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Résumé

Ce rapport présente des aspects théoriques et expérimentaux a propos de la génération d’un
peigne de fréquence optique. La partie théorique présente aussi des effets non linéaires permettant
une génération active de ce peigne. La partie expérimentale explique la conception et le test de deux
types de modulateur électro-optique a fréquence microonde. Je donne des raisons pour l'absence
de modulation avec le modulateur rectangulaire. Je donne aussi les résultats pour le modulateur
réentrant, ainsi que des conseils pour en construire un plus efficace. A la fin, j’explique le montage
optique et le locking de la cavité par la méthode de Pound, Drever et Hall.



Abstract

This report presents theoretical and experimental aspects of optical frequency comb generation.
The theoretical part also presents some non linear effects allowing active comb generation. The
experimental part deals with the design and testing of two types of microwave electro optic modu-
lator. It gives reasons about the failure of the rectangular modulator and results for the reentrant
one, as well as hints to build a better one. Eventually, I explain the optical setup and the locking
of the optical cavity by the Pound Drever Hall method.



Introduction I have spent six months in the Quantum Optic Group of the Australian National
University (ANU), in Canberra. This group involves one researcher (Ping Koy Lam), one post doc
(Thomas Symul) and a few PhD students (Warwick Bowen, Andrew Lance, Kirk Mac Kenzie and
Magnus Hsu). It is part of a bigger group, which is the centre of excellence in Quantum Atom
Optics.

The project I have undertaken there was "dynamic" frequency comb generation: starting with
a laser beam of given frequency, the aim is to create as many equally spaced sidebands as possible
in the frequency spectrum and to be able to choose their sizes to a certain extent. Many frequency
combs habe been made in the past, the idea of this project is to understand how they work and to
help people who will need to use one in the future in the ANU. It should be also one of the first
attempts to control the sizes of the sidebands.

Frequency combs can be used in metrology, telecommunications, spectroscopy and for short
pulse lasers. Choosing the size of the sidebands can be useful to modify the shape of the pulses.

In order to build such a comb, I had to try and design a microwave cavity, since commercially
available cavities were not suitable for our experiment, and it turned out to be much more difficult
than I had thought in the beginning. Designing the microwave cavity involved a little bit of theory
and computer programming. Testing it allowed me to deal with optics, and learn a few things on
how to use a laser. Then I built and locked an optical cavity around the microwave cavity, which
involves a little bit of electronics.

In a first part, we’ll see how it is possible to make a frequency comb, and how we tried to make
ours. The second part will deal with the first microwave cavity we built. The third part will be
focused on the reentrant cavity, the second type of cavity we used to try and modulate light. The
last part will deal with all the optics which were involved in this experiment, especially the design
and construction of the optical cavity.



Chapter 1

Principles of the Frequency Comb
generation

1.1 How to make a frequency comb

In this section, we will explain qualitatively how a frequency comb can be generated.

1.1.1 Modulation of a laser beam
Phase modulation

We want to use a laser beam, which has a given frequency, and add frequencies to it. A way
to do it is to use a phase modulator, which is an electro-optic device (see section 1.2). Such
a device allows to add a time-dependent phase to the beam. For a beam of frequency w and
amplitude Ej propagating in the z direction we can write the complex electric field in the form:

= FE,e'k2=Y 3 phase modulated beam would be for example E,,,q = ES gl(kz—witncos(Qmi+e))
where 7 is the strength and €2, the frequency of the modulation. ¢ represents the phase of the
electro-optic modulator compared to the laser beam.

Sidebands
When 7 is small enough (7 < 1), the complex electric field can be written:
E_vmz — E)) " (ei(wt+ncos(§2mt+¢))) (1‘1)
—
~  Eoe™ (1 + incos(Qut + ¢)) (1.2)
~ Eo(ezwt + igez(uH—Qm)H—ui) + igez(w—ﬂm)t—w)) (13)

As we can see in equation 1.3, a frequency spectrum analysis of the beam would show the initial
frequency of the beam (the carrier), and two other frequencies of small amplitude, at w + €2,,, and
w — €, which are called the sidebands. We can represent this spectrum on a 3-dimensional
diagram, on which the carrier doesn’t move and the sidebands rotate around the frequency axis
(see fig 1.1), the rotation representing the phase of the sidebands compared to the carrier. (The
sidebands thus rotate around the frequency axis in opposite directions and at a frequency €2,,)

Bessel functions

More exactly, we can expand the phase modulated field thanks to Bessel functions [1],
— —

Emod — Eoeiwteincos(ﬂmt+¢) (14)
= ot N in(Qum t+0)
= Eye Z i"J.(n)e (1.5)
n=—o00

2
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Figure 1.1: Sidebands representation

where J,, i the bessel function of the first kind. We have J_,,,(n) = (—=1)™J,,(n), and these results
are coherent with equations 1.3. The first six bessel functions are plotted in fig 1.2

Jdalx)

Figure 1.2: Bessel functions

We can see that phase modulation is equivalent to adding frequencies in the beam’s spectrum.
The higher the eficiency of the modulation, the more frequencies can be mesured. Nevertheless,
high efficiencies are hard to achieve, and to get as many frequencies as possible, it is often necessary
to have multiple passes in the electro optic modulator.

