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Abstract

The use of control theory in a LQG form for quantum mechanical situations has

revealed a new conceptualization of knowledge, measurement and feedback. The

benefits of state estimation by the Kalman filter has shown up in theoretical cal-

culations for cooling and confining of an atom in a harmonic potential, surpassing

previous proposals of direct feedback.

The goal of this thesis is to explore the possible application of a new form of

filter/controller, the risk-sensitive LEQG filter, which has been shown to enjoy a

sense of robustness against model uncertainties. An investigation is launched into

some simple models, and a computer simulation has highlighted circumstances where

the LEQG filter does provide better control.

vii





Contents

Declaration iii

Acknowledgements v

Abstract vii

1 Introduction 3

2 Measurement Models 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 The density operator . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Early position measurement theory . . . . . . . . . . . . . . . . . . . 7

2.2.1 The meter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 Continuous position measurement . . . . . . . . . . . . . . . . 9

2.3 Modern measurement theory . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Developing the formalism . . . . . . . . . . . . . . . . . . . . 11

2.3.2 Stochastic master equation . . . . . . . . . . . . . . . . . . . . 14

2.4 Homodyne detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Quantum Systems 19

3.1 Measuring the atom position . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 An atom inside a cavity . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Measurement of atomic position . . . . . . . . . . . . . . . . . 21

3.2.2 Determining mean and covariances . . . . . . . . . . . . . . . 23

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Control Theory 27

4.1 The cost function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.1 Selecting a cost function . . . . . . . . . . . . . . . . . . . . . 28

4.1.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.3 A good cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Optimal control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.1 Principle of Optimality . . . . . . . . . . . . . . . . . . . . . . 31

4.2.2 Deriving the continuous Optimal Programming equation . . . 31

ix



x Contents

4.3 The LQR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.1 System description . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.2 Optimality applied to the LQR . . . . . . . . . . . . . . . . . 34

4.4 The LQG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4.1 A new system . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4.2 Best estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4.3 Some old ideas renewed . . . . . . . . . . . . . . . . . . . . . 38

4.4.4 Certainty-equivalence principle . . . . . . . . . . . . . . . . . 39

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Quantum Control Theory 41

5.1 A good quantum cost . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1.1 Selecting a cost function . . . . . . . . . . . . . . . . . . . . . 42

5.2 The quantum control model . . . . . . . . . . . . . . . . . . . . . . . 44

5.3 The feedback mechanism . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.4 The end result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Robust Control Theory 47

6.1 A new cost, and a new control . . . . . . . . . . . . . . . . . . . . . . 47

6.2 Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7 Robust Quantum Control Theory 51

7.1 The simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.1.1 Separating the nominal and physical models . . . . . . . . . . 51

7.1.2 The different filters . . . . . . . . . . . . . . . . . . . . . . . . 52

7.1.3 Calculating the performance . . . . . . . . . . . . . . . . . . . 54

7.1.4 Displaying the results . . . . . . . . . . . . . . . . . . . . . . . 54

7.1.5 Cost and performance . . . . . . . . . . . . . . . . . . . . . . 55

7.2 Code check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.2.1 Free run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.3.1 Zeeman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.3.2 Antifriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

8 Conclusion 63

9 Appendix 1 65

Bibliography 69



List of Figures

7.1 Example of ”pplot” output, displaying performance . . . . . . 54

7.2 Random walk in momentum space . . . . . . . . . . . . . . . . 56

7.3 The performances of the LEQG and LQG filters under a

Zeeman shift. The top line is the LEQG cost; the lower line is the

LQG cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.4 The performance of LEQG and LQG with damping. The

top line is the LEQG cost; the lower line is the LQG cost . . . . . . . 59

7.5 Sample paths for the atomic position. The LQG path is on the

left, the LEQG path is on the right . . . . . . . . . . . . . . . . . . . 60

1



2 LIST OF FIGURES



Chapter 1

Introduction

Ever since its rise out of the primordial soup, the hallmark of intelligence has been

an interaction with its environment. It has long been the desire of humankind to

manipulate their environment, whether it be agricultural, medicinal or aesthetically.

To this extent, the concept of science, and its onslaught of technological advances,

were inevitable. Over the years, from this progress and understanding has arisen the

fields of quantum theory and control theory, which up until recently, have remained

disjoint areas of science.

The theory

Control theory has been a classical conceptualization of feedback and control of

a physical system, from the point of view of engineering. This theory requests

the rigorous definition of many mathematically complex concepts; Itó-Stratonovich

calculus, Ricatti equations. Even the innocuous term ‘random variable’ requires the

construction of a probability space with a sense of measure. However, the resulting

ideas from such formalism are powerful enough to justify this rigour; recursive,

dynamic programming of an optimal control policy, the certainty-equivalence and

separation principle, and the quintessential example of control policy, the Kalman

filter. As a whole, control theory has had decades of refinement to provide a wealth

of analytic tools to bring to bear on many problems.

The framework of quantum theory laid down earlier this century opened up a

new description of the natural world, and introduced the idea of an inherent uncer-

tainty in nature. Quite possibly this may not have been as dramatic a paradigm

shift as another fundamental postulate, that of measurement. This requires the

act of measurement carried out by an observer to collapse the wavefunction of the

system onto an eigenstate of the observable. Some of the nouns in the previous

sentence (observer, measurement) have no precise physical definition, while others

(wavefunction, eigenstate, observable) are only abstract mathematical concepts typ-

ical of quantum theory. These two inherently quantum ideas, irreducible uncertainty

and measurement intervention, seem almost contradictory to the ideals of control

theory.
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4 Introduction

How can one control a system when the mere acts of observation affects the

system? In recent decades much theoretical work has been performed that allows

the merger of these fields and a resolution of the paradox of measurement.

This thesis will present results of a simulation of a risk-sensitive filter as a con-

trol system for a quantum system. In Ch.II the ideas of measurement theory will

be introduced resulting in a stochastic master equation, an unusual entity that ex-

emplifies quantum measurement. Ch.III covers the basic elements of the quantum

systems under measurement. Ch.IV illuminates the ideas of control theory, and

these are applied to the quantum domain in Ch.V, covering all of the current ideas

of quantum control theory.

In Ch.VI the concept of a risk-sensitive filter with robust properties is discussed,

and Ch.VII presents the results of a computer simulation designed to show an im-

provement in performance of the risk-sensitive filter over the risk-neutral Kalman

filter. Ch.VIII concludes the thesis.



Chapter 2

Measurement Models

The process of measurement implies an interaction with the system under obser-

vation. By being able to model the effects of measurement as well as make some

form of prediction of the results, the theory of continuous position measurement is

as mathematically elegant as it is philosophically challenging.

This chapter covers some of the early ideas of position measurement, and the

modern formalism of measurement, often referred to as ‘operations and effects’. The

end result is a stochastic master equation for bosonic operators which are coupled

to the system under observation.

The next chapter will spell out how these operators relate to the position of the

system under observation, and how homodyne detection will reveal this information.

2.1 Introduction

Some of the original theoretical difficulties in describing position measurement lay in

the formal rules of Quantum Mechanics. For example, if one makes a measurement

of position of an atom, then the wavefunction describing that atom must collapse

onto one of the eigenstates of the position operator. Yet formally there are no

normalized position eigenstates. Perhaps one could consider an infinite basis over

the variable x, such as

|ψ(x)〉 =

∫

dx′ δ(x− x′)|x′〉

However, in momentum space this becomes unnormalizable

|φ(k)〉 =
1√
2π

∫

dx′ δ(x− x′)

∫

dk e−ikx′|k〉

=
1√
2π

∫

dk e−ikx|k〉 = ∞

In a real experiment, this would require an arbitrarily large amount of energy to

strongly couple to the system.

5



6 Measurement Models

2.1.1 The density operator

In the real world, practical limitations dictate that physical measurements can come

arbitrarily close, yet never achieve, 100% reliability. For example, one can never be

sure that a photodetector will inform an experimenter of all of the photons incident

to its surface. When such is the case, a classical uncertainty is infused into the

system. When an observed system collapses onto a pure quantum state, we the

observers may not know which one exactly, and perhaps only the probabilities of

each. These situations require the use of a density operator formalism, explored

below.

Standard quantum measurement

Elementary quantum mechanics tells us that each observable is represented by an

operator, and the outcome of an observation can be any one of the eigenvalues for

that operator. The probability of a system |ψ〉 to be observed with the eigenvalue

α, corresponding to the normalized eigenstate |ψα〉, is given by

Pr[α] = 〈ψα|ψ〉 (2.1)

If a measured system results in α, then the system is conditioned on the result α,

and collapses onto a new state described by the unnormalized vector |ψ̃+〉1 given by

|ψ̃+
α 〉 = |ψα〉〈ψα|ψ〉 = Pα|ψ〉 (2.2)

where

Pα = |ψα〉〈ψα| (2.3)

is the projection operator onto the eigenstate |ψα〉. Obviously the normalized version

of the new state is

|ψ+
α 〉 =

|ψ̃+
α 〉

〈ψα|ψ〉
=
Pα|ψ〉
Pr[α]

(2.4)

Quantum measurement with density operators

The density operator of a state |ψ〉 is defined as2

ρ = |ψ〉〈ψ|

In this example the density operator will obviously contain as much information as

the original wavefunction |ψ〉

1The tilde ˜ implies an unnormalized vector or operator.
2Operators will not necessarily have hats on them, e.g. ρ̂; such symbols should have clear

meaning from the context.
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However, often it is desirable to express a classical uncertainty in which quantum

state a system is in, which is achieved by a linear combination of various density

operators, each multiplied by a (classical) probability bearing our knowledge for the

likelihood for each operator,

ρ =
∑

a

P (a)|ψa〉〈ψa| (2.5)

where the various wave functions |ψa〉 need not be orthogonal.

The basic quantum measurement process can be alternatively expressed in the

notation of density operators. If a measurement is made on a system ρ, then the

result α implies the new system is described by

ρ̃+
α = Pα ρ Pα (2.6)

and this result will occur with probability

Pr[α] = Tr
[

ρ̃+
α

]

(2.7)

The new normalized density operator, conditioned on the result α is given by

ρ+
α =

ρ̃+
α

Pr[α]
(2.8)

Notice that the probability of an outcome depends on both the classical uncertainty

the observer has on the state, as well as the fundamental quantum uncertainty

inherent in quantum mechanics.

2.2 Early position measurement theory

In 1987, Caves and Milburn [1] introduced a quantum mechanical model for con-

tinuous position measurement by generalizing the formalism known as “operations

& effects” theory. Essentially an imprecise measurement will be an ‘operation’ on

the density operator i.e. a super-operator. The ‘effect’ is to collapse the density

operator to a variance determined by the measurement apparatus.

This section follows much of the derivations provided by Caves and Milburn,

which sets out the favour of formalism employed by Wiseman in his PhD thesis, and

developed in the next section.

2.2.1 The meter

This scheme starts by defining a ‘meter’ that possesses a minimum uncertainty,

which involves restricting the height of the wavefunction describing the meter. By
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normalization this implies a minimum width, or minimum uncertainty. A meter is

wheeled up to a quantum system which is to be measured, and is allowed to interact

with the system. With some assumptions concerning the meter, the ‘effect’ on the

density operator describing the quantum system can then be determined. The meter

is wheeled away from the system, and then a measurement is made on the meter,

which contains information on the system.

Removing the meter from the system and applying the projection postulate on

the meter, one places the ‘quantum-to-classical’ [1] cut or ‘Heisenberg cut’ [2] just

beyond the meter. By allowing the meter to interact with the observed quantum

system, yet making the measurement on the meter, the meter is treated as quantum

mechanical system, like the system under observation.

One natural example to consider [1] is a meter, labelled by r and with variables

x̄r and p̄r, that is prepared in the pure Gaussian state given by |Υr〉 with a wave

function given by

|Υr〉 =

∫

1
4
√
πσ

e−x̄2
r/2σ|x̄r〉

At time rτ , this meter is allowed to interact with the system, which just prior

to the interaction is described by ρ̂− with variables ˆ̄x and ˆ̄p. The total Hamiltonian

first proposed by Von Neumann [3] is of the form

Ĥt = δ(t− rτ)x̂ ˆ̄pr

where x̂ is the position operator of the quantum system, and ˆ̄p is the momentum

operator of the meter. This is an impulsive measurement, where such a small inter-

action time leads to the individual Hamiltonians for the evolution of the meter and

quantum system to be neglected.

