planar	holographic	grating	withG = 2000 grooves/mm

(Newport	Catalog #33056FL02 − 059H)	and	an	incident	angle	of α ∼ 40°. This

gives	us	a	dispersion	of	about	one	fifth	of	a	degree	between	the	first	order	diffrac-

tion	of	the	780nm	probe	light	and	the	820nm	stabilisation	light: more	that	suffi-

cient	to	spatially	separate	the	two	beams	after	a	small	propagation	distance.

The efficiency of	a	diffraction	grating	-	how	much	power	from	the	incident
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beam	is	distributed	into	a	given	spectral	order	-	depends	on	many	parameters:

polarisation	and	power	in	the	incident	beam, angles	of	incidence	and	diffraction

as	well	as	the	grating	blaze	angle	and	material	all	play	a	part. A complete	treat-

ment	of	the	grating	efficiency	has	not	been	deployed	here, since	it	is	of	minor

relevance	 for	 this	work. Instead, we	 found	 the	optimal	 incident	angle	experi-

mentally	to	give	the	best	(spatially	undistorted)	beam	parameters	and	distributing

roughly 70% of	the	probe	power	in	the	first	diffracted	order	for s−polarisation.
(2)	A different	option	for	separating	the	two	frequencies	is	to	use	a	filter	to

block	the	stabilisation	laser, and	pass	only	probe	light	to	the	detection	system. The

probe	and	stabilisation	lasers	have	well-separated	frequencies	that	do	not	demand

an	exceptionally	‘sharp	edged’	filter, however, the	power	in	the	stabilisation	laser

is	significantly	stronger	than	that	of	the	probe	beam: milliWatts	in	comparison	to

picoWatts. Consequently	the	filter	requirements	become	rather	strict, since extra

photons	contribute	to	a	noisy	signal	to	the	same	degree	as lost photons. Thus	the

rejection	of	820nm	must	be	extremely	good, while	the	transmittance	of	780nm

is	also	required	to	be	high. Compared	to	the 70% efficiency	of	our	diffraction

grating, we	infer	 that	an	equivalent	system	using	filters	would	require	 that	 the

number	of	stabilisation	photons	reaching	the	detection	system	be	no	more	than

30% of	the	number	of	probe	photons: For	the	given	power	ratio, this	requires	an

optical	filtering	system	that	passes	only 3 × 10−10 of	the	stabilisation	power.

The	above	discussion	is	concerned	with	the	physical	separation	of	the	co-

propagating	frequencies. For	photon	detection	that	relies	on	direct	photon	count-

ing, consideration	of	lost	and	residual	photons	and	the	power	ratios	in	the	two

beams	is	very	important. Amplitude	(and	subsequent	power)	measurements, us-

ing	heterodyne	detection, offer	substantial	additional	effective	filtering	(to	be	dis-

cussed	in	the	following	section), and	exploiting	this	property	means	that	purifi-

cation	of	the	probe	prior	to	detection	is	not	so	critical.

5.5.2 Heterodyne	Photon	Detection

Procedure

In	chapter	3, we	considered	the	use	of	two	types	of	detection	for	the	probe	laser:

(i)	an	avalanche	photodiode	(APD) -	also	referred	to	as	a	single	photon	counting

module	(SPCM) -	and	(ii)	heterodyne	detection. The	advantage	of	an	APD is	that	it

is	a	single	device	that	is	reasonably	straight-forward	to	set	up. On	the	other	hand,
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it	is	power-limited. That	is	to	say	that	such	a	device	saturates	so	only	very	low

probe	powers	are	acceptable. While	it	is	true	that	the	power	used	in	the	single

atom	detection	process	is	generally	low, we	found	that	in	the	case	of detuned de-

tection	the	probe	power	necessary	to	obtain	a	good	signal-to-noise	ratio	exceeds

the	saturation	limit	of	a	typical	APD (approximately	20	photons/µs). Heterodyne

detection	is	consequently	much	more	versatile	and, in	addition, has	a	higher	ef-

ficiency	(the	quantum	efficiency	of	an	APD is	generally	limited	to	less	than 50%

at	780nm). In	chapter	3, section	3.4.2, we	presented	a	schematic	diagram	and

mathematical	argument	for	the	demodulation	of	a	heterodyne	detection	set-up

without	the	need	to	phase	lock	the	LO:

Digital Processing

PD1

BS

Heterodyne Optics

PD2

Figure 5.10: Schematic	diagram	of	two	stages	of	the	data	acquisition	process.

The	weak	field	to	be	measured	interferes	on	a	balanced	beamsplitter	with	a

strong	local	oscillator	(LO) with	a	well	defined	frequency	offset. We	use	the	same

ECDL to	provide	both	the	LO and	probe	light	in	our	set-up	(see Frequency	Con-

trol section	of	figure	5.1). After	a	small	amount	is	picked	off	for	spectroscopy	and

transfer	cavity	locking, the	laser	light	is	passed	through	two	‘cascaded’	acousto-

optic	modulators	 (AOMs), each	 running	 in	 a	 double-pass	 configuration. The

power	ratio	between	the	output	of	these	AOMs	can	be	varied	with	a	half-wave

plate	 that	proceeds	 them	and	more	delicately	with	 the	 independent	 radio	 fre-

quency	driving	powers	controlling	each.
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We	drive	the	AOMs	using	signals	derived	from	a	single	clock	frequency	con-

trolled via a	field-programmable	gate	array	(FPGA) card	(NI PXI-7852R) so	that

they	are	frequency-locked, and	we	run	the	local	oscillator	AOM about	12MHz

below	the	probe	AOM frequency. This	means	that	in	the	double-pass	configu-

ration	we	have	a	24MHz	frequency	offset	between	the	LO and	probe	and	this	is

the	frequency	at	which	we	demodulate	the	heterodyne	signal.

The	LO and	transmitted	probe	beam	interfere	on	a	50:50	beamsplitter	and	the

24MHz	beat	frequency	between	them	is	measured	at	detectors	on	each	beam-

splitter	port. The	measurements	on	the	detectors	are	subtracted	on	a	power	splitter

with	a π phase	offset, and	yield	a	signal	that	is	proportional	to	the	probe	beam

amplitude	ready	for	digital	processing	(figure	5.10).

Efficiency	and	Filtering

In	contrast	to	an	APD,	photodiodes	used	in	heterodyne	detectors	can	have	effi-

ciencies	around	95%. As	well	as	the	relatively	small	losses	in	these	detectors,

the	heterodyne	efficiency	is	dictated	by	the	spatial	mode-matching	of	the	probe

beam	and	local	oscillator	on	the	50:50	beamsplitter	that	proceeds	the	detectors,

and	the	matching	of	the	polarisations	of	the	two	beams. It	is	related	to	the	fringe

visibility	by

ηhet = V2

where	the	visibility V is	defined	as

V =
Pmax − Pmin

Pmax + Pmin
.

Pmax and Pmin are	the	maximum	and	minimum	power	in	the	fringes, correspond-

ing	to	constructive	and	destructive	interference.

In	our	set-up, we	measured	a	fringe	visibility	with	a	maximum	value	of V =

0.98, suggesting	a	heterodyne	efficiency	of 96%, however	the	visibility	was	not

constant	over	extended	observation	periods. We	surmise	that	the	fluctuations	in

our	heterodyne	detection	efficiency	are	one	of	our	principle	noise	sources.

Further	to	the	high	efficiency	that	it	offers, another	advantage	of	heterodyne

detection	is	the	effective	frequency	filtering	it	provides. Since	the	frequency	offset

between	the	LO and	the	820nm	stabilisation	laser	is not 24MHz	as	it	is	between

the	LO and	the	probe	laser, any	residual	stabilisation	light	should	be	rejected	in
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the	heterodyne	demodulation. Thus	the	rejection	criterion	for	820nm	light	is	not,

in	fact, as	important	as	the	passing	of	780nm	light	at	the	grating	or	filtering	stage

discussed	in	section	5.5.1. Our	photodetectors	are	optimised	for	low	power, so

we	need	to	block	a	sufficient	amount	of	the	stabilisation	laser	so	as	not	to	saturate

the	detectors, but	a	well	optimised	heterodyne	system	can	itself	supply	significant

common	mode	rejection	so	that	residual	820nm	photons	do	not	interfere	with

the	signal. We	measured	up	to 40dB of	attenuation	at	the	modulation	frequency;

an	effective	filtering	that	suppresses	any	residual	stabilisation	light	power	by	a

factor	of 10000. We	conclude	that	frequency	filtering	combined	with	heterodyne

detection, may	 in	 fact	have	been	a	better	choice	 than	a	diffraction	grating	 for

probe	and	stabilisation	light	separation.

5.5.3 Digital	Demodulation

The	experimental	realisation	of	the	demodulation	method	was	carried	out	digi-

tally	in	a	program	written	in	LabVIEW 2010® (32	bit). The	program	was	derived

from	the	digital	locking	code	developed	in	reference	[133], and	appendix	C in-

cludes	an	illustration	of	the	LabVIEW® block	diagram	of	the	code	showing	the

components	of	the	processing. The	subtracted	analogue	signal	from	the	two	out-

put	ports	of	our	heterodyne	beamsplitter	is	processed	in	a	high	speed	analogue-

digital	converter	(ADC) to	produce	a	16	bit	signal	that	is	sent	to	a	digital	input

channel	on	the	FPGA.	The	processing	then	involves	mixing	-	or	demodulating	-

at	the	appropriate	offset	frequency, and	executing	the	subsequent	mathematical

operations.

The	LabVIEW® code	consists	of	two	loops: (1)	a	high	speed	loop	at	80	Mega-

samples/second; (2)	a	low	speed	loop	at	500	kilo-samples/second. The	demodu-

lation	occurs	in	the	high	speed	loop	where	the	digitised	modulated	signal	from	the

ADC is	multiplied	separately	by	sine	and	cosine	functions	each	generated	using

a	look-up	table. These	functions	have	the	same	frequency	as	the	modulation	that

is	derived	internally	on	the	PXI (NI PXI-5404). The	data	are	then	down-sampled

in	a	two-stage	Cascaded	Integrator	Comb	(CIC) filter: a	digital	equivalent	of	an

analogue	low-pass	filter	[69].

Once	filtered, the	two	sets	of	data	-	multiplied	by	the	sine	and	cosine	func-

tions	respectively	-	are	squared	and	summed	in	the	low	speed	loop, to	produce

a	signal	that	can	be	monitored	in	real-time	and	recorded	for	subsequent	anal-

ysis. After	digital	processing, the	signal	is	proportional	to	the	LO power	level,
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β2, rather	than	the	field	amplitude, β that	is	initially	measured	in	the	heterodyne

process:

⟨Î ⟩2 + ⟨Q̂⟩2 = β2⟨Â⟩⟨Â†⟩.

5.5.4 Calibration

There	are	several	arbitrary	gain	factors	between	the	detection	of	photons	at	the

heterodyne	photodetectors	and	the	digital	signal	displayed	and	recorded	in	our

data	collection	program. To	calibrate	this	signal, we	measure	the	raw	photocur-

rent	-	that	is, the	subtracted	output	of	the	heterodyne	set-up	prior	to	digital	pro-

cessing	-	on	an	electronic	radio	 frequency	spectrum	analyser. We	see	a	peak

at	 the	modulation	 frequency	whose	amplitude	 is	proportional	 to	 the	power	 in

the	probe. The	reader	is	reminded	from	chapter	3 equation	(3.5)	that	the	pho-

tocurrent	(Iphoto)	is	proportional	to	the	product	of	the	detected	probe	and	LO field

amplitudes,

Iphoto ∝ ĉ†ĉ − d̂†d̂

= β(Â†e−iϕ + Âeiϕ).