1.1.2 Optical cavity

In order to achieve high modulation, we can put a mirror on each side of the electro-optic modulator
(see fig 1.3). We obtain thus a Fabry-Perot cavity. We can choose the reflectivity of the mirrors
so that we don’t damage the electro-optic modulator and that have enough passes to have a broad
enough comb. We also need to choose their radii so that the cavity is stable. We need to be careful
though to choose the cavity so that it works well with the electro-optic modulator (see section 1.3)
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Figure 1.3: electro-optic modulator inside a Fabry-Perot

1.1.3 Non-linear effects

Here is the originality of our work. We want to be able to choose to a certain extent the shape of
the comb. In order to achieve that, we can use the properties of several cristals, which are able to
convert two photons in a single photon (second harmonic generation, or SHG) which has the sum of
their energies and then convert this single photon back into two individual photons whose energies
add to the single photon energy. The interesting point is that the second process is temperature
dependent. This means that at a given temperature, the high energy photon will rather give two
photons with equal energies and at another temperature, it will most probably give two photons
with slightly different energies, the conservation of energy being respected.

1.2 Electro-optic modulation

The electro-optic effect is the change of a material’s refractive index resulting from the application
of a DC or low frequency! electric field [2]. The property of such materials can be used to modulate
light.

1.2.1 Pockels Effect

in an isotropic medium
The refractive index of an electro-optic medium is a fugction of the applied electric field. Since
this effect is usually small, we can expand it near E) = 0:

n(E) =n(0) + a; E + 1/2a,E* + ... (1.6)

The coefficients a; and ay are not conventionaly used. When a; is non zero (which is the case for
our Mg doped LiNbO; crystal), further terms are negligible. a,’s value usually lies in the range 1
to 100 pm/V : 10kV applied to a crystal 1cm thick would result in a variation of n of about 107°.

in an anisotropic medium
Electric permittivity and permeability An anisotropic medium is described by the electric
permittivity tensor €, which links the electric flux density B and the electric field of light:

J
B == GElight (17)

this excludes considering the interaction of light with itself or with another beam
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€ is a rank 2 tensor, and is proportional to the unity matrix in the case of an isotropic medium.
It is always possible to find a coordinate system for which € is diagonal. Thanks to the symetries
of the crystals i have used, we can find two axis with "ordinary" index ny and one axis, called the
optic axis, with an "extraordinary" index n, (indexes and electric permittivity are linked by the

following formula: n; = :—;) They are called uniaxial crystals.

Since we can make € diagonal and its principal values are non zero, we can define 7 so that
H R
€oEright = 773 (1.8)

When a steady electric field is applied to a crystal, elements of 7} are altered, so that each of
the nine elements 7;; becomes a function of each component of E. We can expand each element
. . -
in a Taylor’s series about ﬁ =0:

3
nij(ﬁ) = 77ij(8) + Zrz’jkEk + Z Gijr BBy + ... i, J,k, 0 =1,2,3 (1.9)
k=1 k1
where 7, = glﬁi |p=o and (i = %6?51%31 |p=0. mi;are known as the linear electro-optic or Pockels

coefficients. We can then use properties of symetry of 7 and symetries of the crystal to see that
only 5 of these coefficients are independent for a LiNbO; crystal |2].

Index ellipsoid For anisotropic media, an equation called the index ellipsoid is commonly used:
it can be shown that a surface defined by

Y omgmay =1 i,j=123 (1.10)
ij

is invariant to the choice of coordinate system, and carries all information about the 7) tensor
(which has six degrees of freedom: the directions of the principal axis and the values of the

principal refractive index). Using the principal axes as a coordinate system, the index ellipsoid is
described by

2 2
S R R (1.11)

ni  n3 o nj

This surface can be used to determine the index seen by light travelling in any direction and
with any polarization. We have only used light travelling along one of the principal axis with
ordinary index. Thus (see |2],|3] for a more general view) light can be decomposed in two beams,
one with polarization along the other ordinary index axis which will have n, as index and one with
polarization along the extraordinary axis which will travel at ¢/n..

Index change in LiNbO3; Using 1.9 in 1.10 and tables for Pockels coefficient available in litter-
ature (for example [2|, or [4]) we can show that for a low frequency or DC electric field along the
optic axis the index ellipsoid becomes

1 1
(5 + Bt + ) + (5 +rasB)af = 1 (1.12)

o (&

Thus, the ordinary and extraordinary indices are now given by

1 1
= E 1.13
@ 1)

o
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1
E— E 1.14
n2(E)  nz (1.14)

Since usually 713 and r33E are small compared to 1/n? and 1/n? we can make the following
approximations:

no(E) =~ ny — 1/2nri3E (1.15)

ne(E) ~ ne — 1/2nr;3E (1.16)

We saw in this part that an electric field applied along the optic axis of the uniaxial Li/NbO3
crystal we used didn’t change the crystal principal axes but its refractive indices are modified in
a way very similar to the way indices are modified for a an isotropic medium. For our crystal the
effect on the extraordinary axis is more important than the effect on the ordinary axis.

1.2.2 Modulation of light

As we saw in 1.2.1, the Pockels effect seems really small, but a variation of 107° in the index can
entailprovide a phase shift of a few radians if applied over a length of a few 10° wavelengths.

Phase shift with a DC voltage

An electric field can be applied to the crystal by submitting it to a voltage V' across his height d.
A wave travelling the length L of the crystal undergoes a phase shift that is usually written:

v
P =0 —To (1.17)

where ¢y = 2nnL /A, A is the wavelength of the light and
d A

Ve = T3 (1.18)
is the voltage needed to generate a phase shift of 7 called the halfwave voltage. We can then
calculate this halfwave voltage for a LiNbOj crystal thanks to tables given in litterature 2. If
we choose to have a linearly polarized optical wave travelling along the optic axis (longitudinal
modulator) V, ~ 5 10® V, whereas if the wave travels along an ordinary axis and is polarized along
the optic axis (transverse modulator), then the halfwave voltage is only of around 200 V. This is

why we used the crystal as a transverse modulator.