Next the meter is removed from the system and an arbitrarily precise measure-

ment on the position of the meter is made. The result of a measurement on the

meter is given by the trace over the system variables

P (x̄r) = Tr
[

Υ̂(x̄r)ρ̂
−Υ̂†(x̄r)

]

(2.9)

where Υ̂(x̄r) is the ‘operation’, related to the ‘meter’ by

Υ̂(x̄r) = 〈x̄r|e−ix̂ ˆ̄pr~|Υr〉

=
1

4
√
πσ

e−(ˆ̄xr−x̂)2/2σ

Once the results of a measurement are known, the wavefunction of the quantum

system collapses. The ‘effect’ on the quantum system is a new density operator ρ̂+
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conditioned on the results of the measurement, and normalized to

ρ̂+ =
Υ̂(x̄r)ρ̂

−Υ̂†(x̄r)

P (x̄r)
(2.10)

If one takes this measurement model to describe further measurements, two

interesting results arise. Firstly, if an initial state of the quantum system considered

has a position uncertainty much larger than that of the meter, then by the act of

measurement, the system collapses to new wave function with a position uncertainty

' σ/2, defined by the meter. This is to be expected; the results of a measurement

should provide the observer with knowledge of a system with an uncertainty defined

by the measuring apparatus.

Further more, if many measurements are made so that the quantum state can

be described by a stationary set of variances, then the mean momentum undertakes

a random walk. This is ‘back-action’, due to the process of measurement (applying

the meter). The random walk in momentum space is unavoidable without some

form of feedback, and this is considered by Caves and Milburn later in their paper.

2.2.2 Continuous position measurement

Although Caves and Milburn went on in their paper to describe a process of con-

tinuous measurement of position, it is a non-selective evolution of the system. That

is, knowledge of the system acquired from the process of measurement is not used

to condition the density operator describing the system. If one has a selective, or

conditional, equation for the density operator ρ̃c, then the ‘expectation’ or average

of operator ρ̃+
c after a measurement is merely the unconditional evolution ρ̃+. The

average is expressed with an expectation operator E[ ], and

E
[

ρ̃+
c

]

= ρ̃+ (2.11)

which is the form of the equation by Caves and Milburn. Thus the results of Caves

and Milburn provide a way of checking the correct formulation of a selective process.

Nonselective evolution is not used in feedback processes. Measurements are made

and the information derived from the meter are used to feedback into the system

to adjust the evolution. Thus a master equation conditioned on measurements is

desired, and an excellent derivation is given by Wiseman in his PhD thesis [2].



10 Measurement Models

Non-selective evolution

The non-selective evolution of the density operator of a quantum system under

continuous measurement, given by Caves and Milburn, is

dρ̂

dt
= − i

~
[Ĥ0, ρ̂] −

1

4D
[x̂, [x̂, ρ̂]]

= − i

~
[Ĥ0, ρ̂] +

1

4D
D[x]ρ

where D = στ is given by the accuracy of the meter σ and the time between

measurement τ , and is a property of type of meter used. Ĥ0 is the intrinsic dynamics

of the system without measurement, and D[c] is a superoperator defined by

2D[c]ρ = 2cρc† − c†cρ− ρc†c (2.12)

The second term in the master equation should be very familiar; it is used in a

master equation describing the decay of atom from an excited state to a ground

state. Alternatively, it also describes the loss of light out of an optical cavity, with

a decay of the intensity inside the cavity.

This was recognized by the authors, and an analysis highlighted a decay of the

off diagonal terms of the density operator in the position basis. This has an obvious

explanation; the continuous non-selective measurement of position of a system leads

to a collapse into the position basis, which leads to a diagonal representation of the

density operator in the position basis.

2.3 Modern measurement theory

The approach to selective measurement theory, taken by Wiseman in his PhD thesis

[2] adopts a more general and abstract notation. The motivation to measure position

is generalized to an arbitrary operator, representing any observable, and is expressed

as a creation operator for the system under observation.

The development of this formalism will closely follow the outline by Wiseman

in his PhD, but also draws on inspiration in other papers by Milburn and Wiseman

[4], [5] [6]. Also note that ~ is set equal to 1 for the next two sections.

Most quantum stochastic equations arise by treating a quantum system that is

in contact with an infinitely large reservoir with an infinite number of degrees of

freedom. Coupling to this bath produces the typical damping effects, such as an

excited atom decaying into the ground state, or light leaving a cavity. This ‘loss’

from a system is a phenomenological consequence of the process of detection; for the

detectors considered in this thesis, information on a system will require the removal

of some part of it for scrutiny. So it is therefore not surprising that the same results



§2.3 Modern measurement theory 11

of quantum measurement theory can be developed by replacing the ensemble of

apparatuses with a reservoir, and that reservoir is then probed by the observer for

information about the system. These results were also developed in Wiseman’s PhD

thesis; the reader is deferred to this thesis for this physically insightful interpretation.

2.3.1 Developing the formalism

To form a generalized measurement theory as a master equation, it is instructive to

consider the most general form of master equation for a single measurement-related

operator c, the Lindblad form,

ρ̇ = Lρ (2.13)

= −i[H, ρ] + D[c]ρ (2.14)

= −i[H, ρ] + cρc† − 1
2cc

†ρ+ 1
2ρcc

† (2.15)

where D is superoperator defined in Eq.2.12, and H is the intrinsic dynamics of the

system, and L is the Liouville superoperator defined by

Lρ = −i[H, ρ] + D[c]ρ (2.16)

Equivalently, if ρ+ is the new density operator under an infinitesimal evolution

of the Lindblad form above,

ρ+ = (1 + dt L)ρ (2.17)

= −i[H, ρ] dt+ cρc† dt− 1
2cc

†ρ dt+ 1
2ρcc

† dt (2.18)

One point to note here is that the operators c are not unique; a transformation

of the form

c → c+ β (2.19)

H → H − i12(β
∗c− βc†) (2.20)

results in the same master equation. This transform will be useful later.

Measurement

Now, to generalize the process of a measurement, we use the general measurement

operators Ωα to determine the new unnormalised density operator ρ̃+
α conditioned

on the result α (see Eq.2.6, Eq.2.10),

ρ̃+
α = Ωα ρΩ†

α (2.21)

= J [Ωα] ρ (2.22)
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where J is the superoperator defined by

J [c] ρ = cρc† (2.23)

This form of measurement operator is evidently Markovian, and these operators

only need to satisfy the completeness condition

∑

α

ΩαΩ†
α = 1 (2.24)

From the inspection of Eq.2.18, if the operator c was interpreted as the operator

for a light field output from a cavity with linewidth γ and internal light field a, such

that c = aγ
1
2 , then Eq.2.18 would describe the measurement in terms of photode-

tections of the output light field. Sticking with the notation of c, it can be seen from

the expansion one could postulate two measurement operators by

Ω0 = 1 − (iH + 1
2c

†c)dt (2.25)

Ω1 =
√
dt c (2.26)

Here we can interpret the second measurement operator Ω1 as the detection of

a photon, so that one photon is ‘removed’ from the system via the action of the

annihilation operator c on the system. This would be expressed in density operator

notation as

ρ̃+
1 = Ω1 ρΩ†

1 = dt cρc† (2.27)

Notice also that if Ω1 describes the detection of a a photon, then the probability of

detection (See Eq.2.7) is given by

Pr [1] = Tr (Ω1ρΩ1)

= Tr
(

cρc†
)

dt

= 〈c†c〉 dt (2.28)

where we have used, in the last line, the invariance of the trace under cyclic per-

mutations, and the expectation of an operator 〈A〉 being equal to the trace of the

operator by the density matrix Tr (Aρ). Obviously this fits our previous ideas of

measurement; the probability of detection over a time will be proportional to the

number of photons present and the length of measurement time.

The second measurement operator describes the evolution of the system when

no photodetection has occurred.

ρ̃+
0 = Ω0 ρΩ†

0

= ρ− (iH − 1
2c

†c)ρ dt− ρ(−iH − 1
2c

†c) dt
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' ρ− i[H, ρ]dt− 1
2(c

†cρ+ ρc†c) dt

to first order in dt.

Both of these processes are purity preserving; if a system is known to be in a

pure state, then it remains in a pure state under either measurement evolution.

If the density operator is not conditioned on the measurement results, then one

can calculate the unconditional, or non-selective evolution of the density operator.

If a measurement has been made, but the results not observed, then the system

will lie in a mixture of the two states weighted by their respective probabilities (see

Eq.2.8)

ρ+ =
∑

α=0,1

Pr[α]ρ+
α

=
∑

α=0,1

ρ̃+
α (2.29)

and conveniently, the dynamics of an unobserved system reproduce the original

Lindblad dynamics

ρ+ =
∑

α=0,1

ρ̃+
α

= ρ− i[H, ρ]dt− 1
2(c

†cρ+ ρc†c) dt+ cρc† dt

= ρ− i[H, ρ]dt−D[c]ρ dt

= (1 + dtL)ρ (2.30)

Thus we have two measurement operators that relate to the measurement of photons

emitted from a quantum system, and completely define any arbitrary evolution of

the Lindblad form.

Inefficient detection

What if we have physical inaccuracies in our macroscopic measuring device? The

beauty of the density operator formalism is its ability to deal with classical uncer-

tainties, and one of the obvious ways this may enter into a quantum experiment

is the inefficient measurement. In the case of photodetections, a photon may only

have a probability of being detected. Thus the probability of detection needs to be

reduced by a fraction η, usually described as a detector efficiency.

We can postulate a new measurement operator for the detection of a photon by

Ω1 =
√

ηdt c (2.31)
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and for a null measure, two operators which need to be summed over

Ω0 = 1 − (iH + 1
2c

†c)dt (2.32)

Ω′
0 =

√

(1 − η)dt c (2.33)

The summation is required as the evolution of the density operator will naturally

no longer be purity preserving.

The new density operator conditioned on photon detection is

ρ̃+
1 = Ω1 ρΩ1

= η cρc† dt (2.34)

and the new probability of detection Pr [1] = Tr (Ω1ρΩ1) = η〈c†c〉 dt is equal to

the original probability of occurrence 〈c†c〉 dt, tempered by the detector efficiency η.

The density operator conditioned on the null count is now

ρ̃+
0 =

0′
∑

α=0

ΩαρΩα

=
(

1 − (iH + 1
2c

†c)dt
)

ρ
(

1 − (−iH + 1
2c

†cdt
)

+(1 − η)cρc† dt

' ρ− i[H, ρ] dt− 1
2(c

†cρ+ ρc†c) dt+ (1 − η)cρc† dt (2.35)

to first order in dt, so that the new total unconditioned density operator still obeys

the Lindblad form (See Eq.2.30 & Eq.2.29)

ρ+ =
∑

α=0,1

ρ̃+
α = ρ̃+

0 + ρ̃+
1

= ρ− i[H, ρ]dt− 1
2(c

†cρ+ ρc†c)dt

+(1 − η)cρc†dt+ ηcρc†dt

= ρ− i[H, ρ]dt− 1
2(c

†cρ+ ρc†c)dt+ cρc†dt

= (1 + dtL)ρ (2.36)

2.3.2 Stochastic master equation

Now that we have generalized the formalism to deal with inefficient measures, it is

necessary to postulate a relationship between the master equation and the classical,

macroscopic process of detection. This is to reformulate the master equation in the

form of an explicitly stochastic master equation (SME), which specifies the ‘quantum

trajectory’ of the system.

To do this, we present the measurement results as a random variable dNc, where
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the subscript c implies that the variable is conditioned on the measurement history.

One natural presentation is that dNc is either 0 or 1, conditioned on whether a

photon is detected, and

E [dNc] = Tr
[

c† c ρc

]

(2.37)

As an aside, it is also equivalent to postulate dNc by specifying the expected

value and a relationship for all moments of dNc

E [dNc] = Tr
[

c† c ρc

]

dNc = dN2
c

where the 2nd line dictates that the result dNc can only take values of either 0

or 1. This form of postulation relates to the new stochastic calculus developed

by Wiseman, which is more general than the Itó or Stratonovich calculus usually

encountered. ‘Wiseman’ stochastic calculus is required for the development of direct

quantum feedback, and this type of feedback will be considered later.

With this new classical measurement variable dNc, a new conditional stochastic

master equation for ideal measurement can be expressed

dρc =
{

dNcG[c] − dtH[iH + 1
2c

†c]
}

ρc (2.38)

where G and H are two new non-linear density operators

G[c]ρ =
cρc†

Tr [c† c ρ]
− ρ (2.39)

H[c]ρ = cρ+ ρc† − Tr
[

cρ+ ρc†
]

(2.40)

Three important points arise from this expression. The first is that the evolution

for either a count or null result (dNc = 1 or 0 respectively) reduces to the early

conditional evolution equations (See Eq.2.34 and Eq.2.35). Also, unconditional evo-

lution for this equation is equivalent to taking the expectation of the equation(See

Eq.2.11) so that when dNc is replaced with E [dNc] = Tr
[

c† c ρc

]

the equation re-

produces unconditional evolution (See Eq.2.30 & Eq.2.36)

Finally, one can show that this equation is equivalent to a stochastic Schrdinger

equation (SSE). This is not surprising, since, for perfect measurement, pure states

remain pure, and the evolution of the density operator can be modelled as the

evolution of a linear combination of pure states. Each state will evolve by the SSE

equivalent to the SME above.