Since	 the	probe	field	amplitude	 is	 equal	 to	 the	 square	 root	of	 the	optical

power	(Â =
√

Pprobe), the	photocurrent	is	proportional	to	the	square	root	of	the

probe	power	 (and	indeed, also	 the	square	root	of	 the	LO power). The	size	of

the	beatnote	measured	on	the	spectrum	analyser	is	proportional	to	the	electrical

power	 (P )	 generated	by	 this	 current	 and	 since P = I2
photoR the	 signal	 is	 also

proportional	to	the	optical	power	of	the	probe:

P ∝ Pprobe. (5.3)

By	taking	a	series	of	measurements	at	different	low	but	measurable	probe	powers,

we	map	the	amplitude	shown	on	the	spectrum	analyser	to	the	value	measured

with	a	power	meter. It	is	necessary	to	keep	to	low	optical	powers	when	carrying

out	this	calibration	procedure	so	as	not	to	saturate	the	operational-amplifiers	in

the	heterodyne	photodiodes	(since	the	photodiode	circuits	are	designed	for	high

gain). Satisfying	this	requirement, the	relationship	between	the	measurements	on

the	power	meter	and	the	spectrum	analyser	is	linear, and	we	can	extrapolate	the

correlation	as	a	convenient	way	to	measure	the	power	in	the	probe	beam	when	it
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Figure 5.11: Calibration	of	data	collection	units. The	probe	power	is	varied	over	a	low,
but	measurable	range, and	the	arbitrary	units	on	the	data	logging	system	are	recorded.

is	too	small	to	observe	on	a	power	meter. We	can	similarly	translate	this	mapping

to	the	measurements	shown	in	our	data	logging	program, whose	arbitrary	units

are	also	proportional	 to	the	optical	power. Figure	5.11 shows	the	mapping	of

power	measured	with	a	power	meter	in	front	of	the	heterodyne	detector, to	the

arbitrary	units	of	the	data	logging	program. The	proportionality	also	applies	to

the	power	in	the	LO,	and	so	the	calibration	of	the	signal	units	is	not	unique. The

plot	shown	here	is	an	example	of	the	scaling	measured, but	the	calibration	needs

to	be	repeated	if	ever	the	power	in	the	local	oscillator	is	changed.

5.5.5 Noise	Sources

In	our	system, we	were	able	to	achieve	good	spatial	mode-matching	at	the	hetero-

dyne	detector	and	measured	an	optimal	fringe	visibility	of 98%and	noise	suppres-

sion	at	24MHz	of	40dB.	However, we	found	that	the	visibility	and	the	attenuation

it	afforded	drifted	substantially	over	time	due	to	fluctuations	in	probe	and	LO po-

larisation. Both	these	beams	are	fibre-coupled	to	the	atom-detection	table	using

polarisation-mantaining	(PM),	single	mode	fibres	(Lastek	P3-780PM-FC-5). While

there	will	always	remain	a	minimal	degree	of	cross-talk	between	orthogonal	po-

larisations	in	a	PM fibre, aligning	the	axis	-	or	‘key’	-	on	the	fibre-coupler	to	the

polarisation	axis	of	the	input	beam	removes	the	polarisation	rotation	that	enters
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when	the	axes	are	not	coincident. Alignment	of	polarisation	sensitive	devices	is

such	a	common	undertaking	in	optical	experiments	that	substantial	efforts	have

been	devoted	to	mitigating	the	task	[5]. Despite	continuous	efforts, however, we

struggled	 to	achieve	acceptable	alignment	of	 some	of	our	PM fibres	and	con-

sequently	suffered	considerable	power	fluctuations	in	the	polarisation-sensitive

components	following	their	outputs. It	remains	unclear	why	alignment	of	these

fibres	persisted	as	such	a	problem.
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CHAPTER

SIX

ATOM TRANSITS

6.1 Introduction
In	part	I of	this	thesis, I presented	results	of	the	modelling	work	that	was	performed

in	order	 to	determine	 the	best	experimental	parameters	 for	cavity single atom

detection. Those	parameters	included	the	physical	characteristics	of	the	cavity	as

well	as	its	operating	regime	with	regards	to	probe	power	and	probe	and	cavity

frequencies. One	important	variable	is	the	detection	time	-	chosen	to	match	the

mode-transit	time	and	therefore	dependent	on	the	speed	that	atoms	have	when

transiting	the	cavity	mode	as	well	as	the	mode	size. Another	is	the	intra-cavity

atom	number	that	was	implicitly	taken	to	be	one. In	practice, these	values	depend

on	the	geometric	details	of	the	experimental	set-up. The	atom	number	is	found

with	the	density	of	atoms	at	the	cavity	and	the	cavity	volume	and	the	velocity	can

vary	greatly	depending	on	the	atomic	source.

This	chapter	presents	a	discussion	of	the	nature	of	atoms	from	our	chosen

source	-	a	two-dimensional	magneto-optical	trap	-	as	well	as	an	analysis	of	the

cavity	detection	signals	of	these	atoms.

6.2 Sources	of	Atoms
Several	different	sources	are	available	for	supplying	cold	atoms	to	optical	cavities.

In	their	apparatus	documented	in	reference	[104], the	cold-atom	research	group

at	ETH use	condensed	atoms	from	a	BEC dropped	into	a	high	finesse	cavity	as	an

atom	laser	beam. Atoms	were	moving	at	about	1m/s	as	they	transited	the	cavity

111
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mode. Other	experiments	observe	single	atoms	from	an	un-condensed	source	-	a

three-dimensional	(3D) MOT -	either	dropped	from	above	the	cavity	[60, 138]	or

propelled	upwards	in	an	atomic	fountain	from	below	[102]. One	of	the	appeal-

ing	characteristics	of	launching	atoms	from	below	is	that	the	velocity	and	density

of	atoms	at	the	cavity	can	be	fully	controlled	by	adjusting	the	momentum	transfer

imparted	on	the	atoms	with	appropriate	laser	‘push’	beams. While	it	is	equally

feasible	to	apply	push	beams	to	downwards	propagating	atoms	to	influence	their

velocity	(this	technique	is	applied	with	the	out-coupling	beams	of	a	Raman	atom

laser	in	reference	[78]	in	order	to	deliver faster atoms	that	experience	the	con-

densate	mean	field	for	a	shorter	 time), the	control	 is	not	absolute, since some

non-zero	speed	will	be	acquired	in	the	distance	that	atoms	fall	to	reach	the	cav-

ity. In	contrast, a	fountain	of	upwards	propagating	atoms, derived	from	a	source

of	stationary	atoms	can	be	designed	to	have	particles	with	zero	velocity	in	the

detection	region, if	the	apex	of	their	trajectory	is	there.

Another	option	for	a	source	of	cold	atoms	is	to	use	a two-dimensional	(2D)

MOT.	This	was	the	choice	in	the	present	experiment	because	it	offered	the	most

simple	experimental	configuration. To	drive	atoms	from	the	trap	to	the	detection

region	a	push	beam	on	 the	2D MOT axis	 transfers	upward	momentum	to	 the

atoms	along	this	unconfined	dimension. An	analysis	of	the	velocity	distribution

of	cold	atoms	from	such	a	source	is	given	in	reference	[129]. In	that	work, atoms

as	slow	as	25m/s	were	produced	with	a	high	flux	(5− 9× 108atom/s)	and	narrow

velocity	distribution	(∼ 7.5m/s). The	peak	velocity	can	be	varied	considerably

with	the	power	in	the	push	beam. Here, our	intention	was	to	achieve	substantially

lower	 velocities, on	 the	order	of	 1m/s, resulting	 in	 considerable	 cavity	 transit

times. The	following	section	discusses	the	2D MOT atom	source	and	delivery

system	for	our	set-up.

6.2.1 Vacuum	System	Architecture

For	our	 detection	 experiments, we	mount	 the	 cavity	 in	 an	ultra	 high	 vacuum

(UHV) chamber	and	launch	atoms	into	it	from	an	atom	source below. The	source

is	a	2D MOT made	in	a	quartz	glass	cell	that	forms	a	separate	high	vacuum	(HV)

compartment	with	optimal	optical	access.

The	vacuum	chamber	configuration	used	 is	 shown	 in	figure	6.1(a), and	a

sketch	of	 the	set-up	 in	6.1(b). This	architecture	was	used	because	we	wanted

to	ensure	the	background	pressure	in	the	detection	chamber	is	not	so	high	as	to
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Figure 6.1: Vacuum	chambers	used	for	the	atom	detection	experiment.

saturate	the	cavity	detection	signal, while	we	require	a	reasonable	pressure	to

form	the	2D MOT.	The	vacua	are	separated	by	an	 ‘impedance’: a 10mm	long

tube	with	a	diameter	of 0.7mm	that	links	the	two	chambers. The	‘conductance’

of	 the	 impedance	 is	measured	 in litres/sec and	 in	 the	molecular	flow	regime

(appropriate	for	the	pressures	with	which	we	are	concerned)	it	is	given	by	[1]

C = 12D3(
1

L
) (6.1)
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for	a	diameter D and	length L.

A constant	pressure	differential	between	the	two	is	held	by	the	impedance

for	a	sufficient	pumping	speed, Q:

Q = (P1 − P2)C. (6.2)

With	our	impedance	tube	we	calculate	the	conductance	between	the	two

vacua	to	be	about 4 × 10−5l/s -	well	below	the	volume	flow	rate	of	the	vacuum

pump	and	conductance	of	the	vacuum	chambers. We	pump	on	the	UHV side

of	the	impedance	using	a	commercial	ion	pump	(Gamma	Vacuum®), and	release

rubidium	vapour	in	the	HV quartz	cell	using	rubidium	dispensers. The	gauge	on

our	ion	pump	measures	a	pressure	in	the	UHV chamber. When	the	dispensers

are	running	the	pressure	is	between ∼ 10−10 and ∼ 10−9torr.

6.2.2 2D MOT Laser

The	third	and	final	laser	in	our	experiment	provides	the	light	for	our	2DMOT.	This

laser	was	one	of	a	series	of	assemblies	we	built	to	test	a	new	ECDL design, based

on	a	set-up	used	by	the	quantum	optics	group	in	Hannover	[53]. The	external

cavity	used	to	modify	the	laser	gain	profile	is	created	using	a	mirror	rather	than

diffraction	grating, and	the	back	facet	of	the	diode. An	interference	filter	within

the	laser	cavity	allows	independent, course	tuning	of	the	wavelength, by	rotating

the	filter	angle. The	laser	frequency	is	adjusted via current	control	and	feedback

to	a	piezo	on	the	laser	cavity	output	coupling	mirror.

Our	other	lasers	are	grating	stabilised	ECDLs	in	the	Littrow	configuration	[66].

The	advantage	of	 the	 linear	design	over	 the	more	 typical	Littrow	and	Littman-

Metcalf	configurations	is	that	the	laser	beam	is	neither	translated	nor	tilted	with

piezo	movement. The	interference	filters, however, are	expensive	to	source	and

very	sensitive	to	angular	placement.

The	2D MOT trapping	 laser	 is	 operated	 approximately 12MHz	below	 the

|F = 2⟩ → |F ′ = 3⟩ transition	 in	 the	rubidium	87	D2	line. This	 is	achieved

by	down-shifting	part	of	the	laser	light	using	a	double-pass	AOM configuration

within	the	locking	loop; the	down-shifted	beam	is	stabilised	directly	to	the	1,3

cross-over	line	in	a	Zeeman	modulated	saturation	absorption	lock, leaving	the

light	that	does	not	pass	through	the	AOM close-to-resonant	with	the	desired	tran-

sition. The	detuning	of	the	trapping	light	can	be	adjusted	by	changing	the	AOM
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frequency. A schematic	of	the	set-up	is	shown	in	figure	6.2, and	the	reader	may

also	wish	to	refer	to	the	saturated-absorption	spectrum	shown	in	figure	5.4.