Phase modulation with a low frequency voltage

We will now assume that if the frequency is not too high, we can still use the formulas 1.15 and
1.16 for the indices, except that they become variable with time. We will also assume that there
is an electromagnetic wave travelling at speed v, inside the crystal (proportionnal for example at
Ysin(Qn(t — z/v,))) , creating a travelling wave of modified indices in the crystal. Inside the
crystal, light with polarization along the optic axis travels at speed vjgn = ¢/n., where we can
consider n, to be constant since its variation causes second order phase modulation which can be

neglected. If we consider a small part of an optical ray, travelling at this speed vjigns, say in the

2The values for the Pockels coefficient vary slightly depending on the source so I took average values
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same direction as the low frequency voltage, it will see when going through the crystal an index
varying as sin(2, (Y + 2(1/vigne — 1/v,))), where ¢' is the time when this "part of optical ray"
enters the crystal. Thus the optical length § this ray will go through is (assuming the crystal starts
at z =0 and has a length L):

2 ¢ 72
The first term in this equation is not time dependent and is the phase the beam acquires when

going through the crystal without any low frequency voltage applied. The second is the one which
will give modulation and it can be shown from this formula that:
1 ng?"lg V/d L 1 1 L 1 1

20 g — 170 S G T ey G ) (420

5= /0 Mo = SrBr1sasin( Qo (' + 2(1/vusgne — 1/0,)))]d= (1.19)

0 =n.L

Since the optical length and the phase added to the light are linked by ¢ = 27?%,We can identify
the first sine function in equation 1.20 to the phase modulation we wanted to achieve and which
has been described in the first section of this chapter. We can thus rewrite the phase modulation
for a single pass in a phase modulator which has a travelling electric wave as

@ = nsin(Qmt’" + ¢o) (1.21)
where
L 1 1
- Q= = 1.22
o = gl (1.22)
Sras B L
g = TOmerss (1.23)
A
1 sin(u)
= —_—F 1.24
g = Lo (1.2
O, L 1 1
o= —mEE -2 (1.25)
2 “wiight v

In these equations, ¢y is just a constant phase which doesn’t really matter, n is the depth of
modulation introduced in a previous section, [ is called the reduction factor and shows that the
difference between the speed of light and the velocity of the electromagnetic wave applied to the
crystal is important, since for certain values of this difference, no modulation is possible, as can be
seen on fig 1.4.

The figure shows that it is important to match as well as possible the speed of the light and the
velocity of the low frequency electromagnetic wave (which we will from now on call the microwave
wave since that is what it was in the experiment) since the modulation depth is best when these
two speeds are equal.

The influence of the crystal length will be discussed later in section 3.1.2.

1.3 Optical cavity

Two conditions need to be satisfied so that the optical cavity help broadening the spectrum:

e first, the carrier and the sidebands must be resonant frequencies of the Fabry-Perot cavity: if
the free spectral range (FSR) of the fabry-Perot cavity is Af, then we must build the cavity
so that [7]

Q

nAf = 2—7’: (1.26)
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S e i 7 A

Figure 1.4: Strength of the modulation 5 (arbitrary units) plotted against the difference of velocity
of the light and the low frequency electromagnetic wave

where n is an integer.

e then, we must ensure that the modulation adds at each pass in the electro-optic modulator.
for example, we can imagine a cavity for which the phase would me modulated by ncos(§2,,t+
¢1) at the first pass and then ncos(€2,,t + ¢2) at the second pass and so on with different
¢; at each pass. We must thus make sure that the beam always comes in the modulator in
phase with the modulation. If we assume the electro-optic modulator has a standing wave
inside (which was the case in the one i built), we can decompose this standing wave into one
propagating and one contrapropagative waves, the one propagating in the same direction as
the beam being the only one important thanks to eq 1.24. We must then ensure that the
difference between the time ¢} when the beam enters the crystal for the first time and the
times . when the beam enters the crystal for the /" time are such that

Qu (1

)

—t)) =2mxn (1.27)

where n' is an integer, so that the modulation depth adds at each pass (see eq 1.21). If we
assume that the electro-optic modulator is standing in the middle of the optical cavity, then
t; — 41 =i % Lopr/c = 357 So the condition comes down to

Qi
= 2'A 1.28
N (1.2

which is always fulfilled when eq 1.26 is satisfied.

The second condition may not be always realized, since it is very hard in practice to put the
electro-optic modulator exactly in the middle of the optical cavity. We have to hope that the
modulation of light "on the way back" is not the exact opposite of the modulation it got when
first going through it.

As for the first condition, it is hard to understand what actually happens inside the optical
cavity, since sidebands only appear in the beam once it is inside the optical cavity. My guess is
that if sidebands do not fit exactly in the Free Spectral Range pattern of the optical cavity, then
the modulation they get at each pass has a random phase, thus preventing them from broadening
the comb.
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1.4 Non-linear effects

This section will be a brief introduction to some other properties our crystal has. It will be short
because i didn’t have enough time to use these properties experimentally, although they are part
of the project. More complete informations can be found in [3] [2]

We can notice that the same formalism allows us to understand both the Pockels effect and the
non-linear effects.

1.4.1 Non-linear media and light

The crystal used in this experiment is a non-linear medium, which generates some surprising
properties. For instance, the principle of superposition can be violated and new frequencies can
be generated. We must note that the crystal used has a range of temperature (including room
temperature) where non linear effects cannot be seen.