It is easily shown that the equivalent SME for inefficient measurements, using

the measurement operators Eq.2.31, Eq.2.32 & Eq.2.33, is

dρc =
{

dNcG[
√
η c] − dtH[iH + η 1

2c
†c] + dt (1 − η)D[c]

}

ρc (2.41)
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where η is the detector efficiency.

2.4 Homodyne detection

Now that a general measurement process has been described for photon detection,

it is possible to extend the general operator c to include a local oscillator so that

a description of homodyne detection can be developed. One approach used is the

transformation invariance of the Liouvillien form of the master equation, to a mod-

ification of the operator c and H (See Eq.2.19 & 2.20). One also uses the fact that

for homodyne detection we take the limit of a large local oscillator, which means

the point process dNc with Poissonian statistics can be modelled with a random

variable δN with Gaussian statistics.

This will be a heuristic walk through the arguments; more rigorous developments

have been provided by Carmichael [7], Milburn and Wiseman [5] [4] [6], and Wiseman

[2].

By adding a local oscillator (LO), the measurement operators are being changed,

and two new measurement operators can be postulated;

Ω0 = 1 −
(

iH + 1
2cβ

∗ − 1
2c

†β + 1
2(c

† + β∗)(c+ β)
)

dt (2.42)

Ω1 =
√
dt (c+ β) (2.43)

Let’s keep β real for this analysis; it turns out that for homodyne detection this is

equivalent to a phase measurement.

Simple homodyne detection

A large coherent field with a photon flux equal to β2

(1−ζ)
is injected into one port of

a beam splitter of transmittance ζ . The other port is injected with the output field

of the cavity c so that the transmitted beam becomes

b = β + c (2.44)

and perfect measurement of this beam is given by dNc = b†b dt, with an average

photon flux given by

E [dNc] = Tr
[

(β2 + β(c+ c†) + c†c)ρc

]

dt (2.45)

Note that the above analysis produces the correct SME

dρc =
{

dNcG[c+ β] + dtH[−iH − βc− 1
2c

†c]
}

ρc (2.46)
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for the measurement operators defined in Eq.2.42 and E1.2.43. Furthermore, if β is

real then this corresponds to homodyne detection on the phase quadrature of the

output light field, c+ c†.

Now we select a time scale small to the system dynamics but large enough for a

high number of photodetections, so that we can model the Poissonian point process

dNc with a normal random variable δN . This time scale is dt ∼ β−3/2, so that in

the limit β → ∞ the mean photon flux is still large ∼ β2dt ∼ β1/2 and given by

Eq.2.45 reducing to

E [dNc] ' (β2 + β〈c+ c†〉) dt ∼ β1/2 (2.47)

For a Poissonian process the variance is equal to the mean ≈ β2 dt ∼ β1/2 and we

can model the photodetections statistics described above (dNc) with the normal

variable δN given by

δN = β2 dt

(

1 +
〈c+ c†〉

β

)

+ βdW (2.48)

where dW is the Wiener increment satisfying the Itó relation E[dW 2] = dt

Expanding out the SME (Eq.2.38) to order β−1/2 by substituting in dt ∼ β−3/2

and dNc → δN , we end up with final result for this chapter

dρc = −i [H, ρc] dt+ D[c]ρc dt+ dW H[c]ρc (2.49)

There exists the inefficient measurement SME, which, after the above derivation,

has the form

dρc = −i [H, ρc] dt+ D[c]ρc dt+
√
η dW H[c]ρc (2.50)

Cleaning up

To express these equations not as function of the light field output, but of the

light field inside the cavity we make the substitution c = aγ
1
2 . Furthermore, by

subtracting off the LO, and then take the limit of a large LO β → ∞, the measured

number of photodetections can be transformed to a scaled photocurrent Ic by

Ic = lim
β→∞

δN − β2dt

βdt
= 〈c+ c†〉 dt+ ξ (2.51)

where ξ = dW/dt is a white noise term related to the Wiener process.

Thus if we multiply the operator a by the constant −i, the photocurrent becomes

Ic = 〈−i(a− a†)〉 dt+ ξ
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and the current is now proportional to the phase −i(a− a†). Note here that noting

that D[a] = D[−ia]. Finally, the ubiquitous ~ is reintroduced into the system.

Thus we have the stochastic master equation for perfect homodyne detection

dρc = − i

~
[H, ρc] dt+ γD[a]ρc dt+

√
γ dW H[−ia]ρc (2.52)

and a stochastic master equation for imperfect homodyne detection, with detector

efficiency η, given by

dρc = − i

~
[H, ρc] dt+ γD[a]ρc dt+

√
γη dW H[−ia]ρc (2.53)

Both describe the selective evolution of the density operator under continuous phase

measurement.

2.5 Conclusion

If the observer chooses to condition the density operator on the information ac-

quired during the measurement process, then this is a selective process. Since a

measurement on a quantum system is subject to a random outcome, the inclusion of

a stochastic term is required. For an idealized setup with perfect measurement, one

has complete knowledge of the quantum system, and in this situation the system

can be described by a wave vector with a stochastic term. However, for realistic

systems, imperfect detection and incomplete knowledge of the system, a density

operator is again required to describe the system, with a stochastic term expressing

the information available from the measurement. Thus, the evolution of the system

is stochastic master equation.

The arrival at a SME is the most important outcome of this chapter. A master

equation formalism is important for coping with classical uncertainties arising from

inefficient measurements. The stochastic element of a master equation is a unique

instalment; it is not a typical stochastic element which usually involves undesirable

noise sources. It possess real information about the system evolution, and is received

through some classical measuring device, the standard quantum optical tool being

the homodyne setup. The stochastic master equation Eq. 2.53 describes the evo-

lution of a quantum system under measurement, by involving a stochastic element

which will depend on the measurement results of each run, or ‘quantum trajectory’.



Chapter 3

Quantum Systems

One the process of (homodyne) measurement is understood, the next step is to

find quantum systems to measure. In this case, both the flexible mirror and an

atom inside the measurement cavity provide good candidates. Their Hamiltonians

both have the correct form, and in the case of the flexible mirror, readily available

experimentally.

One the other hand, trapping an atom inside a cavity is not so trivial, and the

work by Hood, Lynn, Doherty, Parkins and Kimble at the Californian Institute of

Technology have made remarkable progress into this field [8]. Here it is interesting

to note that the atom is both trapped and measured by the same light field, where

the experiment is operating in the strong coupling regime. Whether the theory spelt

out below is applicable in their situation is unclear.

In this chapter, the atom dynamics are discussed, and with suitable approxima-

tions, a Hamiltonian is introduced. This Hamiltonian is used in conjunction with the

equation for homodyne measurement from the last chapter, and, with further sim-

plifications, a measurement equation for the atomic position is presented. Finally,

choosing an initial gaussian state and harmonically confining the atom, reduces the

total description of the quantum state to the means and covariances of 〈x〉 and 〈p〉.

3.1 Measuring the atom position

From the previous chapter we have an equation for the evolution of the density

operator for continuous measurement.

dρc = − i

~
[H, ρc] dt+ γD[a]ρc dt+

√
γη dW H[−ia]ρc (3.1)

we need to specify the form of the internal dynamics of the system under observation

inside the cavity, namelyH . To do this we need to select a system we wish to observe.

Here two closely related systems can be modelled; a harmonically bound atom

inside the cavity, or a flexible mirror making up one end of the cavity. Though

both reduce to the same simple Hamiltonian form under certain approximation, the

19
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case of the harmonically bound atom will be look at here. It is easy to see that

for a flexible mirror with a linear restoring force proportional to position, along the

lines of Hooks law, that the same mechanical dynamics will be observed as for a

harmonically bound atom; namely quantized simple harmonic motion.

3.2 An atom inside a cavity

Let now assume a two level atom is inside a cavity interaction with the quantized

field inside. First we make the dipole approximation, that the atom is much smaller

in dimensions than the wavelength of the light field. Secondly, we make the rotating

wave approximation, so that we can ignore non-energy conserving dynamics that

occur much on much smaller time scales than we are considering here.

Then we can start with a model of a two level atom interacting with a single

mode of the quantized field. In the Heisenberg picture this is a Hamiltonian of the

form [9]

H = ~ωa†a+ ~ω0σz + ~(gσ−a
† + g∗σ+a) cos(k0x) (3.2)

where a and a† are the bosonic creation and annihilation operators for the quantized

light field inside the cavity, σz, σ− and σ+ are the pseudo spin operators for the

atom1, g is the dipole coupling constant and k0 the wavenumber for the field.

If we assume that the light field is sufficiently far detuned from the resonance

frequency of the atom, with a detuning ∆, then spontaneous emission can be ignored,

Then taking the equation above, the upper level can be adiabatically eliminated

(See [9], Appendix 17.A) and the resulting effective Hamiltonian, in the interaction

picture for the cavity, becomes

Heff = ~∆σz +
2~g2

∆
σza

†a cos2(k0x) (3.3)

Now we make the further approximation that the atom is positioned very close

to the anti-node of the standing optical wave inside the cavity, so that cos2(k0x)

can be very closely approximated as linear in x. Furthermore, if the atoms start

in the ground state, that is where they’ll remain, and the first term becomes a

constant which does not effect the dynamics of the system, and can be ignored,

while 2σz → 1(See footnote), so the interaction Hamiltonian becomes of the form

H ′
eff =

~k0g
2

∆
a†a x (3.4)

Now, if we add to the Hamiltonian the dynamics of the mechanical motion of

the atom Hm and a coherent driving term for the coupling of the light field out of

1σz = 1
2 |1〉〈1| −

1
2 |0〉〈0|, σ

−
= |0〉〈1| and σ+ = |1〉〈0|
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the cavity Hdwe have the Hamiltonian given by Doherty and Jacobs [10]

H = Hm − ~k0g
2

∆
a†a x+Hd (3.5)

where Hd is of the form

Hd = i~E(a− a†) (3.6)

where E is related to the power of the laser P by E =
√

γP/(~ω0), γ is the decay

rate of the cavity and ω0 is the angular frequency of the cavity field.

Note the form of the Hamiltonian, being in the interaction picture, which would

be the same for the flexible mirror. The term a†a x is the correct form necessary

since a†a is the phase generator for light, which is now proportional to position x,

so that homodyning will produce position measurement.

A pleasantly simple way to look at this sort of Hamiltonian is to imagine that

the atom merely introduces a change in refractive index, which is linear if the atom

is confined to part of the optical standing wave which is also linear in strength with

respect to position. A refractive index change can be noticed as a phase shift of

light.

For the mirror, it is well known that the phase of light off a cavity undergoes a

change from positive to negative as a mirror moves through the resonance condition.

On resonance, this change in phase is approximately linear with position, and hence

phase measurement will provide position information.

3.2.1 Measurement of atomic position

Now we can incorporate Eq.2.40 for the dynamics of the atom with Eq.3.1 describing

the homodyne measurement process. By taking the limit of large γ, or a very lossy

cavity, we are getting a very good measure of position, since the light field interacting

with the atom, and containing position information, leaves the cavity quickly to avail

itself to the measurement process. Thus the cavity mode dynamics described by a

are ‘slaved’ to the atom dynamics, and the operators a and a† can be eliminated

adiabatically. Below is another heuristic walk-through of the rigorous analysis given

by Doherty and Jacobs [10]

Eliminating the cavity modes

If we apply the displacement operator D(−α) to the density operator for the

atom/cavity system, where α = −2E/γ is the steady state of the cavity without the

atom, then the transformation

ρ′ = D(−α)ρD†(−α) (3.7)
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produces the equation for the atom/cavity system

dρ′ = − i

~

[

Hm − ~g(a†a+ α(a+ a†) + |α|2)x, ρc

]

dt

+γD[a]ρc dt+
√
γη dW H[−ia]ρc (3.8)

where for the atom

g =
k0g

2
0

∆

This centres the density operator around the vacuum state for the cavity, where

it will be easy to make further approximations.

For adiabatic elimination, the rate of dynamics of the atom motion must be

slower than the decay rate, so that information about the atom motion is ‘up-to-

date’. Mathematically the requirement becomes

∣

∣

∣

∣

〈Hm〉
γ

∣

∣

∣

∣

∼ ε� 1 (3.9)

where ε is a small parameter governing the approximation.

A coherent state, centered around the vacuum state by the density operator, still

possess many Fock states with which the atom can interact with. The strength of

these Fock states will decrease the further from the vacuum state they are, and the

interaction with the atom will naturally decrease as well, and it is appropriate to

make the approximation that the various ρ′ elements in the number basis scale as

ρ′mn ∝ ε(m+n).

If the atom/cavity operator is expanded out over the various Fock states around

the vacuum state, then

ρ′ = ρa
00|0〉〈0|+ (ρa

10|1〉〈0| +H.c.)