Re-pump	light	is	added	to	the	trapping	laser	with	the	addition	of	very	small

sidebands	from	a	fibre	EOM,	driven	at	about 6.8GHz	with	a	voltage	controlled

oscillator	(VCO).

We	use	a	90mW laser	diode	in	our	ECDL.	After	optical	isolation, power	pick-

off	for	locking, and	transmission	through	the	fibre	EOM,	we	are	left	with	about

8mW of	laser	power. A tapered	amplifier	increases	the	power, and	after	fibre-

coupling	we	have	approximately	50mW available	for	the	2D MOT.

Q

Rb87

780nm

AOM

Q

EOMTA

Zeeman Lock

50mW to Atom

Experiment

repump

Figure 6.2: A simplified	schematic	of	the	2D MOT light	set-up. The	labels	codes	are:
AOM = Acousto-Optic	Modulator, EOM = Electro-Optic	Modulator, TA = Tapered
Amplifier	and	Q = Quarter-wave	plate.

6.3 Finding	Atoms

6.3.1 Transverse	Probe

The	geometry	of	our	apparatus	was	discussed	in	the	previous	section	and	figure

6.1 shows	the	arrangement	of	the	2D MOT chamber	below	the	cavity	chamber,

connected via a	narrow	impedance. For	alignment	of	the	impedance	and	cav-

ity	we	rely	on	careful	machining	and	construction	of	the	vacuum	chambers	and

cavity	mount. The	2D MOT position	can	be	manipulated	with	the	current	in	the

MOT coils	and	the	push	beam	is	controlled	with	steering	mirrors. Small	windows

in	the	cavity	mount	[see	figure	5.8(b)]	allowed	us	to	observe	the	push	beam	scat-

tering	off	the	cavity	mirrors	as	an	indication	that	we	had	(at	least	roughly)	aligned
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the	beam	with	the	detection	region. At	this	stage	we	did	not	observe	any	atom

signal	in	the	cavity	probe. We	continued	to	initially	check	the	coarse	alignment

via absorption	in	a	‘transverse	probe’: a	beam	placed	immediately	below	and

orthogonal	to	the	cavity	axis	(figure	6.3).

Because	the	transverse	probe	beam	is	not	required	to	match	the	small	cavity

waist	size	(it	is	positioned	directly below the	cavity	mount, rather	than	through

the	waist), it	intersects	a	much	larger	cross-section	of	the	atomic	beam	than	does

the	longitudinal	probe	that	populates	the	cavity	mode. Consequently	this	beam

is	easier	to	align	than	the	cavity	probe	and	is	used	as	an	initial	indicator	of	the

atomic	beam	position	by	measuring	atomic	absorption. Nevertheless, the	signal

is	weak	since	it	results	from	a	single	pass	of	the	atomic	beam. A better	signal-to-

noise	ratio	is	achieved	by	monitoring	the	error	signal	of	the	absorption	feature.

The	transverse	probe	is	provided	by	the	same	laser	that	generates	the	cavity

detection	probe	(although	the	two	cannot	be	used	simultaneously)	and	therefore

contains	the	current	modulation	discussed	in	section	5.2. We	use	a	lock-in	ampli-

fier	to	demodulate	the	absorption	signal	at	the	modulation	frequency	so	that	we

can	generate	an	error	signal	with	reasonable	signal-to-noise. Figure	6.4(a)	shows

the	error	signal	from	the	transverse	probe	passing	through	the	atomic	beam	(up-

per, red	trace). For	this	measurement	the	probe	laser	is	unlocked	and	scans	slowly

over	the	broad	doppler	feature	containing	the	atomic	transitions. The	abscissa	in

figure	6.4 is	measured	in	time	but	also	represents	the	frequency	of	the	laser. Part

(b)	and	the	lower	(blue)	trace	in	(a)	show	the	reference	absorption	signal	from	the

rubidium	cell	 that	is	used	to	lock	the 780nm	laser. The	two	resonances	in	the

vapour	cell	reference	spectrum	correspond	to	the	1,3	and	2,3	cross-over	transi-

tions	within	the	5S1/2	to	P3/2	doppler-broadened	transition	line. Atoms	travel-

ling	through	the	transverse	probe	beam	only	experience	a	single	laser	excitation

-	there	is	no	‘pump’	beam, only	the	probe	-	and	so	no	‘cross-over’	transitions	are

observed	in	their	spectrum.

There	is	a	substantial	offset	between	the	frequency	of	the |F = 2⟩ → |F ′ = 3⟩
transition	observed	in	the	rubidium	vapour	reference	cell	and	that	in	the	atomic

beam	below	the	cavity	chamber. This	could	be	caused	by	a	number	of	condi-

tions: one	possibility	 is	a	Doppler	shift	due	 to	angular	discrepancies	between

the	interrogating	beams: in	the	saturated	absorption	configuration, the	observed

hyperfine	transitions	are	for	atoms	with	zero	velocity	in	the	direction	of	the	probe
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Figure 6.3: Schematic	of	the	atom	supply	geometry	with	transverse	probe	beam below
the	cavity	intersecting	the	atomic	beam. The	diagram	is	not	to	scale.



118

F’=3

0 20 80

Detuning (MHz)

F’=3

F’=1

F’=3 F’=2

F’=3

0 100 300200-100-200-300 400

(a)

(b)

P
o

w
e

r 
(n

o
rm

a
li

se
d

)

0.5

0.0

0.25

0.75

1.0

0.5

0.25

0.75

0.0

40 60 100

P
o

w
e

r 
(n

o
rm

a
li

se
d

)
P

o
w

e
r 

(n
o

rm
a

li
se

d
)

0.5

-0.5

Figure 6.4: Atomic	absorption	signal	observed	with	saturated	absorption	spectroscopy
in	the	reference	cell	-	lower	trace	in	(a), and	(b)	-	and via the	lock-in	technique	discussed
in	the	text	for	the	transverse	probe	beam	in	the	atomic	beam	-	upper	trace	in	(a). The
laser	piezo	scans	slowly	to	vary	the	laser	frequency	(the	axes	show	the	frequency	above
the	1,3	cross-over	feature	in	the	vapour	cell). The |F ′ = 3⟩ transition	in	the	atomic	beam
is	apparently	shifted	by ∼ 70MHz	below	its	position	in	the	reference	cell.



119

laser. In	the	signal	from	the	cold	atomic	beam	below	the	cavity, atoms	are	ideally

moving	perpendicular	to	the	‘transverse	probe’. However, in	this	single-pass	con-

figuration, there	is	no	mechanism	for	confirming	the	accuracy	of	this	geometry1.

In	the	instance	that	the	orthogonality	condition	is	not	well	satisfied, and	that	there

is	a	reasonable	transverse	component	to	the	atomic	velocity, we	would	expect

the	Doppler	shift	on	the	hyperfine	transition	to	be	significant. For	atoms	moving

approximately	orthogonally	to	the	probe, an	angular	offset	of	10° (a	generous

estimate)	results	in	a	frequency	shift	of	roughly	of	several	hundred	MegaHertz,

dependent	on	their	speed. This	is	likely	to	be	at	least	partially	responsible	for	the

observed	shift.

It	is	also	possible	that	the	discrepancy	between	the	transition	frequencies	in

the	vapour	cell	and	the	vacuum	chamber	arises, in	part, from	the	distinct	magnetic

environments	experienced	by	the	two	groups	of	atoms. Further	evidence	for	this

is	in	the	unusual	asymmetry	in	the	atom	beam	error	signal	that	cannot	be	entirely

eliminated	with	phase-adjustments	on	the	lock-in. With	current-carrying	coils

around	the	rubidium	vapour	cell	we	can	manipulate	the	magnetic	environment

of	the	reference	atoms	until	the	two	observed	transitions	concur. However, this

does	not	ensure	that	a	laser	resonant	with	the |F = 2⟩ → |F ′ = 3⟩ transition	at
the	vapour	cell	will	also	be	resonant	in	the	cavity, since	we	cannot	deduce	the

importance	of	the	Doppler	effect	on	the	atomic	beam. The	best	procedure	is	to

try	to	ensure	that	both	environments	are	as	magnetically	neutral	as	possible.

6.3.2 Velocity	measurements

With	the	transverse	probe	on-resonance, it	is	re-locked	and	used	to	measure	the

velocity	of	our	atomic	beam. Figure	6.5 shows	an	example	of	 the	absorption

signal	we	see	for	a	pulsed	push	beam. The	trace	acquisition	is	triggered	with	the

switching	‘on’	of	the	push	beam	and	shows	the	absorption	in	the	transverse	probe,

averaged	for	20	measurements. The	delay	between	the	absorption	and	the	push

pulse	allows	us	to	estimate	the	atom	speed	in	the	cavity. Rather	than	using	the

electronic	signal	that	controls	the	pulses, the	triggering	is	activated	by	monitoring

stray	 light	 from	push	beam	optical	components. This	avoids	 the	possibility	of

additional	delays.

For	the	push	parameters	used	here, the	time-of-flight	is	approximately 16 ±
1We	might	also	consider	the	influence	of	any	transverse	component	to	the	atom’s	velocity, as

the	atomic	beam	disperses, but	this	will	result	in	a	broadening	of	the	transition, rather	than	a	shift.
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Figure 6.5: Atom	absorption	signal, transverse	to	the	cavity	axis	(red	trace). The	blue
trace	shows	the	triggering	of	the	push	beam	pulse. The	absorption	is	maximum ∼ 16±
3ms	after	the	pulse	is	switched	on.

3ms	corresponding	to	a	longitudinal	velocity	of	about 25±5m/s. The	power	in	the

push	beam	and	the	length	of	time	for	which	it	operates	influences	the	velocity

distribution	of	 the	atoms	once	 they	 reach	 the	cavity. More	power	and	 longer

pulses	mean	more	photon	absorption	and	emission	processes	each	imparting	a

momentum	‘kick’	of 2~k.

6.3.3 Atom	Flux	and	Intra-cavity	Atom	Number

Figure	6.6 shows	a	plot	of	how	we	might	expect	the	number	of	atoms	in	the	cavity

volume	to	scale	with	their	initial	longitudinal	velocity, vl(0) for	an	ideal	2D MOT

source. The	conditions	modelled	are	for	a	transverse	temperature	in	the	2D MOT

of T = 200 ± 50µK giving	a	 transverse	velocity	of vtrans =
√

kT/m, where k

is	the	Boltzmann	constant	(k = 1.38 × 10−23J/K) and m = 1.44 × 10−25kg	is	the

mass	of	a	rubidium	atom. An	estimate	of	the	flux	of	atoms	along	the	MOT axis	is

F = 5 × (107 − 108) atoms/s.

The	red	line	in	figure	6.6 shows	the	scaling	of	intra-cavity	atom	number	for

our	best	estimates	of F and T while	the	shaded	region	indicates	the	uncertainty
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Figure 6.6: Linear	scaling	of	atom	number	in	the	cavity	volume	as	a	function	of	initial
longitudinal	velocity. We	model	a	2D MOT with	transverse	temperature ∼ 200µK,	and
longitudinal	atom	flux	of 108atoms/s. The	atom	density	scales	as	equation	(6.3), and	the
number	is	given	for	the	cavity	mode	volume	defined	by	the	parameters	in	table	5.1.

in	this	scaling	due	to	the	lack	of	precise	values	for F and T with	plausible	limits

to	these	parameters	indicated. The	estimated	values	for F and T are	based	on

models	and	measurements	conducted	on	 similar	apparatus	 in	a	different	cold

atom	experiment. The	geometric	layout	of	the	present	apparatus	does	not	allow

us	 to	perform	measurements	 to	acquire	 the	data	necessary	 to	determine	 these

values	for	this	experiment, but	we	believe	they	will	be	similar	since	the	relevant

conditions	and	those	observations	we can make	are	much	the	same.