As opposed to a linear medium, a non-linear medium has a non-linear relation between the
polarization density and the electric field B which can now have any frequency, including
optical frequencies. Actually, the relation is usually linear for small electric fields, but becomes
non-linear when the electric field reaches values comparable with interatomic electric fields.

Assuming that the response of the medium is instantaneous (which is equivalent to the crystal
being transparent) for the frequencies considered we can write the polarization density :

P=ead XS E A+ XEi B+ ) (1.29)
J Jik

We intend to use the crystal on a normal mode (polarization along the optic axis), and we can
write eq 1.29

P=e¢(xVE+xPE*+ ) (1.30)

1.4.2 Non-linear wave equation

Maxwell’s equations for an arbitrary homogeneous medium give us the wave equation:

1 O*°E o0*P

Zor Mg (1:31)

If we write P as the sum of the linear term eyx £ and a non-linear term Py, = eo(x? E2 +...), the
wave equation becomes:
n2 62E 82PNL

ViE — — =
2o Mo

(1.32)

where n? =1 + .

We will solve this equation using the Born approximation: we suppose that an optical wave
arrives in the non-linear media, creates a non-linear polarization density which radiates an op-
tical field and so on. We will only make the first step in the next sections, more quantitative
dealingcalculation can be found in |2]
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1.4.3 Second harmonic generation

We consider the term Py with only the order two non-linearity, which is to say

Py1, = e P E? (1.33)

For an electric field F(t) = R(Ey(w)e™?), using a trigonometric formula, eq 1.33 becomes

Prp(t) = 6o%(|E(w)|2 + R(E*(w)e™)) (1.34)

Using this formula in the wave equation 1.32, we see that an electric field at frequency 2w is
generated. We can see that the intensity of the second harmonic wave generated is proportionnal
to the square of the intensity of the incident light (as long as the first Born approximation is valid,
which is the case for small second harmonic generation). We can also note that there is a steady
polarization density across the crystal which results in a dc voltage across the crystal.

1.4.4 Three wave mixing

We now consider an incident wave which has two harmonic frequencies: E(t) = R(Ep(w)e™ ! +
Eja(w)e™2t) When we square this to have Py, we obtain 5 frequencies: 0, 2wy, 2wy, wy = w; +wo,
and w_ = w; — wy. Light is generated as explained in the previous section at these frequencies,
although not all of these frequencies are actually to be generated at the same time, because different
conditions apply (phase matching condition for example). This phenomenon is used in many
applications such as parametric optical oscillators, parametric amplifiers...

1.4.5 Thermal effect

The reason why it is interesting for our experiment is that when we have sidebands (frequency
w4 n*Q —m)thanks to the Pockels effect, we can generate second harmonic (frequency 2w, called
green light, since the laser used is an infrared laser at 1064nm.), which then can give 2 photons at
w £ n*w,. We can thus obtain a comb which has a shape not entirely given by Bessel functions.
And we can even tune the shape of the comb since what frequencies a photon at 2w is more likely
to give is temperature dependent: this property is described by Sellmeyer’s equation.

1.5 Limitation to the Optical Frequency Comb

With Pockels effect, it seems that provided we use very reflective mirrors for the optical cavity,
we could generate an infinite comb. Previous experiments show that the span is usually of order
10 Thz or less, for example 7.6 Thz in [6], or 3 T'hz in [5]. We can give two reasons for that:

e first, the energy of light is limited and there are losses in the crystal (around 0.1% per
centimetre, which is quite a lot considering that we have used a 2 cm long crystal with
99% reflective mirrors for the optical cavity) , which decreases the available power at each
pass. Since we want at least one photon in each tooth of the comb, the limitiation of energy
available limits the span of the comb.

e but this limit is not reached, what really limits an optical frequency comb is the fact that the
crystal index n, is frequency dependant, thus the free spectral range of the cavity changes
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slightly for each frequency, whereas the modulation frequency is always the same. So, when
the comb reaches a given span, the free spectral range of the optical cavity and the modulation
frequency of the electro-optic modulator are not matched anymore and no more teeth can be
created. This condition is actually dealt with in [6]

We'’ve seen in this chapter what an optical frequency comb was and a theoretical way to build
it. The next two chapters will deal with how to make an electro-optic modulator at a frequency
of a few GHz, which was the first step of my project and turned to be the longest and hardest,
pobably because it has a lot more to do with microwave engineering than with optics.



Chapter 2

Rectangular cavity

The objective I was given was to phase modulate a laser beam at a frequency of roughly 3 GHz.
Such frequencies cannot be easily achieved by simply putting the crystal between two electrodes
connected to a microwave generator. We had to find a different way of achieving it. Our idea
was to build a rectangular waveguide with the crystal inside, so that there would be a travelling
microwave in the crystal. The tricky part is to choose the correct dimensions for the cavity so that
the optical and microwave waves propagate at the same speed.

2.1 Design of the cavity

2.1.1 Coordinates and stuff...

The coordinates we used are shown in fig 2.1 and fig 2.2.

A optic axis

d L
v

P A

w

Figure 2.1: dimensions of the crystal

We were given two identical crystals which had a length L = 20 mm along the z-axis, a width
W = 3 mm along the x-axis, and thickness d = 1.5 mm along the optical axis (y-axis). The

.Y

/'Z

o T =WwW/2 a

Figure 2.2: Dimensions of the microwave cavity

dimensions of the microwave cavity we want to design are 2a along the x axis, and d along the
y-axis: the crystal and the microwave cavity both have the same height. We will use ¢t = W/2 for
the calculations in the next sections.