+ρa
11|1〉〈1|+ (ρa

20|2〉〈0| +H.c.) +O(ε3) (3.10)

and we are now interested in the atom dynamics, tracing over the cavity modes

ρa = Trc[ρ
′] = ρa

00 + ρa
11 +O(ε3) (3.11)

Substituting the above expansion into the SME for homodyne measurement

(Eq.3.1) produces many coupled stochastic equations for the various elements of

ρ′; for example

dρa
00 = − i

~

[

H − ~g|α|2x, ρa
00

]

dt+ igα(xρa
10 − ρ1†

10x)dt+ γρa
11dt

−i√ηγ(ρa
10 − ρa†

10 − Tr[ρa
10 − ρa†

10]ρ
a
00)dW (3.12)
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The next analytical step requires quite a few proposals. The off-diagonal ele-

ments need to be expressed in terms of the diagonal elements, and to complicate

matters, all elements are being driven by a stochastic white noise dW . However,

continuing to use the adiabatic approximation, it can be seen that most off diagonal

terms will be strongly damped, and steady state values can be assumed. These

steady values can be expressed in terms of the diagonal elements, and the diagonal

elements can be added together to arrive at an equation for the motion of the atom

under homodyne detection

dρ = − i

~

[

Hm − ~g|α|2x, ρ
]

dt+ 2kD[x]ρ dt+
√

2kη dW H[x]ρ (3.13)

where

k =
2k2

0g
4
0|α|2

γ∆2
(3.14)

may be referred to as a coupling constant, as is the rate at which measurement

information is obtained from the system, and consequently the rate at which noise

drive the momentum, due to back action.

The second term in the commutation brackets is merely the dipole force on

the atom, or the in the case of the mirror, the radiation force. As with Doherty

and Jacobs, this force will be ignored, as it could be cancelled with an appropriate

classical linear force in the opposite direction, by adding a term to the Hamiltonian

Hm.

3.2.2 Determining mean and covariances

The equation developed so far is very close to what is required to apply the engi-

neering concepts of control theory; what is required is that the quantum state of the

system is describe by only the means and covariances for x and p.

This can be achieved if the Hamiltonian for the mechanical motion of the par-

ticle Hm is no greater than 2nd order in both position and momentum. Under this

condition, the system state will remain gaussian as it evolves, provided it starts in a

gaussian state [11]. This presumption of beginning in a gaussian state is quite rea-

sonable, as it is believed that any non-classical state will rapidly evolve to gaussian

state.

Provided that a.) the state start in a gaussian state and b.) the Hamiltonian for

mechanical motion is of no greater order than 2 in position and momentum, then the

quantum state will be specified by means and covariances for all time. Calculating

these amounts to calculating the dynamics of the stochastic system.
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Means

The means of x and p will be denoted as 〈x〉 and 〈p〉, and are easy to calculate from

the expectation of the operators by

〈c〉 = Tr[c ρ] (3.15)

and

d〈c〉 = Tr[c dρ] (3.16)

Using the these definitions, and invariant property of the trace under cyclic

permutations of the operators within, it is trivial to arrive at

d〈x〉 = − i

~
〈[x,Hm]〉dt+ 2

√

2ηk Vx dW (3.17)

d〈p〉 = − i

~
〈[p,Hm]〉dt+ 2

√

2ηk C dW (3.18)

where V = 〈x2〉 − 〈x〉2 and C is the symmetric covariance C = 1
2〈xp+ px〉 − 〈x〉〈p〉

Note that no assumption was made regarding the Gaussian nature of the state; the

equation hold for any state of the system.

Covariances

Calculating the variances and covariances are not as trivial as for the means. If the

change in the variance Vx is given by

dVc = d〈x2〉 − d〈x〉2

it is easy to see d〈x2〉 will be given by Tr[x2dρ], but how does one determine the

differential of the square of stochastic variable 〈x〉 ?

Here one turns to the rules of Itó calculus. If X is a stochastic variable given by

X = f dt+ g dW

then for a function F (X) of X, the differential is given by

dF = f̃ dt+ g̃ dW

where

f̃ =
∂F

∂t
+
∂F

∂X
f + 1

2

∂2F

∂X2
g2

g̃ =
∂F

∂X
g
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Here the stochastic terms dW cancel from d〈x2〉 and d〈x〉2, and the resulting differ-

entials can be divided through by dt to present

V̇x = − i

~
〈[x2, Hm]〉 +

2i

~
〈x〉〈[x,Hm]〉 − 8ηkV 2

x (3.19)

V̇p = − i

~
〈[p2, Hm]〉 +

2i

~
〈p〉〈[p,Hm]〉 + 2k~

2 − 8ηkC2 (3.20)

Ċ = − i

2~
〈[xp+ px,Hm]〉 +

i

~
〈x〉〈[p,Hm]〉

+
i

~
〈p〉〈[x,Hm]〉 − 8ηkVxC (3.21)

Notice to this stage Hm hasn’t yet been specified.

Harmonically bound

Now it is pertinent to assume some form of mechanical restraint. One natural

assumption is harmonically binding the atom to the anti-node of the light field. This

could be achieved with the dipole force from a 2nd light field. It is at this point that

the theory presented thus far differs from the experiment setup by Hood et. al, but

it is certainly worth considering how this theory would need to be modified to be be

experimentally relevant to Hood. There is also scope for considering other restraints,

such as the wavelength separation between the measuring and containment beam

[12].

With the assumption

Hm =
p2

2m
+
mω2x2

2
(3.22)

it is obvious that the means reduce to

d〈x〉 =
〈p〉
m
dt+ 2

√

2ηk Vx dW (3.23)

d〈p〉 = −mω2〈x〉dt+ 2
√

2ηk C dW (3.24)

while the variances reduce to

V̇x = 2C/m− 8ηkV 2
x (3.25)

V̇p = −mω2C + 2k~
2 − 8ηkC2 (3.26)

Ċ = Vp/m−mω2Vx − 8ηkVxC (3.27)

Here it is obvious that the means and covariances have decoupled, which is an

important point in control theory, termed separation. Furthermore, the covariances

don’t posses any random nature to them, they evolve along with the means, and end

up in a steady state. This property will be utilized in the simulation by assuming
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the steady state given by

Vx =

(

~√
2ηmω

)

1√
ζ + 1

(3.28)

Vp =

(

~mω√
2η

)

ζ√
ζ + 1

(3.29)

C =

(

~

2
√
η

) √
ζ − 1√
ζ + 1

(3.30)

where

ζ =

√

1 +
16~ηk2

m2ω4

It’s convenient to point out that the Heisenberg uncertainty principle is still

obeyed in the evolution of these variances; as the measurement strength k is changed,

the product VxVp remains greater than ~.

The means obey some convenient properties, namely being Markovian, linear

and with a gaussian noise source described by dW . Being linear with gaussian noise

allows one to utilized the mathematics of control theory to present the optimal

control process, once a parameter was been designated to be optimized over

3.3 Conclusion

Starting with the stochastic master equation describing continuous measurement,

and introducing a Hamiltonian which possess the property of generating a phase

shift proportional to the position of a quantum object (either atom or mirror), in

the limit of a lossy cavity the motion of the quantum object can be adiabatically

slaved to the cavity field, so that measurement of the field relates to a measure of

position. The resulting stochastic master equation for position maintains a gaussian

state over evolution, provided the Hamiltonian for mechanical motion is no greater

than 2nd order in position and momentum. Provided this is so, the state of the

quantum object can be describe by 5 parameters, being the mean and variance of

the position and momentum, as well as a covariance between the two. Thus it

is natural to harmonically confine the quantum object, assume an initial gaussian

state, and determine the evolution of the means and covariances for the state. This

completely defines the state for all time, and the resulting equations for the means

describe a linear Markovian process with gaussian noise, which places the system in

a position to be considered by control theory.



Chapter 4

Control Theory

This chapter introduces the ideas of standard control theory. This covers the Linear

Quadratic Regualtor (LQR) and Linear Quadratic Gaussian (LQG) formulation of

a control problem. These problems differ, as an LQR is when there is deterministic

observation and prefect detection, while an LQG system is one with stochastic noise

in both the system evolution and the measurement signal. Both have associated

optimal control solutions, which provide the best control to apply to a system to

minimize a ‘cost function’, which relates to improved performance. The optimal

control for the LQR is to feedback a linear function of the system state. For the

LQG problem the optimal control solution is provided by the Kalman filter, the

best estimate of the current state of the system, and the control is the same linear

function as the LQR, but of the best state estimate. Thus the LQG solution is often

called ‘state estimation.’

This chapter begins with the concept of a cost function as a way a to measure the

performance of a control policy, as well as determining the state which the control

designer wishes to drive, or regulate, the system to. Once convenient form of a cost

function is one quadratic in both the state vector and control vector. Next, the

principle of optimality connects the desired outcome defined by the cost function

with the optimal control policy to implement. A general derivation for an arbitrary

cost and system dynamics is illustrated; next it is applied a linear system with a

quadratic cost, the LQR problem. Finally, noise is introduced into both the system

and the measurement process, the LQG model, and the best-estimate of the system

state is given by the Kalman filter. The previous ideas of performance and optimality

are reviewed, and the Certainty-Equivalence Principle is expressed, which presents

the optimal control solution for the LQG

It will turn out that for the linear systems with gaussian noise previously con-

sidered, coupled with a quadratic cost function, the optimal control policy will be

to apply the Kalman filter to provide the best estimate of the state of the system.

Note that throughout this chapter the notation will swap from continuous ex-

pressions e.g r(t) to discrete e.g. rt, and back again. This freedom provides an

access to an easy proofs in one form that may not be so easy in the other.

27
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4.1 The cost function

Defining the cost function turns out to be a very important processes in designing

a control system. The art of selecting a cost function is an expression of the control

designer of the most desired state of the system, as well as the performance of the

control policy.

4.1.1 Selecting a cost function

The cost function will express the way a control designer wishes to drive a system by

associating each state with a numerical evaluation of desirability. Mathematically,

it is a function of both the state of the system r and the control policy applied to it

u, and denoted c(r,u) . By intelligently selecting a mapping of all possible system

states and controls onto the positive reals

c(r,u) : r,u 7→ R
+ (4.1)

a control designer creates a way in which to calculate the desirability of the various

states of a system, as well as a measure of the controls used. By mapping onto the

reals, is a positive bilinear function.

Cost as a measure of state desirability

It is mathematically convenient to map the most desired state, or state that the

controller is trying to regulate to, onto the origin. By doing so the vector r now

describes the difference between the most desired and actual state. Thus the control

designer associates a small vector r with a highly desirable state.

Measure of control strength

A cost function is designed to measure the amount of effort required to regulate to

the most desired state, by taking into account the control u applied. If was done, the

naturally unrealistic solution to a control problem would be to apply an arbitrarily

large (infinite) feedback, forcing the system to be in exactly the right state. Apart

from the impracticalities of such a setup, there are inherent problems with control

policies of arbitrary strength. For an arbitrarily large feedback term and a slight

time delay in the control loop, oscillations around the origin will arise naturally.

Thus a measure of control strength should be implicit in the cost function.

4.1.2 Performance

A cost function c(r,u) also has a second purpose of providing a criteria for evaluated

the performance of a control policy. If one control policy is more likely to produce
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states with larger costs (which equates to larger deviations from the desired state)

than another control policy, then the latter control policy would be more desirable,

and this control policy is said to have better performance. If we denote I as the

performance, then smaller numerical values of I implies better performance.

A suitable choice for the performance I is the total amount of cost incurred by a

certain control policy. This is the sum (or integral, in continuous time) of the costs,

evaluated over the length of time that the control policy is implemented. In discrete

time this is seen as

I =
∑

t

c(rt,ut, t) (4.2)

while the performance criteria expressed in continuous time is

I =

∫

c (r(t),u(t), t) dt (4.3)

Accurate measure of performance

A second desirable quality in a cost function is that it is a monotonically increasing

function as the performance of the control policy decreases. For example, assume

that the cost function was given as the numerical linear difference between the actual

and desired state variables, i.e. I =
∫

r dt. Then if oscillations around the desired

state are set up in the system, the total integrated cost function may end averaging

close to zero, which would imply a spuriously good performance. Furthermore, larger

oscillations may not relate to a larger performance criterion (and lower performance),

and in this situation the cost function is not a good representation of the performance

of a system.

4.1.3 A good cost

After elucidating the importance of the cost function, and acknowledging that it

is desirable for a cost function to posses a few simple characteristics, it must be

recognized that there still exists an infinite number of possible choices. However,

analytical easy will lead to a cost function quadratic in both r and u.