The	time-of-flight	of	the	atoms	from	the	trap	to	the	cavity	is	related	to	their

initial	velocity, imparted	by	the	push	beam, with:

t = [vl(0) −
√

vl(0)2 − 2gd]/g

Here d is	the	distance	of	the	cavity	above	the	trap	(40cm)	and g is	the	acceleration

due	to	gravity. For	the	absorption	signal	shown	in	figure	6.5, vl(0) ∼ 25 ± 5m/s.

We	can	calculate	the	radius	and	cross-sectional	area	of	the	atomic	beam	at
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the	cavity;

r = vtranst and A = πr2

and	the	longitudinal	velocity	of	the	atoms	at	this	position:

vl(t) = vl(0) − gt

=
√

vl(0)2 − 2gd.

The	three-dimensional	atom	density	at	the	detection	cavity	depends	on	the	lon-

gitudinal	spread	of	atoms	in	the	beam	once	they	reach	that	position, as	well	as

their	transverse	spread	determined	by	the	confining	parameters	of	the	2D MOT

and	the	time-of-flight:

n(atoms/m3) = (F/A)/vl(t) (6.3)

We	can	understand	the	structure	in	this	model	as	follows: For	values	of vl(0) ≫
gd, the	term 1/A scales	with	the	square	of	the	initial	longitudinal	velocity	and

the	final	 longitudinal	 velocity	 scales	 linearly	with	 it. Since	 the	density	 scales

inversely	with	the	cross-sectional	area	and	the	longitudinal	velocity	the	number

of	atoms	 in	 the	cavity	scales	 linearly	with vl(0). The	behaviour	shown	at	 low

velocity	results	 from	conditions	where vl(0) ≃ gd. For	 initial	velocities	below

about vl(0) = 2.8m/s	atoms	do	not	reach	the	cavity	before	turning	around	under

the	influence	of	the	gravitational	force.

Returning	to	our	simulations	of	the	signal-to-noise	ratio	presented	in	chapter

3, we	can	consider	the	influence	of	the	atomic	velocity	by	taking	into	account

its	affect	on	the	atom	trajectories, integration	time	(matching	the	transit	time)	and

the	mean	number	of	atoms	in	the	cavity, which	scales	linearly	with	the	velocity

as	in	figure	6.6. Figure	6.7 shows	the	modelled	signal-to-noise	ratio	as	a	func-

tion	of	the	longitudinal	velocity	of	the	atoms	for	resonant	detection	using	all	the

same	conditions	deduced	for	optimum	detection	in	chapter	3. The	scaling	limits

relating	the	atom	velocity	and	intracavity	atom	number	are	the	same	as	those	in-

dicated	in	figure	6.6. The	influence	on	the	signal-to-noise	ratio	entering via the

intracavity	atom	number	scales	the	signal	proportionally. For	example, an	intra-

cavity	atom	number	of 0.2 can	be	modelled	as	the	average	of	one	measurement

of	a	single	atom	in	the	cavity	to	four	measurements	of	an	empty	cavity	signal. De-
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Figure 6.7: Modelled	variation	of	signal-to-noise	ratio	with	atom	velocity. The	simu-
lation	takes	into	account	the	scaling	of	the	intra-cavity	atom	number	with	velocity, as
well	as	the	cavity	transit	times.

spite	this	proportionality, the	relationship	between	the	signal-to-noise	ratio	and

the	atomic	velocity	 is	quadratic	rather	 than	linear. This	suggests	 that	 the	non-

linear	behaviour	enters	with	the	changing	atomic	transits	and	transit	times	as	the

longitudinal	velocity	is	changed.

In	fact, the	scaling	of	the	atomic	flux	with	velocity	is	not	so	straight	forward

as	 that	 indicated	 in	figure	6.6. It	 is	not	only	 the	momentum	 imparted	by	 the

push	beam	but	also	the	two-dimensional	configuration	of	the	source	itself	that

determines	the	atoms’	speed	in	the	longitudinal	dimension. In	an	ideal	2D trap

we	might	imagine	that	atoms	travel	with	a	thermal	(Maxwell-Boltzmann)	veloc-

ity	distribution	 in	 the	 third, untrapped	dimension. However, since	real	MOTs

are	constructed	with	finite	beam	diameters, atoms	in	the	high-velocity	tail	of	the

distribution	move	out	of	the	trapping	beams	before	they	are	substantially	cooled

in	 the	 transverse	dimensions. Consequently	only	atoms	 that	are	 initially	 slow

enough	in	the	longitudinal	direction	can	be	captured. The	velocity	distribution

is	truncated	above	this	so-called	‘capture	velocity’	even	though	there	is	no	direct
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cooling	mechanism	in	this	direction. The	longitudinal	velocity	limit	is	accentu-

ated	with	the	addition	of	the	push	beam. We	find	that	too	much	power	in	the

push	beam	(resulting	in	higher	longitudinal	velocities)	ultimately	limits	the	atom

flux	because	it	destroys	the	2D MOT:	atom	velocities	are	redistributed	above	the

capture	velocity	and	they	are	pushed	out	of	the	MOT beams	before	being	trapped.

A thorough	discussion	of	the	2D MOT model	and	experimental	investigation	of

MOT variables	is	provided	in	reference	[129].

By	manipulating	the	push	beam	parameters, we	were	able	to	measure	a	vari-

ation	in	the	time-of-flight	of	the	atoms	from	the	MOT to	transverse	probe	between

about	10	and	30	milliseconds. The	corresponding	variation	in	the	longitudinal

speed	of	atoms	is	between	about	30	and	15m/s. Figure	6.8 gives	some	indication

of	how	the	absorption	signal	size	(proportional	to	the	atomic	flux)	varies	with	the

atoms’	time-of-flight	(inversely	proportional	to	their	speed	-	shown	on	the	upper

abscissa). The	measured	velocities	are	approximately v1 = 15m/s, v2 = 20m/s

and v3 = 31m/s. The	signal-to-noise	ratio	[figure	6.8(b)]	is	influenced	by	many

parameters	of	the	signal	acquisition	process, but	for	the	traces	shown	in	this	plot

all	conditions	of	the	data	acquisition	process	were	identical	and	only	the	push

beam	parameters	were	varied. We	therefore	presume	that	changes	in	the	signal-

to-noise	ratio	are	an	indication	of	changes	in	the	atomic	flux	through	the	beam

area.

The	push	beam	pulse	length	could	be	varied	using	an	electronic	switch	con-

trolled	with	a	programmable	function	generator	and	power	was	changed	by	ro-

tating	a	wave	plate	in	front	of	a	polarising	beam-splitter. For	the	measurements

in	figure	6.5 we	used	10	millisecond	pulses	and	adjusted	the	power.

At	 low	velocities	 the	drop	in	signal-to-noise	ratio	 is	a	result	of	 the	scaling

indicated	in	figure	6.6 and	at	high	velocity	it	is	due	to	the	breakdown	of	the	2D

MOT capturing	ability. The	optimum	atomic	flux	-	resulting	in	the	best	signal-to-

noise	ratio	-	occurs	at	a	compromise	of	these	behaviours.

6.4 Results: Pulsed	Cavity	Probe	Beam	Signal

Once	the	lock-in	signal	observed	with	the	transverse	probe	has	been	optimised,

we	return	to	searching	for	an	atom	signal	in	the	longitudinal	cavity	probe	beam.

From	this	point, very	subtle	adjustments	of	the	alignment	of	the	push	beam	even-

tually	yielded	a	weak	signal, best	observed	as	the	differential	power	change	as
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Figure 6.8: Variation	in	absorption	signal	strength	with	atom	speed. Push	beam	power
was	adjusted	to	achieve	a	variation	in	atom	speed. In	(a)	the	changing	strength	of	the
absorption	signal	in	the	transverse	probe	beam	is	shown	as	a	function	of	the	time-of-
flight	of	atoms	from	the	2D MOT and	their	speed. The	change	in	signal-to-noise	ratio
of	the	absorption	signal	as	a	function	of	the	push	power	is	presented	in	(b).

the	push	is	pulsed	on	and	off. Figure	6.9 shows	a	typical	recording	of	the	probe

beam	power	as	the	push	beam	is	pulsed	on	and	off	with	a	frequency	in	this	case

of	2Hz. These	data	are	acquired	on	an	oscilloscope	whose	display	is	triggered
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with	 the	pulsing	of	 the	push, shown	as	 the	grey	square	pulse. The	blue	 trace

shows	the	power	in	the	probe	beam	pulsing	in	correspondence	with	the	push,

as	atoms	from	the	2D MOT are	alternately	trapped	in	the	quartz	cell	and	ejected

into	the	cavity. The	offset	between	the	push	(trigger)	pulses	and	the	probe	beam

pulses	is	due	to	the	finite	speed	and	arrival	time	of	atoms	as	discussed	in	the	pre-

vious	section. To	be	certain	the	observed	power	fluctuations	in	the	probe	beam

do	indeed	result	from	the	presence	of	atoms	in	the	cavity	and	are	not	due	to	stray

light	from	the	pulsed	push	beam	or	some	other	spurious	affect, we	make	an	iden-

tical	measurement	with	the	2D MOT trapping	beams	switched	off	so	there	is	no

atomic	source. The	red	trace	shows	the	probe	beam	power	in	this	case	does	not

fluctuate	with	the	push	beam.
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Figure 6.9: Pulses	of	probe	beam	power	consistent	with	pulses	of	the	push	beam. The
upper	traces	show	the	monitored	power	in	the	push	beam	when	the	2D MOT in	on
(blue	trace)	and	off	(red	trace)	and	the	lower	square	pulse	is	monitored	stray	light	from
the	push	beam.

Figure	6.10(a)	shows	two	seconds	worth	of	monitoring	the	probe	beam	using

our	data	acquisition	program. Data	are	recorded	with	a	resolution	of 2µs	and	can

subsequently	be	re-sampled	into	different	bin	sizes	to	extract	the	best	signal-to-

noise	ratio.

A Fourier	analysis	of	the	raw	data	[figure	6.10(b)]	shows	that	low	frequency

noise	overwhelms	the	push	beam	pulses. To	emphasise	the	bursts	of	atoms	as

changes	 in	 the	probe	power, we	apply	a	filter	 to	 remove	 the	 low	frequencies,
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shown	as	a	shaded	region	in	(b). Figure	6.10(c)	shows	the	filtered	data. We	fit

a	sinusoidal	signal	(red	trace)	with	the	push	pulse	frequency	of	10Hz	in	order	to

sort	the	data	so	that	those	incidents	corresponding	to	the	push	beam	‘off’	(when

the	fit	trace	is	above	zero)	can	be	grouped	together	as	well	as	those	for	the	push

beam	being	‘on’	(fit	trace	below	zero). The	relative	size	of	the	atom	signal	and

noise	can	then	be	easily	extracted.