12
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2.1.2 Reduced wave equation

Microwave engineers use waveguides to transmit microwaves with low losses. Some of them have a
rectangular shape. Our idea is to couple microwaves in such a waveguide loaded with the crystal.
Let us consider a medium of index n = /€, for the microwave.

For an harmonic electric and magnetic field, Maxwell’s equations give Helmholtz equation:

AH + ke H =0 (2.1)

where we do not consider any time variation of ﬁ Since we want the microwave to travel along
the z-axis (like the laser), we will consider an electric field:

H(w,y,2) = (h(w, ) + W ha(, )™ (2.2)

where h,(x,y) is the transverse magnetic field. We can consider a similar equation for the electric
field. With such notation, we can infer the reduced wave equation from eq 2.1
0? 0? 9
(@+8—y2+k°)hz =0 (2.3)
where k? = k%, — [? is called the cutoff wavenumber (a wave with a frequency lower than the
corresponding cutoff frequency cannot travel in the waveguide). This relation will prove useful to
calculate the fields in a rectangular waveguide.

2.1.3 TE waves

Transverse electric (TE) waves are characterized by the fact that they have no electric field along
the z-axis. We want to use one of these because they have an electric field along the optic axis and
because they have the lowest cutoff frequency.

Transverse electric and magnetic fields for a TE wave in a rectangular waveguide

Using Maxwell’s equations in a source free region, and assuming an e ** z dependence of the
electric and magnetic fields, we find the following relations for the four transverse field components
as a function of the magnetic field component H,|8|

H, - _k—i;a;f (2.4)
H, = _k—i;aafzz (2.5)
E, = _Zg“ 8;; : (2.6)
E, - %a;iz (2.7)

where w is the frequency of the harmonic field and p the relative permeability of the material.
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Longitudinal magnetic field for a TE wave in a rectangular waveguide

We can see that knowing h, (or H,) allows us to find all the values of the electromagnetic wave.
Using eq 2.3, and the method of separation of variables (h,(z,y) = X (2)Y (y)), we find:

d’X
——+kEX =0 2.8
R 23)
LY
where k2 + k7 = k7.
Thus, the general solution for h, is:
h,(x,y) = (Acos(kyx) + Bsin(kyx))(Ccos(kyy) + Dsin(kyy)) (2.10)

The different constants are found thanks to boundary conditions and we can see that TE waves
travelling in a rectangular waveguide with a thickness ¢ and a width d can’t take just any frequency:
B =/k*, — (E)? — (%)% with n and m integers. This shows that there is a cutoff frequency for
each T'E,, , mode.

2.1.4 Partially loaded waveguide

In this section, we consider the actual crystal in a cavity as shown in fig 2.2. Since geometry is
uniform in y, we will look for T'E,, o modes that have no y dependence. We found that there were
three conditions which needed to be respected.

Phase matching

In order to have a travelling wave, we need to match the phase of the travelling waves outside and
inside the crystal at the & = £t interfaces. This means that we want

b = Vek* =k (2.11)
and B3 = /k?—Kk? (2.12)

where k. and k, are the cutoff wavenumbers respectively in the crystal and in the air. This gives
us a first condition.

Boundary conditions

We must also ensure the continuity of the fields at the interfaces. We can use eq 2.10 in each part
outside the crystal and inside the crystal.

Acos(k.x) + Bsin(k.x) for -t <a <t
h, = { Ccos(k,(a — x)) + Dsin(k,(a — ) fort <z <a (2.13)
Ecos(kq(a + x)) + Fsin(k,(a +x)) for —a <z < —t

which, using eq 2.7 gives the following values for £,

i:f(—Asm(kcx) + Beos(k.x)) for -t <z <t
e, = i}:’f(C’sin(ka(a — 1)) — Dcos(ky(a —x))) fort<z<a (2.14)
Wit (Feos(ka(a+ ) + Fsin(ka(a+))) for —a <o < —t

We can now get rid of a few constants:
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e [/, =0 when z = £a, which entails D—=F=0
e using the symetry about the plane x=0, we have A=0 and C=E

The continuity condition at © = ¢ becomes (the condition for x = —t is the same since we
already used a symetry argument) :

— ke ) —
{BCOS(kct) = =Csin(ka(a — 1)) for e, (2.15)

Bsin(k.t) = Ccos(kq(a —t)) for h,

It is an homogeneous set of equations, so to have non zero solutions, determinant must vanish:

k1

tankel) = e = 1)

(2.16)

Velocity phase matching

As we saw in section 1.2.2, in order to have a good modulation depth, we need to match the
microwave phase velocity (which modulates the phase) with the light group velocity (which is the
speed at which light propagates in the crystal). This gives us the last condition I found:

7 (2.17)

Summary

We know the values for ¢, n. and ¢, and the set of three equations gives us the values of k., k, and
most importantly a as a function of w,. We chose w, so that it was close to 3 GHz and so that
the microwave field could also be resonant along the z-axis. We also want to have a frequency for
the microwave such that we can build an optical cavity around it with a normal size (a few to ten
centimetres roughly). The calculations were made using a mathematica progam given in A.1. We
found the following results for a 7'E9; mode:

e the width of the cavity should be 2a = 16,79 mm
e the resonant frequency should be 3.363 GHz

e the length of the optical cavity can be 64.6 mm if we take f = 2Af (see A.2 for mathematica
program)

It turns out that the field is evanescent in the region outside the crystal.