Quadratic solution

One obvious solution is to take the next natural step and square the difference vector

r. One could do this via r′r, or use a more generalized form r′Pr, where squares are

weighted by the diagonal elements of the matrix P, as well as correlations between

certain state parameters by the off diagonal terms. To include the control strengths

one can add a similar term u′Qu, so that the cost function is

c(r,u) = r′Pr + u′Qu (4.4)
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Since the cost function was defined earlier by Eq.4.1, the matrices P and Q must

both be positive definite, so that

x′Px,x′Qx >0 , ∀x (4.5)

This solution has further merits. Not only is it quadratic, but its analytical

nature lends itself to easily implemented control policies.

The performance criteria become, for both the continuous and discrete time,are

(See Eq.4.2 and Eq. 4.3)

I =

∫

c(r(t),u(t), t) dt =

∫

r′(t)Pr(t) + u(t)Qu(t) (4.6)

and

I =
∑

t

c(rt,ut, t) =
∑

t

r′tPrt + u′
tQut (4.7)

There are a few further mathematically requirements that allow exact optimal

controls to be easily formulated. One of these is that the cost is positive definite in

u,which is ensured by Eq.4.5 and Eq.4.1, so that all controls produce an increase in

cost. Another is that the cost function is decomposable, so that the expected cost

at any time c(r,u) is only a function of the state r, the control u and t. This is also

implied by Eq.4.2 and Eq.4.3.

Once an appropriate cost function has been determined, it is then a process of

optimization to determine the optimal control policy to implement.

4.2 Optimal control

The theory of optimal control has a powerful structure which is independent of the

form of problem which it is applied to, provided the system posses some simple

structure properties. These are that the system is Markovian, the state rt of the

system is observable at time t, and the expected cost is decomposable (See previous

section).

For any stochastic optimization problem, the optimal control policy will have a

recursive nature. This will lend itself to easy implementation, especially with the

use of digital or analogue signal processing.

For the first part of this section, it will be convenient to express the dynamical

equations for the system, the Principle of Optimality, and the optimal control solu-

tion, in discrete time. Later the continuous time equations can be derived by taking

the limit of infinitesimal displacements.
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4.2.1 Principle of Optimality

In other words, one could express the Principle of Optimality by assuming the opti-

mal control exists, and asking what properties it may posses. Below is an alternative

expression of the Principle of Optimality in words.

Principle of Optimality an optimal control sequence has the property that,

whatever the initial state and the first optimal control may be, the remain-

ing controls also constitute an optimal sequence, if one starts from the state

resulting from the first control1

In other words, say u0(t), t ∈ (0, T ) is an optimal control policy starting from

state r and optimized over time T . If, during the application of u0, the system passes

through the state r′ at time t = ∆, then the remaining control u0(t), t ∈ (∆, T ) itself

constitutes new optimal control policy u′
0 t ∈ (∆, T ), designed to start from state

r′ and optimized over time T − ∆.

4.2.2 Deriving the continuous Optimal Programming equa-

tion

Here is a derivation of the Optimal Programming equation in the continuous, com-

pletely determined (perfect detection with no stochastic element) case. Both the

form of the cost and the evolution of the system state has been generalized to high-

light its applicability to any situation. The steps outlined below are based on those

taken by Jacobs [13].

Begin by restating the problem in a general form, so that the state evolves as

dr = g(r,u) dt (4.8)

and the performance criteria I is a function of a general cost L(r,u) dt,

I(r, T ) =

∫ T

0

L(r,u) dt (4.9)

Here the performance criterion is expressed explicitly as a function of both the initial

state r and the time T over which the control is to be optimized. We can then split

up an arbitrary non-optimal performance criterion into two parts

I(r,T ) =

∫ ∆

0

L(r,u)dt +

∫ T

∆

L(r,u)dt (4.10)

1quote from Jacobs [13] p142
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Here we note that the second term is just another (non-optimal) performance cri-

terion I ′ with a different initial state r′ and evaluated over a shorter time T − ∆,

which leads to

I(r,T ) =

∫ ∆

0

L(r,u)dt + I ′(r′, T − ∆) (4.11)

By taking ∆ to be infinitesimally small the first term can be expressed

∫ ∆

0

L(r,u)dt ' L(r,u)∆

while the state r′ can be expressed using Eq.4.8 describing the evolution of the

system as

r′(t = ∆) ' r(t = 0) + g(r,u)∆

leaving us with

I(r, T ) ' L(r,u)∆ + I ′(r + g(r,u)∆, T − ∆) (4.12)

This can be further approximated with a first-order Taylor series expansion of the

second term. With the notation

∂I ′(r, T )

∂r
=̇











∂I′

∂r1

∂I′

∂r2

...
∂I′

∂rN











and N the dimensionality of r

I(r, T ) ' L(r,u)∆ + I ′(r, T ) +
∂I ′(r, T )

∂r
· g(r,u)∆ − ∂I ′(r, T )

∂T
∆ (4.13)

Next minimize this equation for the performance criteria with respect to the

control u. Here the Principle of Optimality is utilized by equating I(r,T ) and

I ′(r,T ), since these will become the same optimal performance criteria, starting

from r and evaluated over T . Replacing both I(r,T ) and I ′(r,T ) with notation for

the optimal control I0(r, T ), which leaves

I0(r,T ) ' min
u

{

L(r,u) +
∂I ′(r,T )

∂r
· g(r,u)

}

∆ + I0(r,T ) − ∂I0(r, T )

∂T
∆ (4.14)

or
∂I0(r,T )

∂T
∆ ' min

u

{

L(r,u) +
∂I0(r,T )

∂r
· g(r,u)

}

∆ (4.15)

In the limit ∆ → 0 the approximation becomes an equality, and so dividing by ∆,
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and removing the functional dependences presents the desired result

∂I0
∂T

= min
u

{

L(r,u) +
∂I0
∂r

· g(r,u)

}

(4.16)

Minimizing with respect to u produces the optimal control u0

4.3 The LQR

The LQR stands for the Linear Quadratic Regulator, which is a set of linear equa-

tions that describe a system with no noise introduced, coupled with a quadratic cost

function. It is a relatively simple situation, and the optimal control solution remains

easily accessible.

4.3.1 System description

Most of the systems of interest posses a few common characteristics, which will be

assumed true so that the control theory from this chapter can be applied. One of the

first is the Markovian nature of the system, in which knowledge of only the present

determines the future. As elucidated by Gardiner, true Markovian systems rarely

exist in reality. 2 However, Markovian processes with continuous sample paths do

exist mathematically and are useful in describing reality.

Another accepted notion about the system is that evolution responds linearly

to the feedback signal. These systems are a subset of the more general class of

stochastic control problems which won’t be considered. Finally, we model a linear

system, which implies that the changes in the state depend linearly on the previous

states of the system. Often the physical models studied in physics are linear in

nature, and thankfully this often allows an exact solution of the evolution of the

system. Furthermore, quantum mechanics is a naturally linear theory, and although

the measurement processes introduced earlier have a non-linear nature, the system

under study results in linear expression of evolution. (See Eq.3.23 and Eq.3.24) As

will be seen in the next chapter, it will also be necessary to formulate the feedback

mechanism so the system responds in a linear fashion

We can mathematically represent these assumptions with equations in the con-

tinuous form

dr = Ar dt+ Bu dt

2Most systems exhibit a memory time-scale, during which the evolution of the systems depends
on history, and after which the system is independent of the history, or Markovian. If one makes
measurements over time scales larger than this system memory time scale, then the system is
Markovian, yet the system then becomes discontinuous over sample paths. This raises the question
of whether Markov processes with continuous sample paths actually exist in reality.
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The linear nature is obvious from the fact that the change in the system vector dr is

linearly related to the state r via A, and similarly a linear response to the feedback

signal u with B. 3

4.3.2 Optimality applied to the LQR

Now it is possible to apply the results in section 4.2.2 for deriving the continuous

Optimal Programming equation to a system which is linear in both r and u, and a

cost function I which is quadratic in both r and u. Both justify the terminology of

a Linear Quadratic Regulator.

Restating the problem, we have a system whose evolution is described by the

deterministic equation

dr = Ardt+ Budt (4.17)

and we desire to determine the optimal control u0 to apply to the system to minimize

the performance criterion

I =

∫

(r′Pr + u′Qu) dt (4.18)

over an appropriate time interval, the limits usually being t = 0 to t = ∞.

To begin with, P and Q can be considered symmetric, since if they are not

symmetric they can re-expressed as such.4 From observation of these equations, it is

also reasonable to assume a solution of the form I0 = r′Πr, where Π is symmetric.

If the form of the optimal case is not symmetric then by uniqueness, it will not be

a solution to the optimal programming equation. If this substituted into Eq. 4.16

for the optimal control

∂

∂T
(r′Πr) = min

u

{

r′Pr + u′Qu +
∂(r′Πr)

∂r
· (Ar + Bu)

}

(4.19)

r′
∂Π

∂T
r = min

u
{r′Pr + u′Qu + 2r′Π(Ar + Bu)} (4.20)

By taking the derivative with respect to u and setting to zero, the right hand side

is minimized when

2u′Q + 2r′ΠB = 0 (4.21)

3How do we know it is Markovian in nature? Here it is obvious that the rate of change only
depends on the state of the system at that time. For the discrete case, the Markovian nature is
evident from the lack of terms r(i − 1) or earlier.

4Interestingly, this is not the case for a quantum cost function
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or, noting that Π and Q are symmetric

min
u

u = u0= Kr (4.22)

where

K = Q−1B′Π (4.23)

This gives us the optimal control u0 in terms of a matrix K multiplied by the state

x.

Substituting the optimal control u0 = −Q−1B′Πr given by Eq. 4.22 back into

the right hand side of Eq. 4.20 produces

r′
∂Π

∂T
r = r′Pr + (Q

−1
B′Πr)′Q(Q

−1
B′Πr) + 2r′Π(Ar− B(Q

−1
B′Πr)) (4.24)

r′
∂Π

∂T
r = r′Pr + r′ΠBQ

−1
B′Πr + 2r′ΠAr− 2r′ΠBQ

−1
B′Πr (4.25)

r′
∂Π

∂T
r = r′(P+2ΠA− ΠBQ−1B′Π)r (4.26)

By replacing 2r′ΠAr with its symmetric counterpart r′(ΠA + A′Π)r we arrive at

the following differential equation for the symmetric matrix Π

∂Π

∂T
= P + ΠA + A′Π −ΠBQ

−1
B′Π (4.27)

This belongs to a class of equations known as Riccati equations. The boundary

condition is specified by considering the limit at T → 0 where the performance

criteria given by I0 = r′Πr must equal zero, so that Π(0) = 0. Thus the equations for

the optimal control u0 and the optimal performance criteria I0 have been developed,

and the solution is complete.

Separation

It is pertinent to note the separation structure of the optimal control. It is a linear

function of the state of the system r, given by the control matrix K. This matrix

depends on the cost specified (via Q), the way the system react to the control B and

on the evolving matrix Π. The linear structure is important part of the solution, and

the separation between the state vector and the control matrix makes the solution

easy to implement.

Often the time over which the control is applied is not specified, and could be

implemented for such a time that the control matrix K, dependent on Π, has reached

its steady state value. If the control designer assumes that the length of time the

control is applied is infinite, then the steady state value is the appropriate control

to apply, and they can solve the Ricatti equations for the steady state solution and
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encode that into the control matrix.

0 = P + ΠA + A′Π −ΠBQ
−1

B′Π (4.28)

This is termed the infinite horizon situation.

4.4 The LQG

The previous calculations have been a introduction to the sort of themes that are

involved with optimization theory and LQ systems. However, the real power of

control theory involves the ability to deal with not only imperfect measurement,

but noise in both the system and the measurement signal. The paradigm example

for this theory is the Kalman filter, which uses the gain matrix K defined previously

(Eq. 4.23), and multiplies it by the best estimate x̃ of the system state, will provides

the optimum control policy. The proof that the same solution applies for both the

perfectly understood system and one with noise and imperfect knowledge is provided

by the certainty equivalence principle, which will be outlined below.

In this section calculations will be performed in continuous time.

4.4.1 A new system

Now a new model is introduced, that incorporates noise into the system and the

measurement signal. This is done by the addition of a white noise vector ε, related

to the Wiener increments by
∫

ε dt = dW

. The new model for the system evolution becomes

ṙ = Ar + Bu + ε1 (4.29)

where r is a vector describing the state, u is the vector describing the controls applied

to the system, and A and B are matrices that describe how the system evolves as

a linear function of r and u. Obviously this system is still Markovian and evolves

linearly with r and u.

Furthermore, a measurement signal y shall be introduced, which provides some

information about the state of the system. The information may be complete, or it

may only partially observe the system, so the measurement signal will be a expressed

as a linear function of the state vector r. Most importantly, the measurement signal

is corrupted by another white noise ε2. It will have the form

y = Cr + ε2 (4.30)
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These two noise sources ε1 and ε2 may be correlated; in fact, by changing the angle

between the LO and the system signal, from section 2.4, one can vary the amount

of correlation. This manipulation of the system (quantum) noise and measurement

noise will be explored in the next chapter; suffice to say, control theory is capable of

dealing with any amount of correlation. The correlations can generally be expressed

as

cov

[

ε1
ε2

]

=

[

N L

L′ M

]

For this section it will be assume for convenience that L = 0.