6.5 Noise	and	Calibration	Troubleshooting
In	section	5.5.4, we	discussed	the	procedure	used	to	roughly	calibrate	the	probe

power	measurements: we	measured	the	probe	beam	at	the	heterodyne	detector

using	a	power	meter	and	compared	the	values	to	the	beatnote	signal	on	an	RF

spectrum	analyser	and	the	signal	recorded	on	our	LabVIEW® interface	in	order

to	calibrate	these	displays. That	calibration	was	performed	at	higher	powers	than

the	experiment	since	the	power	meter	is	not	responsive	to	powers	lower	than	a

few	nanoWatts. It	was	only	intended	as	a	rough	guide, allowing	us	to	determine

an	approximate	operating	power	for	the	experiment	by	extrapolation. We	had

hoped	to	use	the	statistical	properties	of	shot	noise	to	scale	the	arbitrary	units	of

the	LabVIEW® display	as	follows:

If the	photon	source	were	shot-noise	 limited	then	(at	 least	when	the	push

beam	is	off	and	the	probe	is	unperturbed	by	the	presence	of	atoms)	we	would

expect	the	mean	photon	number	measured	in	any	given	integration	time, τ to	be

equal	to	the	variance	of	those	measurements;

µ = σ2 (6.4)

An	arbitrary	factor, k introduced	with	the	measurement	process	means	that

the	mean	number	displayed	in	our	data	acquisition	program, µ′ with	standard

deviation σ′ is	related	to	the	actual	number	by µ = k×µ′ (And σ = k×σ′). Using

equation	(6.4)	we	could	find	the	gain	factor	by	setting

k × µ′ = (k × σ′)2.

In	practical	terms, varying	the	mean	photon	number	can	be	achieved	either

by	changing	the	power	in	the	probe	(as	was	the	procedure	in	the	rough	calibration

method	of	chapter	5)	or	by	changing	the	integration	time, τ . In	figure	6.11 we	plot
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Figure 6.10: (a)	Two	seconds	of	data	recorded	during	the	pulsing	of	 the	push	beam.
(b)	Fast	Fourier	Transform	(FFT) of	probe	data. The	push	beam	pulse	frequency	is	100
milliseconds. Low	frequency	noise	dominates	the	time	series	so	to	better	observe	the
pulses	of	atoms	we	filter	out	Fourier	components	below	the	push	pulse	frequency: (c).
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the	variance	of	the	photon	counts	divided	by	the	mean	as	a	function	of	the	‘bin

length’, or	integration	time. We	consider	measured	data	when	the	push	beam	is

on	and	off	separately, as	well	as	the	same	information	for	a	simulated	data	set	of

white	Poissonian	noise	(shot	noise).

Figure	6.11 makes	use	of	the	data	from	figure	6.10(c), where	we	have	applied

a	high	pass	filter	 to	remove	the	 frequency	noise	below	the	pulse	 frequency	in

order	to	separate	the	data	corresponding	to	‘atoms	ON’ and	‘atoms	OFF’ states.

The	raw	data	are	measured	at	a	rate	of 2µs, and	in	figure	6.11 they	are	resampled

with	a	decimation	factor	of	500. The	statistical	uncertainty	-	shown	as	the	shaded

regions	around	each	trace	-	indicates	the	standard	error	in	the	resampled	values.

We	had	hoped	that	 the	blue	trace	-	corresponding	to	data	measured	when	no

atoms	were	present	-	would	show	a	unvarying	value	for	this	ratio	that	could	be

scaled	to	produce	unity	indicating	noise	dominated	by	photon	shot-noise. More

noise	at	lower	frequencies	means	that	when	a	long	data	sample	is	taken	(a	sample

that	spans	a	 long	 time	period)	 the	ratio	of	 the	standard	deviation	 to	 the	mean

counts	is	higher	than	for	shorter	samples	and	so	there	is	no	unique	value	of k

that	we	can	find	to	scale	our	arbitrary	units. Consequently, we	cannot	employ

the	above	approach	to	determine	the	power	in	the	detection	cavity. In	fact, the

noise	features	described	here	can	be	extracted	immediately	from	figure	6.10(b)

where	it	is	clear	that	even	above	the	filter	cut-off	the	power	in	different	frequency

components	varies	across	the	spectrum	such	that	the	fourier	transform	is	not	flat

in	frequency	space: the	signal	is not dominated	by	photon	shot	noise	as	we	had

hoped.

The	attempted	calibration	method	described	above	is	a	post-processing	oper-

ation. During	the	experiment, we	did	not	endeavour	to	set	the	probe	power	using

an	analysis	of	the	noise	spectrum. Instead, we	followed	the	procedure	discussed

in	section	5.5.4; checking	the	heterodyne	beatnote	amplitude	on	an	RF spectrum

analyser	before	recording	the	signal	allows	a	measurement	of	the	probe	power,

using	equation	(5.3). The	reader	is	reminded	that	the	electrical	power	in	this	beat-

note	is	proportional	to	the	optical	probe	power	but	also	to	the	optical	power	in

the	LO so	one	must	be	careful	to	maintain	a	constant	power	in	the	latter	between

measurements. Once	a	signal	is	observed, the	power	in	the	probe	beam	can	be

subtly	adjusted	using	the	AOM controller	until	the	optimum	signal-to-noise	ratio

is	reached.
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Figure 6.11: Scaling	of	 the	standard	deviation	with	sample	size. The	black	trace	is
simulated	data	exhibiting	Poissonian	noise	 for	which	the	ratio	of	 the	variance	 to	 the
mean	is	always	one, regardless	of	sample	size. The	blue	and	red	traces	are	measured
data, scaled	for	ease	of	comparison. The	blue	data	are	measured	with	the	push	beam
off	and	the	red	when	it	is	on.

6.5.1 Comparison	with	Other	Work

Atomic	Shot	Noise

Despite	the	excess	noise	in	our	measurement	procedure, the	plot	in	figure	6.11

provides	us	with	one	interesting	observation. The	two	traces	corresponding	to

experimental	measurements	are	from	the	cavity	probe	with	the	atom	beam	on,

and	off, as	indicated. While	neither	trace	is	flat	-	that	is, shot	noise	limited	-	like

the	simulated	Poissonian	data, there	 is	a	noticeable	difference	between	 them:

the	ratio	of	variance	to	mean	for	the	data	corresponding	to	atoms	in	the	cavity	is

consistently lower than	for	the	empty	cavity	data.

In	our	simulations	 in	part	 I -	and	 from	a	simple	 intuitive	perspective	-	 the

above	observation	is	the	opposite	trend	to	what	one	would	expect. Indeed, ex-

actly	that	opposite	trend	is	observed	using	the	fluorescence	detector	described

in	reference	[145]. A coherent	 light	source	of	constant	mean	photon	number

creates	a	Poisson	distributed	photon	stream	with	the	probability	of	detecting n
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photons	in	a	given	measurement	time	given	by

p(n) =
⟨n⟩n

n!
e−⟨n⟩ (6.5)

and	a	variance	that	equals	the	mean:

Var(n)

⟨n⟩
= 1.

Atoms	passing	the	detection	fibre	create	a	fluorescence	signal	with	a	mean	num-

ber	of	counts	per	atom α, so	that	for m atoms	the	probability	of n counts	becomes

p(n) =
(αm)n

n!
e−(αm)

where	we	have	substituted αm for ⟨n⟩ in	equation	(6.5). For	a	source	of	atoms	with
probability	distribution patom(m) super-Poissonian	statistics	are	observed: (see	ap-

pendix	D)

Var(n)

⟨n⟩
= 1 + α

Var(m)

⟨n0⟩/α + ⟨m⟩

∼ 1 + α
Var(m)

⟨m⟩
(6.6)

Here ⟨n0⟩ is	the	mean	background	photon	count	that	may	be	neglected	in	some

apparatus.

Co-operative	Noise	Reduction

Of	course, a	fluorescence	detector	behaves	differently	from	a	cavity	detector, al-

though	we	might	still	expect	an	increase	in	the	relative	variance	of	photon	counts

per	measurement	interval	when	atoms	are	present	in	the	detection	region. How-

ever, in	contrast	to	the	observations	in	[145], the	authors	of	reference	[55]	do	not

measure	a	significant	increase	in	noise	accompanying	the	atom	signal. In	fact,

they	refer	to	the lack	of	increase as	‘co-operative	noise	reduction’	since	it	repre-

sents	a	suppression	of	atomic	shot-noise	resulting	from	the	generalised	multi-atom

co-operativity	parameter CN . Their	work	involves	atom	detection	within	a	small

cavity	mode via fluorescence	and	resonant	cavity	reflection	measurements, both

of	which	result	in	an	increase	in	photon	counts.
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The	significance	of	cavity	detection	enters via the	co-operativity	parameter

C, (introduced	in	chapter	3)	that	describes	the	effect	of	a	single	atom	on	the	cavity

spectrum	and	the	multi-atom	co-operativity	parameter	scales	with	the	effective

number	of	atoms	in	the	cavity	as CN = NeffC. The	effective	intra-cavity	atom

number	is	found	from	the	overlap	of	the	atomic	and	cavity	mode	spatial	density

functions:

Neff =

∫ L

0

∫ ∞

−∞

∫ ∞

−∞
[ϱ(r)|U(r)|2] d3r.

The	mean	number	of	photon	counts	per	atom, α is	related	to	the	co-operativity

parameter via different	relations	depending	on	the	nature	of	the	detection	tech-

nique	 [55]. The	 authors	note	 that	 they	 cannot	 simply	 replace m with Neff in

equation	(6.6), since	when	dealing	with	noise	the	two	are	not	interchangeable.

They	find	that	by	using	an	analytic	result Var(Neff)/Neff = 3/8, derived	from	work

by	Carmichael	and	Sanders	[31], and	by	treating CN as	a	random	variable	pro-

portional	to Neff rather	than ⟨Neff⟩, the	calculated	ratio Var(n)/⟨n⟩ is	remarkably

close	to	Poisson	statistics	and	is	in	excellent	agreement	with	their	observations2.

If	cavity transmission is	observed	instead	of	reflection	or	fluorescence, then

an	atom	in	a	resonant	detection	cavity	removes	-	rather	than	adds	-	on	average

α photons	 from	a	 shot	noise	 limited	probe	beam. Proceeding	with	 the	 same

working	(appendix	D), equation	(6.6)	becomes:

Var(n)

⟨n⟩
= 1 + α

Var(m)

⟨n0⟩/α − ⟨m⟩
(6.7)

where ⟨n0⟩ cannot	be	ignored. Since	the	number	of	photons	removed	from	the

probe	beam	cannot	exceed ⟨n0⟩, the	second	term	in	equation	(6.7)	must	be	posi-

tive, and	one	would	expect	the	relative	variance	to	increase	above	the	Poissonian

value	of	unity. However	we	need	to	consider	the	co-operative	noise	suppression

due	to	the	statistical	nature	of	the	collective	atomic	dipole	(observed	previously	in

reflection	[55]). This	reduces	the	significance	of	this	second	term	in	(6.7), so	that

Poissonian	statistics	continue	to	dominate	when	atoms	are	present, regardless	of

the	nature	of	the	atomic	distribution. But	the	derivation	of	equation	(6.7)	assumes

photon	detection	at	the	shot-noise	limit. Our	measurements	are	not	shot-noise

2Note	that	the	observations	in	[55]	do	not	negate	the	results	presented	in	reference	[145]	since
in	that	work	atoms	where	detected	close	to	a	fibre	input	but	not	within	a	cavity	mode, so	issues
regarding	co-operativity	parameters	do	not	arise.
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limited	-	even	in	the	absence	of	atoms	we	don’t	observe	Poissonian	statistics	-	and

we	measure	a	significant reduction in	the	photon	noise	when	atoms	are	detected,

below the	level	of	the	probe	when	the	cavity	is	without	atoms: see	figure	6.11.

We	can	only	conclude	that	this	reduction	in	the	excess	photon	noise	is	due	to

the	attenuating	influence	of	the	atoms.