2.1.5 Finish of the cavity

I sent these results to the workshop so that they could build the cavity for me. In the end, the
cavity was made of 4 parts: the post, which included walls on the sides, the lid, and two caps that
we could remove and which had holes (1 mm?) for the laser to go through as can be seen on fig
2.3.
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Figure 2.3: Picture of the rectangular microwave cavity

Material used

We chose to use copper for this cavity, since it is a very reflective material for microwaves (which
produces a high Q factor for the cavity) and its thermal coefficient expansion is small for a metal:
one of the concerns we had is that when we heat the cavity (around 120°C' if we are to produce
green light) it can expand, stress and even crack the crystal.

But it is not a good idea to use such a material without coating it in some way because our
cavity soon became rusty.

Fitting the crystal in the cavity

As can be seen in fig 2.3, the height of the cavity proved to be a little bit too small for the crystal,
so we asked the workshop to dig in both the post and lid a little bit to allow the crystal to fit in.
Moreover, it makes the crystal more stable in the cavity: it doesn’t move when someone bangs the
door. The geometry is a little bit changed, but i hoped it wouldn’t change too much the resonant
frequency.

antennas

We asked the workshop to drill holes in the lid so that we could fit a SMA connector in the cavity.
I welded a piece of wire to this connector so that we had an antenna in the cavity. It is rather
difficult to prevent the antenna from touching the lid, which has to be avoided since it creates a
shortcut. We put the antenna as close as possible to the crystal and at the middle of the length of
the cavity, where the electric field is bigger.

2.2 Preparation of the oven

For the reasons explained in the first chapter, we wanted to be able to temperature control the
crystal. For this rectangular cavity, i used one of the ovens usually used in the lab. Its size was
just the size of the rectangular cavity we built. A picture of it can be seen on fig 2.4

2.2.1 Heater and sensor

The heating was made thanks to two parallel sets of two 1 €2 and one 0.82 (Q resistors in series.
These resistors are designed to be able to give 6 W at 70°C'. The temperature controller we used
(Wavelength Electronics LFI-3751) was designed to be able to deliver 40 W with a maximum
output current of 5 A. The reason why I used two 0.82 €2 resistors is that many resistors were a bit
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Figure 2.4: Picture of the oven used for the rectangular cavity

too big to fit inside the holes (see fig 2.4 and created short circuits. I then put some temperature
and electric resistant silicone rubber (Silastic RTV Silicone rubber 744).

The sensor used was a thermistor which is a resistance that varies with temperature. As an
example, the one i used for this oven was 470 k€2 at 25°C" and 10 k2 at 100°C'. We placed the
thermistor as close as possible from the resistors (see fig 2.4) so that the time response could be
as small as possible.

2.2.2 Temperature control

To have this temperature controller work we only need to supply 3 values of the thermistor for
3 different temperatures. We then set a maximum output current to prevent it from overloading
the resistors when it reaches the set temperature (to stick to a given temperature, the current is
smaller).

For this particular setup, one problem is that the temperature controller cannot measure resis-
tance above 500 k€2, so I had to ’preheat’ the oven by putting my hands around it for a little while
before i could turn the temperature controller on.

2.3 Test of the cavity

We used a microwave signal generator (Rhode & Schwartz SMR 20) and a microwave amplifier to
feed the cavity. We used two different methods to look for a resonant frequency of the cavity.

2.3.1 Circulator

The first idea we had to test the cavity was to use a circulator, which is a device with three
connectors. In the first one comes the signal, which is directed to the second connector (which
is connected to the cavity) and the third connector gives the reflected power from the second
connection (when there is impedance mismatches, most of the power is reflected.) The assumption
was that when the caviy would resonate, it would leak more microwave, thus reflecting less of
the power. We sent the reflected power to a spectrum analyzer (Hewlett Packard E4405B) and
using the ’hold max’ button, i scanned the cavity from 2 to 4 GHz which is the range in which
the circulator can work. It is important to compare the data thus acquired with data acquired
with the second connector unconnected because there appears to be many 'resonances’ which are
probably due to the apparition of standing waves in the cables since they exist in both cases, with
or without the cavity connected.
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2.3.2 Optical test

I mode matched the beam inside the cavity so that the waist was about 0.82 pm in the center of
the crystal. We had a fast response photodiode (able to see modulation up to 10 GHz). So I had
to transform the phase modulation in amplitude modulation, thanks to a quarter wave plate before
the cavity (which makes the polarization circular) and a half wave plate after the cavity with a
polarizing beam splitter (see 4.2.1). The signal from the photodiode was sent to the spectrum
analyzer and i scanned the frequency from 2 to 4 GHz very carefully (1 Mhz) since the maximum
Q factor i estimated was 2000. Then i scanned more roughly the cavity from 1 to 6 GHz.

To make sure the microwave generator and the photodiode were working, i used a New Focus
Reentrant cavity at 4 GH z, aligned it and checked for modulation, which i could see, but was very
hard to find.

It is a very long process, since the modulation expected is weak, and there is a lot of pick up:
microwaves go straight from the generator to the spectrum analyzer.

After 2 months spent on this cavity, i stopped.

2.4 Why doesn’t it work?

There are many reasons which can explain why the cavity didn’t work:
e We can imagine that the modulation was too weak for me to see it.

e the power amplifier I sometimes used from 2 to 4 G Hz may have not received enough power,
since when i used it again with the reentrant cavity, I found that the power supply i had used
couldn’t supply enough power (4 A at 15 V).

e A big concern is the size of the antenna, which is only 1 mm long, whereas the wavelength
of the microwave is around 10 cm.

e The copper rusted very fast, after 2 weeks it started to look a bit tired.

e the antenna is in a place where the field is evanescent (outside the crystal), so it may be a
place where it is hard to get the T'F19; mode.

e most probably, the reason why the cavity didn’t work is that we asked for a width of cavity
of 16.89 mm instead of 13.89 mm, which is very strange since the mathematica program gave
us the second value. Whether i copied it wrongly or a factor 2 which had to be added entailed
an error is not sure. Anyway, even with such a length , the resonant frequency should have
been of 3.2 GH z, which is in the range i scanned. Nevertheless, the phase matching condition
wasn’t very well satisied in this case.