4.4.2 Best estimate

The best estimate r̃, whose dynamics are provided by the Kalman filter, is both a

Least Squares Estimate (LSE) and a Maximum Likelyhood Estimate (MLE). That

is, it is an LSE in the sense that the expected difference between the real state of

the system r and the best estimate r̃, as well as the expected difference squared, has

been minimized. The best estimate is also an MLE, well, because it is most likely

state of the system.

This lends itself to the geometrical interpretation of the best estimate r̃, being

the projection of the actual state x onto the vector space of observed measurements,
∑

y. If the projection is given as the expectation of r given
∑

y

E
[

r|
∑

y
]

= r̃

then the difference r̃ − x, orthogonal to
∑

y is minimized.

Along with the best estimate r̃, the uncertainty, or variance V of the best esti-

mate is also available. This provides some indication of the accuracy of r̃.

Another way to look at this is to say that given the history of measurement

results, the distribution of the actual state will have a mean r̃, with a variance V.

This distribution evolves as more measurements are taken, as system evolves as well.

The solution to the problem of best estimate is given by the celebrated Kalman

filter, and for the situation above (Eq. 4.29 and Eq.4.30) it is updated with each

measurement a very similar fashion to the system equations. For the best estimate,

˙̂x = Ax̂ + Bu + VC′M
−1

(y − Cx̂) (4.31)

and the variances evolve as

V̇ = N + AV + VA′ −VC′M
−1

CV (4.32)

where N and M are the covariances for the two noise sources ε1 and ε2. Derivations

of these relations abound; some particularly good developments are in [14] [15].
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4.4.3 Some old ideas renewed

In this subsection, some previous concepts are briefly re-visited; the performance

criteria and the Principle of Optimality. With the introduction of noise, these ideas

take on new forms. Using these new forms, one can arrive at the solution to the LQG

problem, being the Kalman filter. However, instead of covering that development,

it is easier to employ a concept by Whittle [15] which hands the solution over in a

very simple way.

The performance revisited

Now that a new system has been defined, by introducing a stochastic element to the

mathematics, it is necessary to redefine the performance criteria to take this into

account. It is not appropriate to measure the performance of a control policy using

the previous performance I, over a single run of the system. Perhaps that run will

have statistically larger deviations than normal, implying worse performance than

what might be usual. The solution is to use the expectation operator E [ ] to find

the expected, or average, cost over the time that the control policy is implemented,

denoted J . Thus for stochastic systems, the performance is given as the expected

total cost, and is evaluated as

J = E [I] = E

[

∑

t

c(rt,ut, t)

]

(4.33)

J = E

[
∫

c (r(t),u(t), t) dt

]

(4.34)

The Principle of Optimality revisited

Now, for interest, reconsider the Principle of Optimal control once again. The

optimal control should be the one that ensures the smallest (infimal) expected cost

over the time of implementation. Similarly if the expected cost is minimized over

the set of all control policies, denoted by π, then this will be the smallest expected

cost, denoted5 by J0(r) and can be mathematically expressed as

J0(r(t)) = inf
π

Eπ

[
∫ h

0

c(r,u)dt

]

(4.35)

5Here the subscript 0 implies that it is the best performance, being numerically the smallest.
It results from the optimal control.
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J0(r0) = inf
π

Eπ

[

h
∑

t=0

c(rt,ut, t)

]

(4.36)

Now a restatement of the Principle of Optimality expressed the fact that the

infimal expected cost J0(rt) at any time t obeys the recursive equation

J0(rt) = inf
ut

(c(rt,ut, t) + E [J0(rt+1)|rt,ut]) (4.37)

The second term in the brackets E [J0(rt+1)|rt,ut] is the expectation of J0(rt+1) at

time t + 1, conditional on, or given that, the state and control at time t is rt and

ut. Notice that now the infimal process is taken over the control ut, instead of over

the whole control process. This recursive nature lends itself to an easy solution.

With some thought, it can be seen that this is equivalent to the previous state-

ment of the Optimality Principle; that an optimal control sequence (read optimal

infimal expected cost) has the property that if it passes through a particular state,

then remaining controls also constitute an optimal sequence. However, instead of

using this, it is easier to appeal to the Certainty-Equivalence Principle, given in the

next.

4.4.4 Certainty-equivalence principle

The Certainty-Equivalence Principle (CEP) [15] is a powerful notion that allows one

to replace the state in the control loop with the best state estimate. The CEP tells

us that the appropriate control for a system with noise and imperfect measurement

introduced, is the same form as that for without noise and perfect measurement,

namely

u0 = Kr̃ (4.38)

(See Eq.4.22) except one has replaced the state of the system (available under perfect

observation) with the best estimate for the state of the system r̃, which comes from

applying the Kalman filter to the measurement signal. This is the optimal control

solution for the LQG problem.

It is obvious that this solution has the same separation structure as for the LQR

solution (See section 4.3.2). Furthermore, the control matrix K does not depend

on the measurement history, and assuming the end of the control process is at a

time t = ∞ (infinite horizon), then it will assume a steady state form, and the total

control only depends linearly on the best state estimate r̃.

4.5 Conclusion

The desire of the control designer has been quantified in this chapter with the

introduction of the cost function. Next, a Principle of Optimality is utilized to find
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the ‘optimal’ control to apply to a system, that minimizes the cost function. Two

model have been introduced in this chapter, the LQR and the LQG. The LQG model

is a generalized version of the LQR, with stochastic noise being introduced into the

system and the measurement process. The Certainty-Equivalence Principle states

that the two have the same control process, but the Kalman filter is employed to

determine the best state estimate.



Chapter 5

Quantum Control Theory

Now that a basis of control theory has been laid down, it is time to apply this to

the quantum systems previously considered. This work was covered by Doherty and

Jacobs [10], and more rigorously derived by Doherty, Tan, Parkins and Walls [16],

To begin with, an appropriate ‘quantum’ cost function is proposed and discussed,

as well as some brief ideas of feedback mechanisms. Finally, the optimal controls

are presented

5.1 A good quantum cost

A discussed earlier in section 4.1, considerable importance lies upon the selection of

an appropriate cost function. In the design of a cost function for a quantum system,

Doherty and Jacobs [10] suggested a quantum cost function of the form

Jq =

∫

dtTr (r′Prρc) + 〈u′Qu〉c (5.1)

where 〈 〉c indicates an average of the classical random variables, namely the controls

u, and r is the vector of operators

r =

(

x

p

)

(5.2)

This satisfies all of the criteria referred to earlier in section 4.1, most notably it

is quadratic in both position and momentum. Furthermore it incorporates the best

knowledge of the system state by taking the trace of the density operator. Here the

density operator takes on two subtly distinct roles; first as an operator describing

the quantum system, and secondly as a function containing the best estimate of the

system state, to our knowledge.

41
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Expanding the quantum state cost

Now expand the 1st term in the quantum cost equation 5.1

Tr (r′Prρc) = Tr

(

(

x p
)

P

(

x

p

)

ρc

)

(5.3)

= Tr
(

P11x
2ρc + P12xpρc + P21pxρc + P22p

2ρc

)

(5.4)

= P11〈x2〉 + P12〈xp〉 + P21〈px〉 + P22〈p2〉 (5.5)

If we assume that the matrix P is symmetric, then this reduces to

Tr (r′Prρc) = P11〈x2〉 + P12(〈xp〉 + 〈px〉) + P22〈p2〉 (5.6)

= P11(〈x2〉 − 〈x〉2 + 〈x〉2)
+P12(〈xp〉 + 〈px〉 − 〈x〉〈p〉 + 〈x〉〈p〉)
+P22(〈p2〉 − 〈p〉2 + 〈p〉2) (5.7)

= P11(Vx + 〈x〉2) + P12(2C + 〈x〉〈p〉)
+P22(Vp + 〈p〉2) (5.8)

where Vx and Vp are the variances of x and p respectively, and C is the symmetric

covariance of x and p given by

C = 1
2〈xp+ px〉 − 〈x〉〈p〉 (5.9)

leaving us with

Tr (r′Prρc) = P11Vx + P122C + P22Vp + P11〈x〉2 + P12〈x〉〈p〉
+P22〈p〉2 (5.10)

= 〈r〉′P〈r〉 + Tr (PV)) (5.11)

where V is the covariance matrix given by

V =

(

Vx C

C Vp

)

(5.12)

Thus,

Jq =

∫

dt 〈r〉′P〈r〉 + Tr (PV)) + 〈u′Qu〉c (5.13)

5.1.1 Selecting a cost function

Now that a general form of Jq is available, is it necessary to select the the terms of

the matrix P. It is an interesting question to ask how quantum mechanics restricts
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the form of P, since it won’t be possible to reduce the uncertainties of position and

momentum below that dictated by the Heisenberg uncertainty principle. Yet it is

the total cost to be minimized, so that it is only the size of the elements of P relative

to each other, that are important.

Considering that the ambition of most atom-optic laboratories is the cooling and

confinement of an atom, one obviously desirable goal would be to place the harmon-

ically confined atom in the ground state of the potential. This is the minimum

energy eigenstate, and is a gaussian wave function completely defined by

〈x〉 = 0 (5.14)

〈p〉 = 0 (5.15)

〈x〉2 = Vx =
~

2mω
(5.16)

〈p〉2 = Vp = 1
2m~ω (5.17)

The choice of

P =

(

1
2mω

2 0

0 1
2m

)

(5.18)

will provide a quantum cost function of

Jq =

∫

dt 〈r〉′P〈r〉 + Tr (PV)) + 〈u′Qu〉c (5.19)

=

∫

dt
1

2
mω2〈x〉2 +

〈p〉2
2m

+
1

2
mω2Vx +

Vp

2m
+ 〈u′Qu〉c (5.20)

Here we can see that this form of cost will try to reduce both the deviations 〈x〉 and

〈p〉 from the origin, as well as the variances Vx and Vp, around the origin. Notice

also that the choice of P has placed all of the terms in units of energy.

It is also required to determine the form of Q, which will be the cost incurred

with the application of the control. Although a lot of consideration was taken to

include this term (see section 4.1.1), this is not a common consideration for most

physicist, so a relatively simple form can be assumed [10],

Q = q2P = q2

(

1
2mω

2 0

0 1
2m

)

(5.21)

In the limit of small q, the cost function becomes a measure of localization in phase

space, independent of control strength; a cost most physicist would appreciate.
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5.2 The quantum control model

The equations for the dynamics of the quantum system are

d〈x〉 =
〈p〉
m
dt+ 2

√

2ηk Vx dW (5.22)

d〈p〉 = −mω2〈x〉dt+ 2
√

2ηk C dW (5.23)

which can be expressed in a form more suitable for control theory as

˙〈x〉 =
〈p〉
m

+ 2
√

2ηk Vx ε (5.24)

˙〈p〉 = −mω2〈x〉 + 2
√

2ηk C ε (5.25)

so that

dr = Ar dt+ Bu + ε1 (5.26)

where

r =

(

x

p

)

A =

(

0 1/m

−mω2 0

)

(5.27)

and Bu is a control matrix and control signal, yet to be specified, and ε1 is the white

noise vector with

E[ε1] = 0

cov[ε1] =

(

8kηV 2
x

8kηC2

)

5.3 The feedback mechanism

There exists a relationship between the best estimated state of a system, and the

nature of the density operator. Both represent the knowledge of an observer has on

the state of a system in a statistical form. Thus the mapping of the expectation of

x and p and the best estimate of x and p

[

Tr[xρc]

Tr[pρc]

]

7→ r̃

provides a guide to implementing the feedback mechanism.

Only if the feedback terms affect the dynamics of the quantum system linearly

can the results of the previous chapter on control theory be applied. Thus we are
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confined to a Hamiltonian of the form

Hfb = f( Tr[xρc],Tr[pρc] )x + g( Tr[xρc],Tr[pρc] )p

where f and g are functions yet to be determined.

Drawing on the results from the previous chapter, it can be seen that the form

of function f and g are linear in Tr[xρc] and Tr[pρc], as the optimal control u0 is a

linear function of the best estimate r̃, given by K.

It is now appropriate to determine the form of K. We have

K = Q−1B′Π (5.28)

where Π is given by the solution to the steady-state Ricatti equation (See Eq.4.28)

0 = P + ΠA + A′Π −ΠBQ
−1

B′Π (5.29)

where A is given by Eq. 5.27, P by Eq.5.18 and Q by Eq.5.21. A form of the

feedback needs to be assumed here; another assumption for simplicity will bode

well. If

B = I =

(

1 0

0 1

)

(5.30)

so two individual elements of control are fed into both the position and momentum,

then the specification for K is complete.