For	a	beam	of	photons	with	relative	variance V0 ≡ Var(n0)/⟨n0⟩, the	effect
of	attenuation, can	be	modelled	as	a	beamsplitter	with	a	transmission η and	an

empty	port	that	introduces	a	quantum	vacuum δν:

photon loss

η

δν

n0 nout

Figure 6.12: A model	of	photon	attenuation	by	a	factor	(1-η)

The	relative	variance	due	to	this	attenuation	is	found	to	be	[25]:

Vout = ηV0 + (1 − η)

= η(V0 − 1) + 1

In	the	instance	of	a	shot-noise	limited	source	(V0 = 1)	the	relative	variance	of	the

attenuated	beam	remains	the	same. If	the	photon	source	is	squeezed	(V0 < 1)

the	output	variance	increases	with	attenuation	-	in	other	words, the	squeezing	is

reduced	-	but	for	a	noisy	photon	source	(V0 > 1)	the	relative	noise	is	suppressed.

This	is	the	effect	observed	in	our	cavity	atom	measurements.

6.6 Summary
Here, I have	presented	our	first	attempts	at	an	experimental	implementation	of	the

cavity-detection	set-up. Our	moderate-finesse	cavity	has	been	used	to	observe



134

an	atomic	beam	from	a	2D MOT,	but	we	were	not	able	to	measure	single-atom

transits	or	to	calibrate	the	atom	number	and	measure	atomic	shot-noise. The	main

limitation	 is	 excess	photon	noise	 in	 the	 system	 that	 has	 yet	 to	be	 eliminated.

This	might	require	active	power	feedback	to	our	lasers, or	a	reconfiguration	of

optical	components	where	possible, to	limit	pointing	errors	in	beam	positions,

and	misalignment	of	polarisation-sensitive	devices.

We	also	noted	that	the	atomic	source	we	have	used	produced	atoms	moving

through	the	detection-cavity	much	faster	than	in	the	modelled	system. We	will

move	to	a	new	set-up, where	a	different	source	of	atoms	will	be	used	to	achieve

slower	transits	that	will	allow	longer	measurement	times, generating	better	signal-

to-noise	ratios.

With	these	changes, we	hope	to	reach	both	the	photon, and	atom	shot-noise

limit, and	to	then	proceed	to	investigate	properties	of	the	statistics	with	changes

in	the	atomic	source.



CHAPTER

SEVEN

CONCLUSIONS

The	 research	presented	 in	 this	 thesis	 is	 the	first	 study	concentrating	on	single-

atom	detection	with	optical	cavities	to	have	investigated	all	relevant	parameters.

The	specific	goal	was	to	determine	the	merits	of	such	a	system	for	high	quantum

efficiency	and	low	false-count	detection	using	a	cavity	of	only	moderate	finesse.

I have	presented	the	research	as	it	was	carried	out; we	began	with	a	theoretical

examination	of	the	system	as	a	means	to	determining	the	optimal	set-up. We	then

proceeded	with	the	practical	construction	of	the	experimental	system, aiming	to

demonstrate	the	modelled	parameters.

7.1 Related	Work
Prior	 to	 the	commencement	of	 this	work, several	experimental	studies	 investi-

gated	atom	detection	using	optical	cavities	-	for	example, references	[93, 70, 104,

42, 101]	-	and	one	in	particular	demonstrated	a low-finesse	cavity	used	to	detect

single	 atoms	with	 good	 sensitivity: reference	 [60]. This	 significant	 result	 has

great	relevance	to	the	motivation	of	our	work. That	was	a	practical	study, how-

ever, so	necessarily	there	were	experimental	restrictions	on	the	variables	under

investigation, and	it	cannot	be	said	that	the	results	demonstrate	an	optimisation

of	detection	sensitivity	or	efficiency.

Some	previous	modelling	work	has	considered	cavities	in	the	context	of	atom

detection, but	the	scope	of	these	studies	has	tended	to	be	more	limited	than	that

presented	in	this	thesis: Horak et	al. investigated	optical	cavity	detection	of	sin-

gle	atoms	using	microcavities	[73]. While	their	work	covered	a	reasonable-sized

135
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parameter	space, their	models	were	entirely	classical. As	we	have	demonstrated

in	our	own	simulations	(chapter	3), classical	models	produce	many	of	the	cor-

rect	qualitative	features, but	are	not	quantitatively	accurate	in	all	regimes, and

are	therefore	inappropriate	for	a	realistic	determination	of	optimal	detection	pa-

rameters. In	reference	[109], a	quantum	model	was	used	to	explore	the	effect

of	detunings	on	the	signal-to-noise	ratio. These	investigations	however, do	not

consider	variation	of	the	probe	power, since	they	are	interested	in	the	single	atom

and	single	photon regime	that	is	the	focus	of	cavity	QED experiments. This	is	a

significant	restriction	since	one	of	our	key	results	concerns	the	necessary	varia-

tion	of	probe	power	with	detuning, for	the	maintenance	of	high	signal-to-noise

ratios.

7.2 Summary	of	Modelling	Work

Our	first	simulations	considered	the	optimal	signal-to-noise	ratio	for	the	detection

of	a	single	atom	maximally	coupled	to	the	mode	of	a	cavity	with	moderate	finesse.

In	contrast	with	much	of	 the	 recent	work	 involving	cavities	and	atoms	 -	 for	a

varied	selection, consider	references	[92, 109, 102, 19, 101, 22, 140, 94]	-	this

research	was not fundamentally	motivated	by	the	regime	of	strong	coupling, and

high	co-operativity	parameters	required	in	cavity	QED.	In	cavity	QED studies, the

requirements	of	strong	coupling	place	restrictions	on	the	nature	of	cavities	used

and	their	modes	of	operation. High-finesse	and/or	small	mode	volumes	are	key

objectives	since	they	increase	the	atom-cavity	coupling	parameter, g0. Generally

very-low	photon	numbers	are	required, since	the	regime	is	concerned	with	the

interactions	between	single	(or	at	most, only	a	few)	quanta: one	atom, and	one

photon	[92, 6, 109].

In	our	work, low	photon	number	was	not	necessarily	an	objective. In	fact,

photon	number	 (power)	was	one	of	 the	variables	we	considered	 in	our	quest

for	high	signal-to-noise	ratios. We	considered	a	wide	range	of	parameters	that

influence	the	detection, including	characteristics	of	the	cavity	-	such	as	its	mir-

ror	quality	 (finesse)	 and	 length	 -	 as	well	 as	 those	of	 the	operating	conditions:

probe	power, detunings, and	a	comparison	of	the	photon	detection	techniques

presented	with	single	photon	counting	and	heterodyne	detection	of	phase	and

amplitude	quadratures.

The	modelling	was	subsequently	extended	to	more	realistic	considerations,
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in	particular	the	atom	trajectories	through	different	coupling	strengths	in	the	cav-

ity	mode	and	 the	 influence	on	 the	signal-to-noise	 ratio. We	were	specifically

interested	in	the	quantum	efficiency	and	dark	noise	of	the	detector.

From	 these	 theoretical	 studies, we	conclude	 that	moderate-finesse	 cavity-

based	single	atom	detection	is	capable	of	very	good	signal-to-noise	ratios	and,

more	importantly, high	quantum	efficiencies, provided	it	is	used	appropriately.

We	deduced	that	the	finesse	of	a	detection	cavity	does	not	need	to	be	very	high

for	good	detection, provided	 the	 intra-cavity	power	 in	 the	probe	beam	corre-

sponds	to	the	saturation	intensity	of	the	atom. When	the	finesse	is	relatively	low

(this	thesis	has	addressed	a	cavity	with	a	finesse	of 104)	that	condition	is	satisfied

for	a	reasonably	strong	probe	(in	the	order	of	picoWatts	for	resonant	detection

to	nanoWatts	 for	a	detuned	probe)	and	so	photon	detection	 is	best	performed

with	heterodyne	detection	rather	 than	avalanche	photo	diodes, which	saturate

at	very	low	power. The	detection	efficiency	is	improved	with	detuned	detection

(accompanied	with	an	increase	in	probe	power, to	maintain	saturation	intensity)

because	 the	dipole	 force	can	be	used	 to	channel	atoms	 into	regions	of	strong

coupling	within	the	cavity	mode.

7.3 Summary	of	the	Experimental	Set-up
Our	simulations	illustrated	that	cavity-based	detection	with	cavities	of	only	mod-

erate	finesse, is	indeed	feasible	as	a	means	to	high	quantum	efficiency, low-noise

single	atom	detection. It	would	have	been	desirable	to	experimentally	demon-

strate	the	modelled	features	of	this	system, and	to	then	extend	the	investigation

using	a	practical	apparatus, whose	properties	were	well-understood	and	estab-

lished	in	theory. We	were	able	to	detect	atoms	with	our	apparatus, but	two	sub-

stantial	problems	stand	in	the	way	of	a	direct	comparison	between	our	current

experimental	measurements	and	the	results	from	our	simulations: (1)	The	present

experimental	observations	of	our	probe	beam	are	not	shot-noise	limited	like	our

modelled	data	and	(2)	the	atomic	source	results	in	substantially	faster	atoms	than

those	in	the	modelled	detection.

Reaching	the	Shot-Noise	Limit

The	most	decisive	improvement	to	this	experiment	will	be	reaching	the	photon

shot-noise	 limit. Even	without	 slow	atoms, observations	exhibiting	noise	 that

we	are	able	to	quantify	will	be	far	more	useful	in	comparing	with	our	simulated
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results	for	signal-to-noise	ratio	of	cavity	detection. Only	then	can	we	consider

the	more	intriguing	measurements	concerning	the	atomic	statistics.

Active	power	feedback	is	always	an	option	for	light	sources	exhibiting	excess

noise. In	our	set-up, the	primary	source	of	noise	is	due	to	polarisation	drifts	aris-

ing	from	our	fibre-coupling, rather	than	power	fluctuations	at	the	laser	or	in	other

optical	components. Although	there	will	always	be	some	cross-talk	between	or-

thogonal	polarisations, it	should	be	possible	to	align	single-mode	optical	fibres

sufficiently	well	to	eliminate	much	of	the	polarisation	rotation	noise. Direct	cou-

pling	of	the	probe	and	stabilisation	lasers	into	the	detection	cavity	might	also	be

considered, although	generally	it	is	technically	easier	to	minimise	noise	due	to

pointing	errors	when	fibres	are	used.

New	Atomic	Source

We	have	tried	to	reconfigure	the	experimental	set-up	to	use	a	3D MOT dropped

into	 the	cavity	chamber	 from	above. The	atoms	 from	 this	 source	are	 initially

stationary	and	the	velocity	they	acquire	having	reached	the	detection	cavity	de-

pends	on	how	far	they	have	fallen. In	contrast	to	our	2DMOT set-up, we	form	the

3D MOT in	the	same	vacuum	chamber	as	the	cavity	itself, approximately	15cm

above	the	cavity; atoms	will	be	travelling	at	around	1.7m/s	at	the	cavity	mode.

The	configuration	is	similar	to	that	used	in	reference	[60]	(although	the	speed

of	atoms	transiting	the	cavity	in	that	experiment	was	closer	to	0.6m/s). It	intro-

duces	a	higher	pressure	in	the	detection	region	than	in	our	initial	set-up	using	two

separated	vacua, since	a	reasonable	background	pressure	of	rubidium	is	neces-

sary	to	form	the	MOT.	We	considered	the	risk	that	the	signals	from	background

atoms	may	overwhelm	with	the	single	atom	detection. However, the	un-trapped

atoms	constituting	the	background	pressure	travel	with	thermal	velocities, so	it	is

unlikely	that	they	will	be	observed	in	the	cavity	detection	measurement	time; in-

deed, this	was	the	point	of	concern	with	atoms	from	the	2D MOT source. Results

are	pending.

7.3.1 Further	Work: Different	Modes	of	Cavity	Detection

As	discussed	in	chapter	3, there	is	a	plethora	of	variations	on	the	use	of	an	optical

cavity	for	atom	detection. Here, our	experimental	work	has	only	just	commenced

the	investigation	of	resonant	detection via probe	power	measurements. The	natu-

ral	extension	is	to	consider	the	parameter	space	defined	by	non-resonant	regimes,
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with	the	accompanying	variation	in	probe	power	and	also	to	explore	and	com-

pare	the	merits	of	detection	using	measurements	of	phase	rotation.