I asked the workshop to build two bigger waveguides so that we could check the importance of
the length of the antennas. I designed them so that they should be resonant around 3 GHz with a
T Fyp; mode and a T'Eyp; mode. One of them has a height of 5 ¢m and the other one 1.5 mm just
like our cavity. The lids for the T'Fyy; and T Ejp; modes have spots for two antennas so that we
can look at the transmitted power from one to the other (when the cavity is resonant, the power
transmitted should be bigger). Unfortunately, I didn’t have enough time to try them.
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Reentrant cavity

Since the rectangular cavity didn’t work, we decided to try another way. We had a New Focus
cavity in the lab that was resonant at about 4 GH z (tunable with a screw over roughly 200 M H z).
[ tried to find some documentation about these cavities and the most useful I found was [10]. A
reentrant cavity had already been designed in the lab by Yacin Karim, but he used the Sperry
curves, which are not very accurate and only provide us with ratios (of radii, heights in the cavity
(see fig 3.1 for a picture of a reentrant cavity ))

3.1 Principle of a reentrant cavity

3.1.1 Presentation

A reentrant cavity is a cylindrical cavity which is fed by an antenna. It is made of a cylindrical
conductor in the center which is ended by a gap. The outer wall is a cylindre. A picture of it can
be seen on fig 3.1

Figure 3.1: Picture of the reentrant cavity I designed

The crystal is put on the post and has to be as close as possible to the lid, if possible with no
gap to allow most of the microwaves inside the crystal. We can see this cavity as a bottom part
full of magnetic field and a top with a lot of electric field. The mode is thus excited by a loop
antenna in the bottom part of the cavity. The New Focus cavity even has a short circuit as an
antenna (the antenna touches the post which is grounded).

19
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3.1.2 Reduction factor

According to [10], there is a standing wave in the crystal, which we can consider as two travelling
waves. Thus, the eq 1.20 gives us the reduction factor 3 for a reentrant caviy! :

_ 1sin(uy) | sin(u_)
[ = 3| s +— (3.1)
where
us = b (/e ) (3.2

c

Length of the crystal

It is interesting that the reduction factor is a function of the lenght of the crystal. Nevertheless,
the really important value is the modulation depth n which is a function of L. T have plotted
the value of the modulation depth as a function of the crystal length in fig 3.2 for a modulation
frequency of 2 GH z, for reasons we will see later.
7
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Figure 3.2: Modulation depth (arbitrary units) as a function of the crystal length (in meters...) ,
assuming a given voltage across the crystal

We must be careful using this plot since it assumes that the voltage applied across the crystal
doesn’t depend on the crystal length. This is not exactly true, since the voltage depends on the
factor of the cavity which is a function of the dimensions of the cavity. And we must bear in mind
that the dimensions of the cavity must be chosen according to the dimensions of the crystal (the
crystal has to fit inside the cavity).

Resonant frequency

Since the dimensions of my crystal were given, I also found interesting to plot the modulation depth
as a function of the modulation frequency. It can be seen on fig 3.3 that the lower the frequency,
the better the modulation depth.

Since last time someone tried to design a reentrant cavity in the lab they failed to see any
modulation, [ thought it could be a good idea to try and design a cavity with a rather low resonant
frequency.

1This implies that the electric field is along the optic axis of the crystal, which will prove to be a good approxi-
mation in the simulations
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Figure 3.3: Modulation depth as a function of the modulation frequency

It is also interesting for the next attempt to build a microwave phase modulator to order a
crystal with dimensions chosen so that the value of 7 is as big as possible. (Both the dimensions
and the resonant frequency are important for the value of 7).

3.2 Computer simulations using Superfish

In order to design a reentrant cavity that would allow optical phase modulation, I had to look on
the internet for a numerical solver of Maxwell’s equations. I found many softwares but the only
one i could use was Superfish, which runs on PCs.

3.2.1 Superfish

Superfish is a collection of programs developped at Los Alamos National Laboratory which could be
found on the server laacgl.lanl.gov (IP 204.121.24.18, username: SFUSER, password: ftpsuperfish).
The package solves Maxwell’s equations in two dimensions for both static magnetic and electric
fields as well as radio-frequency electromagnetic fields using finite element analysis. The codes
analyze a user-defined cavity geometry to generate a triangular mesh that is subsequently used in
the finite element analysis of the wave equation. Radio-frequency solvers iterate on the frequency
and field calculation until finding a resonant mode of the cavity.

3.2.2 Equivalent crystal

The package can only solve Maxwell’s equations in two dimensions and thus our cavity must have a
cylindrical symetry (so that we can describe the reentrant cavity with only two coordinates: along
the height and the radial distance.).

It is not the case since our crystal is rectangular. But like in [10] we decided to model the
reentrant cavity as a section of coaxial transmission line that is short circuited at one end and
capacitively loaded by the electro-optic crystal at the other end. Thus, the resonant frequency
should not change too much if we replace our actual rectangular crystal with a virtual cylindrical
one with a different ¢, chosen so that the capacitance remains the same.

Using the formula

(3.3)
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for a parallel plates capacitor (where S is the surface of the plates and e the distance between
them), we can easily find the equivalent €, of the cylindrical equivalent crystal. We decided to
make the inner cylinder radius the size of the length of the crystal: the longer the inner radius,
the lower the resonant frequency, and i had difficulties to find a resonant frequency over 1.5 GHz
with realistic dimensions (see 3.2.4).