Solving the Ricatti equation leads to a elementary control matrix

K =1/qI (5.31)

This can be easily interpreted. As q → 0, the cost to apply control becomes unim-

portant, and the strength of the feedback becomes very high, driving the system to

the ground state. Furthermore, the feedback into the 〈x〉 term is only a function of

Tr[xρc] and likewise for the p coordinate; though this lies somewhat on the judicious

choice of B.

Thus the form of the feedback Hamiltonian is given by

Hfb = Kr̃

= f( Tr[xρc] )x + g(Tr[pρc] )p

= 1/qTr[xρc] x + 1/qTr[pρc] p

5.4 The end result

The resulting dynamical system of equations for 〈x〉 and 〈p〉 and their associated

covariances have been explored by Doherty and Jacobs [10], and need not be repeated
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here. Suffice to say that localization phase space is achieved, to a degree that depends

on many of the parameters previously discussed. Most notably, the atom is confined

in a way that is roughly linear with the cost of the control q, and inversely with the

detector efficiency η and the measurement strength k (See Eq.3.14).

Finally, these results are compared in the paper by Doherty and Jacobs [10] with

the model of direct feedback developed by Milburn and Wiseman [17]. It can be

seen that although noise can be completely ‘eliminated’ from the measured system,

the system is forced to exponentially grow in momentum space, due to back action.

No Hamiltonian, linear in x and p, and directly proportional to the measurement

signal, can damp this growth in momentum space. Thus direct feedback does not

offer the advantages that state-estimation does.



Chapter 6

Robust Control Theory

Although the Kalman filter is the optimal control process to apply to a system where

noise is introduced in a prescribed way, an infinite number of other control process

exists, and it can be shown that other forms of filters will provide better control

under differing circumstances.

The search for the risk-sensitive filter arose out of the desire for a filter, similar to

the Kalman filter, but with the property of “good performance under any nominal

conditions and acceptable performance for signal and noise conditions other than the

nominal which can range over the whole allowable classes of possible characteristics.”

[18]

This chapter briefly covers some of the ideas surrounding the relatively new field

of robust control. A redefined exponentiated quadratic cost function will relate to a

new control policy; a risk-sensitive modification on the Kalman filter that provides

an element of robustness to the control system. This new control filter is often

termed a Linear Exponential Quadratic Gaussian (LEQG), as the quadratic cost

function has now been exponentiated.

The development of this LEQG theory and the associated solutions are highly

mathematical, and a rigorous presentation is provided by Peter Whittle [15]. This

chapter contains only a brief overview.

6.1 A new cost, and a new control

A natural question to ask would be “What would happen if one changed the cost

function c(r,u) ?” Obviously, reworking the above calculations would most often

result in a different control policy. Being different to the Kalman filter solution, is

this control still optimal? The answer to this is yes, but the resulting control policy

is optimal to minimize a different cost function.

47
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A new cost

A new cost was suggested by Jacobs in 1973, which was very closely related to the

original cost

crs(r,u) = eµ
∫

r′Pr+u′Qu dt (6.1)

This is merely a re-scaling of the original quadratic cost function outlined in the

LQG problem by a parameter µ, and exponentiated. This new parameter µ is

often called the risk-sensitive parameter, and the control designer is free to set this,

within the bounds of maintaining the integrity of the mathematical structure of

the model. This new formulation of the cost lends itself to the description of an

Linear Exponential Quadratic Gaussian (LEQG) problem, where the cost is now

an exponentiated quadratic.

Reduction to the Kalman filter

One interesting property of this new cost is that the free parameter µ allows the

control designer to reduce the formulation to that of the LQG problem. More

precisely, in the limit µ → 0, the control policy that results from the optimization

process reproduces the Kalman filter solution to the LQG problem.

This can be seen by expanding the exponential for small µ

JLEQG = min
u

E [crs(r,u)]

= min
u

E
[

eµ
∫

r′Pr+u′Qu dt
]

' min
u

E

[

1 + µ

∫

r′Pr + u′Qu dt

]

= 1 + µmin
u

E

[∫

r′Pr + u′Qu dt

]

= 1 + µmin
u

E [c(r,u)]

where c(r,u) is obviously the quadratic cost from the original LQG formulation. So,

the minimization of the exponentiated quadratic cost over the control policy reduces

to a minimization of just the quadratic cost over the control policy as µ → 0, with

the result being the same control policy of the Kalman filter.

Interpretation of the cost function

A substantial amount of literature discusses the interpretation of the risk-sensitive

cost function. One easily accessible view is that by exponentiating the original
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quadratic cost, one is penalizing deviations from the desired state exponentially

greater than for the original LQG system. As such, the resulting control will tighter

confine the system to the desired state with respect to large scale deviations, yet

may suffer more deviations on a smaller scale.

Since µ is called the risk-sensitive parameter, then one can interpret µ → 0 as

the risk-neutral case, which corresponds to the LQG system. Thus one can consider

the risk-neutral, or LQG problem, as a special case of the larger risk-sensitive, or

LEQG problem. This is the treatment given by Whittle [15], who also reflects on µ

being a measure of ‘optimism’ or ‘pessimism’ of the control designer, as to whether

events will turn out in their favour or not. The risk-sensitive parameter can be

considered an experimental parameter; a knob that the experimentalist can turn

up to tighter confine the perturbations of a system that are not modelled by the

feedback mechanism.

6.2 Perspective

Consider two quotes which highlights the utility of the LEQG formalism. First a

paper on quantum feedback, by Doherty, Habib, Jacobs, Mabuchi and Tan [19],

If parameters of the model of the system are not in fact well known

then the control that is optimal for the nominal model may in fact be a

very poor control loop for models with similar but not identical values of

the parameters. This problem can be particularly pronounced in systems

with large number of degrees of freedom and the solution of this problem

is the domain of robust control

In a paper by Boel, James and Petersen the essence of robustness is expounded

in a few short words [20]

[Robustness / LEQG] provides good performance under nominal condi-

tions and acceptable otherwise.

Although robustness is cited as one of the greatest benefits of an LEQG imple-

mentation, perhaps it should be considered that the LEQG formalism is just as easy

to implement, as a dynamical programming code for a digital signal processor for

example, as an LQG filter. Furthermore it contains the LQG filter as a special case

in its operation (µ → 0). Finally, it allows an experimentalist to control the degree

of ‘aggressiveness’ with which the filter acts.
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Chapter 7

Robust Quantum Control Theory

The theory behind the application of risk-sensitive control of a quantum system is

relatively new , and although a few papers have considered this situation [21] [22],

there remains some deeper elements to this merger of theories that needs greater

consideration.

This chapter details some of the simulation results achieved for the LEQG filter

applied to the quantum system of an atom being observed, with feedback.

7.1 The simulation

The program used to simulate the quantum control problem was written in MAT-

LAB, using the explicit Euler method. The implementation of the filter was taken

in the steady state (See section 4.3.2) as well as the variances, which also take on a

steady state form, invariant to the measurement signal.

7.1.1 Separating the nominal and physical models

The program code is set out in Appendix, chapter 9, and is written to calculate

the performance of a control when the nominal model (that which is being used by

the control system) differs from the physical model (the system which the control

system is applied to).

No_delta = 11; x_start = 0; x_finish = 1

x = linspace(x_start,x_finish,No_delta);

mu = 0.2

MSE_LQG = zeros(5,No_delta);

MSE_LEQG = zeros(5,No_delta);

for d = 1:No_delta

del = x(d);

phys_init;

runLQG;

MSE_LQG(:,d) = [mean(r(1,:).^2); mean(r(2,:).^2);
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mean(r(3,:).^2); mean(r(4,:).^2); mean(r(5,:))];

runLEQG;

MSE_LEQG(:,d) = [mean(r(1,:).^2); mean(r(2,:).^2);

mean(r(3,:).^2); mean(r(4,:).^2); mean(r(5,:))];

end

save mu_0.2_del_-1-1.2_3.mat

To measure this, a parameter x is introduced into the program, running from

x_start to x_finish with No_delta equally spaced points. A loop over the variable

d selects these various xs and incorporates them into the physical model via the

subroutine phys_init, and the physical model deviates from the nominal (filter)

model. For example, to create a difference in between the physical and nominal

model in the element A11 for the state evolution

ṙ = Ar + Bu + ε1

the phys_init routine has the line

A_p = [del ,1/mass ;-mass*w^2,0];

Statistics of each run, in this case the mean-squared position, momentum, con-

trols and mean performance, are logged in the matrices MSE_LQG and MSE_LEQG.

7.1.2 The different filters

The simulation subroutines runLQG and runLEQG simulate the same physical exper-

iment with the different LQG and LEQG filters, and complete data for each run

is stored in the matrix r, namely the position and momentum of the atom at each

point, along with the control strength applied and the performance up to that point.

Inside, the structure of runLQG and runLEQG are almost identical, with a loop over i

calculating the state of the system for all No_points points. The subroutine runLQG

looks like this below.

for i = 1 : No_points-1

dW = randn*sqrt(dt);

% Change in physical model and measure

dr = physical( r(1:2,i), A_p,B_p, Y_p, H_p, N_p,u,dt,dW,del);

dy = measure( r(1:2,i), H_p, N_c, dt, dW );

% Change in filter and control

dr_c = filterLQG(r_c, A_c, B_c, u, dy, Y_c, H_c, N_c, dt );

r_c = r_c + dr_c;

u = K*r_c;

% records physical system, control and cost
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r(1:2,i+1) = r(1:2,i) + dr;

r(3:4,i) = u;

r(5,i+1) = L(r(1:2,i), Y_p, u, P, Q);

end

Some of the notable points in this loop are

• dW : The variable dW, equivalent to the typical Wiener increment, is defined

using the generator rand built in to MATLAB, which provides a normally

distributed random number with mean 0 and variance. By scaling with the

square root of the time increment
√
dt, this variable is assured to satisfy the

Itó calculus relation

E
[

dW 2
]

= dt (7.1)

• subroutine ‘physical’ : The physical model is evolved over the time dt

using the subroutine physical. Starting with the initial state r, the random

variable dW and the parameters for the physical system A_p, B_p, Y_p, H_p,

N_p and the control vector u calculated from the previous state, the change in

the system state dr is determined with

function dr = physical( r, A_p,B_p,Y_p,H_p,N_p,u,dt,dW ,del)

% Models the physical system

dr = dt*(A_p*r+[0;del] + B_p*u)+Y_p*H_p’*dW*N_p^(-0.5);

• subroutine ‘measure’ : A measurement signal from the system is calculated

via the subroutine measure,

function dy = measure( r, H_p, N_c, dt, dW )

% models the change in measurement

dy = H_p*r*dt + sqrt(N_c)*dW;

• subroutine ‘filterLQG’ : Here is where the difference between runLQG and

runLEQG is evident; the system is going to be subjected to two different filters,

the LEQG and LQG. Thus for the runLEQG run, the filter filterLEQG is

called. These subroutines calculates the change in the best estimate of the

system r_c, using the filter parameters (different to those parameters of the

physical model) and the codes

function dr_c = filterLQG(r_c,A_c,

B_c,u,dy,Y_c,H_c,N_c,dt);

% models changed in estimated state r_c for an LQG filter

dr_c = dt*(A_c*r_c+B_c*u)

+Y_c*H_c’*(dy-H_c*r_c*dt)*N_c^-1;
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and

function dr_c = filterLEQG(r_c, A_c,

B_c, u, dy, Y_c, H_c, N_c, mu, P, dt );

% models changed in estimated state r_c for an LQG filter

dr_c = dt*((A_c + mu*Y_c*P)*r_c + B_c*u)

+ Y_c*H_c’*(dy - H_c*r_c*dt)*N_c^-1;

7.1.3 Calculating the performance

Performance is calculated by the subroutine L as

function L = L(r, Y_p, u, P, Q)

% calculates the change in the cost function

L = (r’*P*r + u’*Q*u + trace(P*Y_p));

7.1.4 Displaying the results

Using a program pplot, graphs displaying the performance over x are shown; an

example of such a plot is given by Fig.7.1. Here the performance of the risk-sensitive

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

Figure 7.1: Example of ”pplot” output, displaying performance

and risk-neutral filters on a quantum system are shown. The difference between the

nominal and physical models is usually express as a parameter labelled as ∆ along

the x-axis The situation of no difference between the physical and nominal models is

given by ∆ = 0, usually at the centre of the x-axis. Along the y-axis the performance
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criteria is displayed, being the quadratic sum of the control and the deviations from

the origin in phase space. Note that better performance implies a lower performance

criteria.

7.1.5 Cost and performance

In measuring the performance of the LEQG and LQG filters, is was important to

have a criteria that was consistent between both. It must be remembered that the

LEQG filter is still an optimal control policy, yet for a different cost function, namely

one that is exponentiated.

Here the performance is measured by the quadratic cost function; the point of

robustness for the LEQG is to perform better for the same cost by the LQG, when

there exists perturbations between the physical and nominal model.