The	experimental	work	that	our	research	group	is	currently	investigating	has

an	emphasis	on	inteferometry	using	atom	laser	beams. We	are	capable	of	very

good, low	noise, absorption	imaging, but	the	next	stage	of	many	of	our	experi-

ments	will	require	atomic-shot	noise	limited	detection	with	high	bandwidth. The

scheme	will	either	be	a	cavity	detector, such	as	that	presented	in	this	work, or	a

fluorescence	set-up	that	we	have	yet	to	investigate. Integrating	the	cavity	set-up

with	our	atom	laser	will	be	a	challenging	process	(as	demonstrated	by	another

research	group	[104]), but	is	the	ultimate	use	of	this	‘root N ’	detection	device.

7.4 Other	Detection	Techniques

7.4.1 Fluorescence	Detection

The	atomic	sources	 that	have	been	considered	 in	 this	 research	have	been	un-

trapped	cold, neutral	 atoms	 -	 specifically, rubidium	87. We	have	extensively

studied	cavity-based	detection, and	now	in	conclusion, we	return	to	a	discussion

of	other	detection	techniques, introduced	in	the	preliminary	chapters. Along	with

optical	cavities, one	of	the	likely	candidates	for	high	efficiency	single-atom	de-

tection	is via the	monitoring	of	fluorescence	photons. In	a	fluorescence	detector,

atoms	are	transferred	to	an	excited	state	with	an	external	field	and	the	sponta-

neously	emitted	photons	are	detected. The	sensitivity	and	the	dark-noise	of	the

detection	scheme	depend	on	the	detection	efficiency	of	the	scattered	light	and

the	suppression	of	background	photons. Since	photo-detectors	can	have	high

quantum	efficiency, it	 is	 the	ability	 to	collect	 the	scattered	light	 that	 limits	 the

atom	detection	and	a	high	numerical	aperture	optical	set-up	is	required.

The	technologies	of	fluorescence	and	cavity	detectors	differ	in	many	ways,

but	there	are	also	some	similar	considerations	between	the	two	schemes. Chan-

nelling	the	atomic	beam	into	the	detection	region	is	always	important, and	be-

cause	of	the	technical	difficulties	with	achieving	high-numerical	aperture	optics,

a	small	detection	region	in	a	fluorescence	set-up	 is	usually	desirable. The	re-

quirements	on	the	size	of	the	atomic	beam	are	therefore	stringent. The	theoreti-

cal	sensitivity	(ie: the	theoretical	signal	to	noise	ratio)	of	fluorescence	detection

in	comparison	 to	cavity-based	detection	 is	worth	 investigating, but	 so	 too	are

the	practical	considerations	in	building	and	using	the	detector	as	an	integrated
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component	of	a	cold-atom	experiment.

Two	studies	 in	particular	have	gone	some	way	 to	comparing	fluorescence

detection	with	a	cavity-based	system: in	experiment	[55], and	more	thoroughly

in	theoretical	examinations	[144]. Both	these	investigations	were	primarily	con-

cerned	with	fibre-based	detectors	in	‘atom-chip’	experiments, where	miniaturi-

sation	is	a	natural	objective. The	advantage	of	fibres	is	that	they	can	be	easily

handled	using	well	established	techniques, and	in	comparison	to	other	on-chip

technology, the	fabrication	of	optical	components	using	fibres	does	usually	not

require	expensive	and	time	consuming	lithographic	techniques.

However, while	fibre-based	on-chip	detectors	deliver	small	mode-volumes

(cavities)	or	detection	regions	(fluorescence)	at	relatively	minimal	expense, ex-

periments	that	are	conducted	entirely	on-chip	are	restricted	to	miniaturised	ap-

paratus	that	limit	the	possibilities	of	the	investigations. For	example, we	might

consider	atom	interferometry	with	untrapped	atoms. This	usually	requires	diffrac-

tion	or	Raman	transitions	to	split	atoms	into	a	coherent	superposition	of	momen-

tum	states, where	the	components	of	each	wave	function	are	distinctly	separated

in	space	[39]. Increasing	the	spatial	separation	- via increasingly	high-order	pho-

ton	momentum	transfers, or	with	longer	propagation	time	before	the	states	are

recombined	-	improves	the	sensitivity	of	the	interferometric	measure	but	gener-

ally	increased	spatial	separation	will	be	at	odds	with	the	miniaturised	geometry

of	atom	chips. This	 is	not	 to	say	 that	chip	experiments	are	without	 their	mer-

its, nor	does	it	rule	out	fibre-based	detection	(via fluorescence	or	cavities), but

calls	for	further	investigation	comparing	the	two	detection	techniques	realised	in

a	broader	context.

7.4.2 But	what	is	it	used	for?

We	have	established	that	moderate-finesse	cavity-based	detection	is	a	possible

means	 for	high-quantum	efficiency	 single-atom	detection, and	our	 theoretical

modelling	has	determined	where, and	how, in	the	extensive	parameter-space, is

realistically	best	to	operate. However, cavity-detection	is	not	a	simple	scheme	to

implement. Even	with	moderate	finesse	mirrors	-	with	which	we	can	eshew	some

of	the	complications	such	as	bi-refringence	that	often	occur	in	ultra-high	finesse

coatings	-	the	system	is	complex	and	procedure	delicate	to	perform. Finally, we

return	to	the	driving	motivation	for	this	research: Is	high-quantum	efficiency	of

single	atoms	in	fact	an	important	objective?
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Perhaps	where	 statistics	are	concerned, in	quantum	mechanical	measure-

ments	such	as	Hanbury	Brown	Twiss	correlation	measurements	with	atoms	[127,

77, 143, 103], near	unity	quantum	efficiency	is	superfluous, and	the ‘root	N’ de-

tection	requirement	discussed	in	the	introduction	and	in	chapter	4.1 is	sufficient.

That	requirement	is	most	simply	attained	using	microchannel	plate	(MCP) detec-

tors, that	are	much	easier	than	cavities	to	use	[127, 143, 115]. Such	detectors

are	usually	used	in	conjunction	with	highly	excited	atoms	such	as	meta-stable

helium, or	ions. For	more	versatility, a	somewhat	similar	scheme	has	been	sug-

gested	for	the	detection	of	photo-ionised	atoms	(in	principle, atoms	of	any	ele-

ment)	with	better	than N−1/2 sensitivity	[29]. Electro-ionised	atoms	have	been

measured	with	efficiencies	of	around 12% [52]. These	detectors	do	not	provide

the	highest	quantum	efficiencies, but	to	date	-	as	demonstrated	with	their	track

record	in	published	results	-	have	proved	to	be	the	most	appropriate	for	quantum

statistical	measurements.

As	always, we	can	assimilate	a	lesson	from	the	photon	quantum	opticians:

where	measurement	 of	 squeezing	 is	 desired/required	 then	 high	 quantum	effi-

ciency	photodetectors	are	used	in	heterodyne	or	homodyne	configurations, since

the	loss	of	photons	anywhere	 in	 the	system	immediately	degrades	 the	level	of

squeezing	that	is	measured. Elsewhere	in	quantum	optics, single	quanta	(pho-

tons)	can	be	recorded	using	avalanche	photo	diodes, at	the	expense	of	quantum

efficiency, but	the	gain	of	simplicity. Similarly	in	quantum	atom	optics, it	is	un-

likely	that	a	single	device	will	be	the	ultimate	solution	for	the	detection	criteria	of

every	investigation. Some	measurements	are	best	aided	with	low-quantum	effi-

ciency, but	fast	and	simple	MCP or	ion	detectors, but	when	measuring	squeezing

in	an	atom	beam, high	quantum	efficiency	detection	will	be	paramount, and	a

scheme	such	as	the	cavity	detection	presented	in	this	thesis	is	appropriate.
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APPENDIX

A

MATHEMATICA® CODE

H*System and measurement parameters*L
lightspeed = 3 * 108; H*Μm�Μs*L
Λ = 780 * 10-3; H*Μm*L
Τ = 20; H*integration time, Μs*L
w0 = 20; H*beam waist, Μm*L
cavitylength = 100; H*Μm*L
A = Π * w02; H*beam cross sectional area, Μm2*L
G = JJ26 * 10-9N-1N * 10-6 ; H*natural atomic decay rate, MHz*L

Σ0 = 3 Λ2 H2 ΠL; H*resonant atomic cross section, Μm2*L
g = Sqrt@Σ0 G lightspeed�HA * cavitylengthLD;H*atom-cavity

coupling freq,MHz*L
sat = G H2 Σ0L; H*saturation flux, photons�Μm2�Μs*L
logRef = 4; H*-log10@1-mirror reflectivityD*L
H*atom-laser detuning*L
Θmin = -40 G;

Θmax = 40 G;

Θpoints = 71;

Θstep = HΘmax - ΘminL�HΘpoints - 1L;
H*cavity-laser detuning*L
Dmin = -10 Κ;

Dmax = 10 Κ;

/

/

Dpoints = 71;

Dstep = Dmax - Dmin Dpoints - 1 ;

/

/

/

/

/

(( ))
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Clear@ΚD;
Clear@DD;
Clear@ΕD;
Clear@ΘD;

dataarray = 8<;
fluxtable = 8<;
TableB

Κ =

lightspeed H Π 10^H-logRefLL
cavitylength

;

data = TableB
startphoton = maxphoton;

H*set basis size*L
maxphoton = If@10^flux�HΚ�2L < 20,

3 + 5 Ceiling@11.5 Sqrt@ 10^flux�HΚ�2LD�5 D,
3 + 5 Ceiling@H1.45 * 10^flux�HΚ�2L + 23.2L�5DD;

Clear@DD;
Clear@ΕD;
Clear@ΘD;

IfBmaxphoton != startphoton,

Clear@DD;
Clear@ΕD;
Clear@ΘD;

maxphoton = 0;

basistable = 8<;
Print@meanphotonnumberD;

xx = NB10^fluxmax�
lightspeed H1 - H 1 - Π 10^H-logRefLLL

cavitylength
� 2 F

Print@maxbasissizeD
Max@8 3 + 5 Ceiling@11.5 Sqrt@xxD�5 D, 3 + 5 Ceiling@H1.45 xx + 23.2L�5D<D
H*cavity decay rate MHz*L

Κ =

lightspeed H Π 10^H-logRefLL
cavitylength

H*log10@input flux Hphotons�ΤLD*L
fluxmin = 0;

fluxmax = 4;

fluxpoints = 21;

fluxstep = fluxmax - fluxmin fluxpoints - 1 ;

/

/

/ /

//

/ /

/ /

/ /

/

/
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H*initialise density matrix*L
densityfunction = TableBp@iD, :i, 1, 4 maxphoton2>F;
dims = 84 maxphoton^2, 4 maxphoton^2< � 0;

H*Master equation coefficients*L
mgt0 = TableB:

84 Hm + maxphoton nL + 1, 4 Hm - 1 + maxphoton nL + 1< ��Ε m ,

84 Hm + maxphoton nL + 1, 4 Hm - 1 + maxphoton nL + 3< ��g m ,

84 Hm + maxphoton nL + 2, 4 Hm - 1 + maxphoton nL + 2< ��Ε m ,

84 Hm + maxphoton nL + 3, 4 Hm - 1 + maxphoton nL + 3< ��Ε m ,

84 Hm + maxphoton nL + 4, 4 Hm - 1 + maxphoton nL + 4< � �Ε m ,

84 Hm + maxphoton nL + 4, 4 Hm - 1 + maxphoton nL + 2< � �g m >,

8m, 1, maxphoton - 1<, 8n, 0, maxphoton - 1<F;

ngt0 = TableB:
84 Hm + maxphoton nL + 1, 4 Hm + maxphoton Hn - 1LL + 1< � �Ε n ,

84 Hm + maxphoton nL + 1, 4 Hm + maxphoton Hn - 1LL + 4< � �g n ,

84 Hm + maxphoton nL + 2, 4 Hm + maxphoton Hn - 1LL + 2< � �Ε n ,

84 Hm + maxphoton nL + 3, 4 Hm + maxphoton Hn - 1LL + 3< � �Ε n ,

84 Hm + maxphoton nL + 3, 4 Hm + maxphoton Hn - 1LL + 2< � �g n ,

84 Hm + maxphoton nL + 4, 4 Hm + maxphoton Hn - 1LL + 4< � �Ε n >,

8m, 0, maxphoton - 1<, 8n, 1, maxphoton - 1<F;

mlt = TableB:

84 Hm + maxphoton nL + 1, 4 Hm + 1 + maxphoton nL + 1< � �Ε m + 1 ,

84 Hm + maxphoton nL + 2, 4 Hm + 1 + maxphoton nL + 2< � �Ε m + 1 ,

84 Hm + maxphoton nL + 2, 4 Hm + 1 + maxphoton nL + 4< � �g m + 1 ,

84 Hm + maxphoton nL + 3, 4 Hm + 1 + maxphoton nL + 3< � �Ε m + 1 ,

84 Hm + maxphoton nL + 4, 4 Hm + 1 + maxphoton nL + 4< � �Ε m + 1 ,

84 Hm + maxphoton nL + 3, 4 Hm + 1 + maxphoton nL + 1< � �g m + 1 >,

8m, 0, maxphoton - 2<, 8n, 0, maxphoton - 1<F;

nlt = TableB:

84 Hm + maxphoton nL + 1, 4 Hm + maxphoton Hn + 1LL + 1< � �Ε n + 1 ,

84 Hm + maxphoton nL + 2, 4 Hm + maxphoton Hn + 1LL + 2< � �Ε n + 1 ,

84 Hm + maxphoton nL + 2, 4 Hm + maxphoton Hn + 1LL + 3< � g n + 1 ,

84 Hm + maxphoton nL + 3, 4 Hm + maxphoton Hn + 1LL + 3< � Ε n + 1 ,

84 Hm + maxphoton nL + 4, 4 Hm + maxphoton Hn + 1LL + 4< � Ε n + 1 ,

84 Hm + maxphoton nL + 4, 4 Hm + maxphoton Hn + 1LL + 1< � �g n + 1 >,

8m, 0, maxphoton - 1<, 8n, 0, maxphoton - 2<F;

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
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nandmlt = TableB:

84 Hm + maxphoton nL + 1, 4 Hm + 1 + maxphoton Hn + 1LL + 1<� Κ Hn + 1L Hm + 1L ,
84 Hm + maxphoton nL + 2, 4 Hm + 1 + maxphoton Hn + 1LL + 2<

�
Κ Hn + 1L Hm + 1L ,

84 Hm + maxphoton nL + 3, 4 Hm + 1 + maxphoton Hn + 1LL + 3<�
84 Hm + maxphoton nL + 4, 4 Hm + 1 + maxphoton Hn + 1LL + 4<�
8m, 0, maxphoton - 2<, 8n, 0, maxphoton - 2<F;

nandmfree = Table@8
84 Hm + maxphoton nL + 1, 4 Hm + maxphoton nL + 1< DHm - nL - Κ�2 Hm + nL,
84 Hm + maxphoton nL + 1, 4 Hm + maxphoton nL + 2< G,

84 Hm + maxphoton nL + 2, G

84 Hm + maxphoton nL + 3, 4 Hm + maxphoton nL + 3< � HD Hm - nL + ΘL - Κ�2 Hm + nL - G�2,

�

8m, 0, maxphoton - 1<, 8n, 0, maxphoton - 1<D;

H*Matrix of coefficients,

dropping the first row so that it can be replaced with trace�1*L
coeffic = Drop@

SparseArray@Flatten@8dims, mgt0, ngt0, mlt, nlt, nandmlt, nandmfree<DD,
81, 1<D;

H*equation for trace�1*L
traceeq =

Sum@p@4 HHmaxphoton + 1 L HiLL + 1D + p@4 HHmaxphoton + 1 L HiLL + 2D,
8i, 0, maxphoton - 1<D �1;

H*The row that goes in the matrix*L
extratracerow = CoefficientArrays@traceeq, densityfunctionD@@2DD;
H*New Matrix with new last row*L
M = Insert@coeffic, extratracerow, 4 maxphoton^2D;
H*solution vector with final element=1*L
v = SparseArray@84 maxphoton^2< � 1D;
H*Clear useless stuff from precious memory*L
Unprotect@In, OutD;
Clear@mgt0, ngt0, mlt, nlt, nandmlt, nandmfree, In, Out, coefficD;

;

;

Protect@In, OutD
F

/

�

�

��

�

�

�

��

�

+Κ Hn 1L Hm + 1L ,
Κ Hn + 1L Hm + 1L ,

i

4 Hm + maxphoton nL + 2< DHm - nL - Κ�2 Hm + nL/i - ,

i / /
84 Hm + maxphoton nL + 4, 4 Hm + maxphoton nL + 4< � HD Hm - nL + ΘL - Κ�2 Hm + nL - G�2,i / /

H*Solve equations over and over again over different values of Ε *L

Κ =

lightspeed H Π 10^H-logRefLL
cavitylength

;

D = Dd;

Θ = Θd;

Ε = NB 10^flux�HΚ�2L Sqrt@HΚ�2L^2DF;/ / /
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solution = LinearSolve@N@MD, N@vDD;
H*matrix for g><g *L
Ρ1 = Chop@Table@solution@@4 Htc + tr * maxphotonL + 1DD,
8tr, 0, maxphoton - 1<, 8tc, 0, maxphoton - 1<DD;

H*matrix for e><e *L
Ρ2 = Chop@Table@solution@@4 Htc + tr * maxphotonL + 2DD,
8tr, 0, maxphoton - 1<, 8tc, 0, maxphoton - 1<DD;

adag = SparseArray@88m_, n_< �; Hm - nL=� 1 �Sqrt@m - 1D<,
8maxphoton, maxphoton<D;

a = SparseArray@88m_, n_< �; Hn - mL �1 �Sqrt@n - 1D<,
8maxphoton, maxphoton<D;

outputflux = 10^flux�H1 + H2 D�ΚL^2L;
noiseempty = Sqrt@Τ outputfluxD;
noisefull = Sqrt@H0.5 * Κ * ΤL * Tr@a.HΡ1 + Ρ2LD * Tr@adag.HΡ1 + Ρ2LDD;
noiseSig = Sqrt@2 * noiseempty^2 + 2 * noisefull^2D;
noisefullAPD =

Sqrt@H0.5 * Κ * ΤL *
HHTr@adag.a.adag.a.HΡ1 + Ρ2LDL - HTr@adag.a.HΡ1 + Ρ2LDL^2LD;

noiseSigAPD = Sqrt@noiseempty^2 + noisefullAPD^2D;
88Θ�G, D�Κ<, H Tr@adag.a.Ρ1D + Tr@adag.a.Ρ2DL,
0.5 * Κ * Τ * Houtputflux�HΚ�2L - H Tr@adag.a.Ρ1D + Tr@adag.a.Ρ2DLL�

noiseSigAPD,

H0.5 * Κ * Τ * Houtputflux�HΚ�2L - Tr@a.HΡ1 + Ρ2LD * Tr@adag.HΡ1 + Ρ2LDL�
noiseSigL, outputflux, Tr@Ρ1D, Tr@Ρ2D<,

8Θd, Θmin, Θmax, Θstep<, 8Dd, Dmin, Dmax, Dstep<F;
dataarray = Append@dataarray, dataD;
fluxtable = Append@fluxtable, fluxD,
8flux, fluxmin, fluxmax, fluxstep<F;
H* output syntax: 88D,Θ,Κ<, n, apd, het, emptyflux, Tr@Ρ1D, Tr@Ρ2D< *L

/

/

==

==
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APPENDIX

B

ATFILMS SUBSTRATE

The	reflectivity	of	mirror	coatings	is	necessarily	wavelength-dependent. The	mir-

rors	 for	 our	 detection	 cavity	were	 custom	designed	 and	 coated	 at	ATFilms	 as

modified	quarter-wave	stacks	-	with	the	requirement	of	high	transmittance	at	two

distinct	wavelengths. The	following	plot	shows	simulated	transmission	data	for

the	designed	coating	(solid	line)	and	an	un-modified	780nm	quarter-wave	stack

(dashed	line).
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Figure B.1: Detection	cavity	output	mirror	transmittance	data	from	ATFilms
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APPENDIX

C

LABVIEW® CODE

Figure C.1: Front	panel	of	LabVIEW oscilloscope	and	locking	control	for	the	science
cavity	monitoring	and	manipulation.
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APPENDIX

D

PHOTON STATISTICS

In	chapter	6 we	discussed	the	relation	between	the	variance	and	mean	of	photons

in	a	fluorescence	measurement. If	we	account	for	background	photons	with	a

Poisson	distribution

p1(n) =
⟨n0⟩n

n!
e−⟨n0⟩

with	mean ⟨n0⟩, as	well	as	fluorescence	photons	(also	with	a	Poisson	distribution)
from m atoms:

p2(n) =
(αm)n

n!
e−(αm),

with	mean (αm), then	the	total	distribution	of	photons	for	an	arbitrary	distribution

of	atoms, pat(m) is	given	by

p(n) =
∑
m

patom(m)
(αm + ⟨n0⟩)n

n!
e−(αm+⟨n0⟩)
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The	mean	of	the	total	photon	distribution	is

⟨n⟩ =
∑

n

np(n)

=
∑

n

n
∑
m

patom(m)
(αm + ⟨n0⟩)n

n!
e−(αm+⟨n0⟩)

=
∑
m

patom(m)
∑

n

n
(αm + ⟨n0⟩)n

n!
e−(αm+⟨n0⟩)

=
∑
m

patom(m)[⟨n0⟩ + (αm)]

= ⟨n0⟩ + α⟨m⟩ (D.1)

We	can	similarly	find	the	value	for ⟨n2⟩:

⟨n2⟩ =
∑

n

n2p(n)

=
∑

n

n2
∑
m

patom(m)
(αm + ⟨n0⟩)n

n!
e−(αm+⟨n0⟩)

=
∑
m

patom(m)
∑

n

n2 (αm + ⟨n0⟩)n

n!
e−(αm+⟨n0⟩)

=
∑
m

patom(m)⟨(αm + ⟨n0⟩)2⟩ (D.2)

Using	the	property	of	Poisson	statistics	that	relates	the	mean	of	a	variable	(λ)	to

the	mean	of	its	square	(⟨x2⟩): ⟨x2⟩ = λ2 + λ, where λ = (αm + ⟨n0⟩), equation
(D.2)	becomes:

⟨n2⟩ =
∑
m

patom(m)[(αm + ⟨n0⟩)2 + (αm + ⟨n0⟩)]

= ⟨n0⟩2 + ⟨n0⟩ + 2α⟨n0⟩⟨m⟩ + α⟨m⟩ + α2⟨m2⟩ (D.3)

The	variance	is Var(n) ≡ ⟨n2⟩ − ⟨n⟩2, so	making	use	of	equations	(D.1)	and	(D.2)

Var(n) = ⟨n⟩ + α2V ar(m)

and
Var(n)

⟨n⟩
= 1 + α

V ar(m)

⟨m⟩ + ⟨n0⟩/α
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