Note that for no perturbation between the two models, the LQG filter will always

out-perform the LEQG filter. This is because the LQG filter is the optimal filter for

a performance criteria measured as a quadratic cost. Only when the models deviate

does the LEQG have a chance of performing better.

7.2 Code check

It is important to check code against some simple situations where the solution is

well understood. By removing the control, it was possible to model the random

walk in momentum space.

7.2.1 Free run

One good check on the computer simulation is to check a sample path without any

control. Since physically the system is still being perturbed by the measurement

apparatus, the atom will undergo a random walk in momentum space, and this

will be seen as a increase in both the average position and momentum for any

particular run. Note that the average momentum E[〈p〉] is still zero; however, in

the one dimensional case considered in this thesis, it is the momentum squared

E[〈p2〉] related to the variance Vp, that is important. Form the graph one can see

the variance growing, as with a random walk.

7.3 Results

Once the program was set up, it was then up to finding a physical model that differs

from the one used in the control system, and seeing if the LEQG would out perform

the LQG system.
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Figure 7.2: Random walk in momentum space

7.3.1 Zeeman

One possible perturbation to the system was that of a Zeeman shift. This implies

the addition of a linear potential to the harmonic confinement of the atom. The

addition of a linear term to the quadratic potential results in the shift of the origin

(or the minimum). If one looks at the Hamiltonian for the mechanical motion

H =
p2

2m
+ V (x)

=
p2

2m
+ 1

2mω
2x2 + Zeeman term

=
p2

2m
+ 1

2mω
2x2 + z0x

=
p2

2m
+ 1

2mω
2
(

x+
z0
mω2

)2

− z2
0

2mω2

Notice that this changes the force applied to the particle, and this arises in the

dynamical equations of the system as an extra constant term for ṗ like

ṗ = Force

= − ∂

∂x
V (x)
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Figure 7.3: The performances of the LEQG and LQG filters under a Zeeman

shift. The top line is the LEQG cost; the lower line is the LQG cost

= −mω2x− z0

and so the equations for the dynamical motion of the system will be changed like

[

ẋ

ṗ

]

=

[

0 1/m

−mω2 0

] [

x

p

]

+

[

0

−z0

]

→ [Ap]

[

x

p

]

+

[

0

−∆

]

where [Ap] is the original matrix describing the system dynamics, and ∆ being the

perturbation parameter.

This was incorporated into the code for physical.m as below

function dr = physical(r,A_p,B_p,Y_p,H_p,N_p,u,dt,dW,del)

% Models the physical system

dr = dt*(A_p*r + [0;del] + B_p*u) + Y_p*H_p’*dW*N_p^(-0.5);

From Fig. 7.3 it can be seen that the LEQG filter does not handle the system

as well as the LQG, even as the disturbance ∆ increases.
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Explanation

An explanation of this can be understood by realizing that a shift in potential means

that both the LQG and LEQG controllers will be regulating the system to a point

other than the origin. This means that both will suffer the same additional cost due

to the atom rolling down the potential, and requiring a constant control to place

it back. With both filters suffering the same cost displacement as a result of the

Zeeman shift, the LQG will continue to out perform the LEQG for all displacements.

7.3.2 Antifriction

To take on a reverse-engineering approach, one can run a simulation where an ar-

bitrary perturbation is placed between the physical and nominal model. If the

simulation is successful, in the sense that the LEQG performs better than the LQG

filter, a physically realistic mechanism to produce that perturbation would need

to be derived. This is the situation for the addition of a term to the system dy-

namics that mimics a frictional or antifrictional term. Although the LEQG filter

outperforms the LQG filter, no physical mechanism for this has been spelt out.

The perturbation

This was almost achieved for a perturbation to the dynamics matrix for the physical

model A_p. This perturbation added a term that coupled the position to the rate of

change of the position

[

ẋ

ṗ

]

=

[

∆ 1/m

−mω2 0

] [

x

p

]

= [Ap(∆)]

[

x

p

]

This system is equivalent to the two couple differential equations

ẋ =
p

m
+ ∆x

ṗ = −mω2x

which can be solved as

ẍ = −ω2x+ ∆ẋ

This is the equation for a damped harmonic oscillator; with the term ∆ẋ being

proportional to the velocity, energy is being taken into or out of the system. The

term ‘anti-friction’ is a misnomer; if the sign of ∆ is negative, then energy is being

removed from the system, and the amplitude of the oscillations is being damped via
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the ‘frictional’ term ∆x. For ∆ < 0 energy is being introduced into the system, and

this is being described as ‘antifriction’.

This was encoded into the simulation by changing the matrix A_p in the initial-

ization for the physical model, via

A_p = [del ,1/mass ;-mass*w^2,0];
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Figure 7.4: The performance of LEQG and LQG with damping. The top line

is the LEQG cost; the lower line is the LQG cost

Results

The simulation was run for this form of perturbation, and as can be seen from Fig.

7.4, when ∆ → 1, and energy is being added into the system, the LEQG filter

begins to outperform the LQG filter. This can be seen by the dramatic rise in the

performance criteria for the LQG (drop in performance), while the LEQG maintains

a relatively stationary performance criterion.

To confirm that the LEQG filter is performing better, a plot of the atomic

motion for the LQG and LEQG filters is provided in Fig.7.5. One can see that the

LEQG filter has tighter constrained the atom to the origin, and had displayed a

typical ‘robust’ property by denying large deviations. This is a classic LEQG idea

stemming from the exponentiation of the cost function.
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Figure 7.5: Sample paths for the atomic position. The LQG path is on the left,

the LEQG path is on the right

Analysis

Although the graphs above have demonstrated a model where the LEQG filter per-

forms better then the LQG filter, it is now necessary to establish a physical situation

where such might occur. Since antifriction implies energy being added into the sys-

tem, a mechanism for adding energy needs to determined.

To add energy into a quantum system is not so trivial. To begin with, one

might consider adding terms to the Hamiltonian. However, it is necessary that the

Hamiltonian implies a constant energy; that is its definition. The only term that

can be added which is known to maintain the gaussian shape of the state [11] is

one of the form Haf = α(xp + px). It must be a symmetric form to maintain the

Hermitian property of the Hamiltonian. This will add a term to the dynamics of d〈x〉
of the form 〈[x,Haf ]〉 and similarly to d〈p〉 at term of the form 〈[p,Haf ]〉. It seem

promising going through the calculation that the equations (See Eq.3.17, Eq.3.18)

of the dynamics are modified by

d〈x〉 → d〈x〉 + i~2α〈x〉 dt

d〈p〉 → d〈p〉 − i~2α〈p〉 dt
however it can be seen that this does not introduce any velocity dependent term,

but a modification of the form

ẍ→ ẍ+ αx

supporting the idea that any modification of the Hamiltonian will not introduce a

term of the desired form.

Thus the other option is to modify the master equation. As elucidated earlier in
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this thesis, the most common way of removing energy from a system is by employing

the “damping” superoperator D[A] for some operator A given by

2D[A]ρ = 2AρA† −A†Aρ− ρA†A (7.2)

This is used to describe spontaneous emission of an atom, or the decay of light out

of a cavity. One possibility is to change the sign of the operator to produce an ‘anti’

damping term, introducing energy into the system.

Such a situation could be achieved, with a term for in d〈x〉 proportional to

〈Tr
(

A†[A, x] + [x,A†]A
)

〉

and similarly for p. Obviously, the terms x and p won’t work; neither will any

Hermitian operators, such as xp + px, due to the cyclic property of the trace.

Providing such energy could come from an excited reservoir or heat bath, however

unlikely. Further consideration of this type of equation, and modification of the

master equation, may provide some light on the situation.

7.4 Conclusion

For the two situations illustrated above, two different results were found.

For Zeeman shift, a linear potential is added to the physical model as a perturba-

tion again the nominal model in the controller. Under this situation the LQG filter

performs better regardless of the strength of the perturbation. Thus the LEQG does

not provide a sense of robustness against stray magnetic fields in an experimental

situation that causes such a Zeeman shift.

For the situation of a spurious ‘anti-friction’ term, where energy is being coupled

into the system, the LEQG performs better for large values of the perturbation.

Unfortunately, so far no physically realistic mechanism for such a system is evident.
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Chapter 8

Conclusion

In the situations of a quantum system under observation, various levels of approx-

imations are required to produce the dynamical equations for the system. The

resulting model, coupled with an appropriate cost function, provide the necessary

requisites for an LQG analysis, with the resulting Kalman filter offering consider-

able control over the system. This involves dealing with back-action and classical

measurement noise, to provide a best estimate of the system, and when coupled

with the optimal controller, provides a relatively powerful feedback system.

The goal of this thesis is to explore the possible application of a new form of

filter/controller, the risk-sensitive LEQG filter, which has been shown to enjoy a

sense of robustness against model uncertainties. An investigation has been launched

into some simple models, and a computer simulation has highlighted circumstances

where the LEQG filter does provide better control. To this extent, this thesis has

been successful.

There lies a certain irony into simulating robust quantum control theory on a

computer. One must conceive of a physical mechanism that produces a perturbation

to a system in an experimental situation, that would be over-looked or ignored for

the control and feedback of the system. It is only under these circumstances that

LEQG simulations will show better performance. In a real experimental situation,

implementing LEQG over LQG provides only greater robustness by providing risk-

sensitive control, over risk-neutral control.

Furthermore, this project has highlighted the major goals of further work into

this area. Introducing non-linearities requires a higher level of computational power,

that is not easily implemented using standard mathematical tools. XMDS provides

a excellent machine for simulating many complex, non-linear, stochastic quantum

system; it currently is not designed to deal with state-estimation or feedback loops,

and the nature of measurement theory, expressed as a stochastic master equation,

differs mathematically from the random nature of coupling to the environment. By

coupling to the environment, a damping term can be added to a master equation,

but no randomness is introduced to the master equation. Further work is inevitable.
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Chapter 9

Appendix 1

Below are the programs used to implement the simulation. Some have been left out

due to there display in the main text of the thesis. This code is an example for the

Anti friction case, but modifications for the Zeeman effect have been noted in the

main text.

initLEQG.m

% initLEQG.m

% The P & Q for performance criteria

P = [mass*w^2,0;0,1/mass];

q = 1;

Q = q^2*P;

% The LEQG filter which models the physical system

A_c = [0,1/mass ;-mass*w^2,0];

B_c = eye(2);

N_c = 2*eta*k;

H_c = 0.5*8*eta*k*[1,0];

G_c = sqrt(2*k)*hbar*[0;1];

if mu == 0

Y_c = care(A_c’,H_c’,G_c*G_c’, N_c);

disp(’mu = 0!!’)

else

B1_c = sqrt(P);

B2_c = sqrt(H_c’*(N_c^-1)*H_c);

B1 = [ B1_c , B2_c ] ;

m1 = size(B1_c,2);

m2 = size(B2_c,2);

R1 = [ -mu^-1*eye(m1), zeros(m1,m2);zeros(m2,m1), eye(m2) ];

Y_c = care(A_c’, B1,G_c*G_c’, R1);

65



66 Appendix 1

end

% The controller

if mu == 0

X_c = care(A_c,B_c,P, Q);

else

B1_c = sqrt(G_c*G_c’);

B2_c = sqrt(B_c*inv(Q)*B_c’);

B2 = [ B1_c , B2_c ] ;

m1 = size(B1_c,2);

m2 = size(B2_c,2);

R2 = [ -mu^-1*eye(m1), zeros(m1,m2);zeros(m2,m1), eye(m2) ];

X_c = care(A_c, B2, P, R2);

end

K = -inv(Q)*B_c’*X_c*inv(eye(2) - mu*Y_c*X_c);

initLQG.m

% initLQG.m

% The P & Q for performance criteria

P = [mass*w^2,0;0,1/mass];

q = 1;

Q = q^2*P;

% The LQG filter which models the physical system

A_c = [0,1/mass ;-mass*w^2,0];

B_c = eye(2);

N_c = 2*eta*k;

H_c = 0.5*8*eta*k*[1,0];

G_c = sqrt(2*k)*hbar*[0;1];

Y_c = care(A_c’,H_c’,G_c*G_c’, N_c);

% The controller

X_c = care(A_c,B_c,P,Q);

K = -inv(Q)*B_c’*X_c;

phys init.m

% Initialize the information for physical constants and the

mass = 1;
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w = 2;

eta = 0.9;

k = w; % w = ck, and c = 1

hbar = 1;

% The physical system - note H_p and N_p are

% measurement parameters, but cannot be separated

A_p = [0 ,1/mass ;-mass*w^2,0];

B_p = eye(2);

G_p = sqrt(2*k)*hbar*[0;1];

% For measurement

H_p = 0.5*8*eta*k*[1,0];

N_p = 2*eta*k;

% Variances

Y_p = care(A_p’,H_p’,G_p*G_p’);
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