We can choose the equivalent crystal with the same surface as the actual one or choose its
radius to be the length of the actual crystal. As long as we can approximate the reentrant cavity
as a coaxial transmission line capacitively loaded, it shouldn’t change anything. I tried both of
these methods and they give the same results at better than 5%, which is really good compared to
the other problems i had.

3.2.3 Problems solved

Writing a Superfish program is not very easy and i spent quite a long time trying to model our
cavity. It was a better idea to try one step at a time, first with a cylinder, then with a reentrant
cavity with no crystal inside and then add the crystal. I also spent a lot of time analyzing examples
given in the litterature, but this program is usually used for particle physics and is used in a much
more general way than the way I used it.

The first difficult thing was to understand the right order to run each program (double click
the .am file, then run cfish and then sfo and then open the .t35 file to see the results) and how
to write a correct program for the simplest thing: an empty cavity. Then, I tried to reduce the
calculation time (up to 1 hour at the beginning) by reducing the mesh until the results became
very different.

Empty cavity

Yacin Karim had already studied an empty reentrant cavity, and I used the values he gave in
his report [4] to calculate the resonant frequency. Using Superfish simulation (see B.1), i found
fres = 2655 M H z which is the value Yacin found at better than 1%.

Mesh

The first times I used the program, it took it ages to send me an error signal. I increased the size
of the mesh by a lot and when i was able to write programs that worked, i decreased its size until
I kept having the same resonant frequencies and calculated fields.

Indices

We can only give one €, for our crystal, so we used the index along the optic axis, thus assuming
that there is almost no radial electric field in the crystal. This approximation is very well respected,
as can be seen on the figures 3.4 and 3.5 of the simulations.

3.2.4 Design of our cavity

There are a few conditions that needed to be respected for the design of the reentrant cavity:
e first the crystal must fit in, which means that the inner radius must be bigger than the length

e the outside dimensions of the cavity must fit in the optical cavity, and its height must not
be too big because the cavity has to stand on an adjustable mount on the optic table



CHAPTER 3. REENTRANT CAVITY 23

e it must be makeable by the workshop, which means that the difference between the outer
radius and the inner radius cannot be too small (and we have to fit an antenna inside anyway)

e it must have a resonnant frequency of a few GHz

I ran the superfish program (given in B.2) quite a few times with different dimensions, and
it turned out that the resonant frequencies were usually very low (a few hundred of MHz). To
increase the frequencies, it would have been easier with a smaller cristal (shorter or less wide). The
only way to have a resonant frequency over one GHz was to make the difference between the outer
and inner radius rather small (5 mm).

The results of the calculations are shown on fig 3.4, which contains the values we sent to the
wokshop (in millimeters). The figure is cylindrically symetric around the vertical axis = 0

R

cavitad F = 1483.7254 Mz

Figure 3.4: Calculated values of the electric field for our reentrant cavity. Resonant frequency :
1484 MHz. The equivalent crystal radius is equal to the length of the actual crystal

We can see that we considered the height of the crystal to be 1.6 mm instead of 1.5 mm (which
is the value given by the manufacturer) because of the problems encountered with the rectangular
cavity.

But this can generate a gap if the crystal is actually 1.5 mm. We can see the corresponding
simulation in fig 3.5. We must consider that the eletric field is much sronger in the gap than in the
, S N 1
LTI "Hl'l

il

cawitad F = 2085.9459 MHz

Figure 3.5: Calculated values of the electric field and resonant frequency for our reentrant cavity
with a gap. Resonant frequency: 2065 M H z

crystal (which can be seen by looking at these values in a tabular, and on the figure when we know
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that the size of the arrows is normalized to the values of the electric field at » = 0 by comparing
with fig 3.4) . The resonance frequency is also much higher.
We asked the workshop to build the cavity with the values shown in fig 3.6.

| | 152

20

SN lm

30 45

382

Figure 3.6: Dimensions asked to the workshop

We asked the workshop to drill a square exactly on a diameter (in the outer cylinder) and to
place one or two spots for antennas at 90° of this diameter respectively for the first and second
cavity. Just like for the rectangular cavity, I asked for a hole for the antenna as small as possible,
but this time i had the cavity made out of aluminium and polished the best they could: the Q
factor of the cavity depends on the finish of the cavity and when it increases the value of the
electric field across the crystal increases for a given input.

3.3 Oven

At this time I still aimed at finishing my project so I designed an oven for this cavity. It had to
be very easy to build for the workshop so that they could build it quickly. It can be seen in fig
3.7. Tt is made of two aluminium plates that can be srewed to tighten the cavity in between. Each

Figure 3.7: Oven for the reentrant cavity

plate has 4 resistors of 0.82 €2 in series and they are put in parallel. Thus, the equivalent resistor
is 1.64 €2 which is quite close to the ideal 1.6 €2 of the temperature controller. I put the thermistor
in the lid of the reentrant cavity.
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[ was given an older model of temperature controller and I had decided to leave the crystal at a
temperature around 70° (At first [ wanted to test the temperature controller, and then thought it
would be a good idea to test the modulation at a temperature closer to the final temperature). But
the temperature controller went down during the week end, and when i tried to align the crystal,
it proved very difficult. It turned out that the crystal was slightly cracked. It is probably due to
it cooling down too fast. Some people in the lab think it can still be used since it is only cracked
on an outter region, but nobody tried it.

3.4 Results

In this section I used the cavity which has two antennas, so that i could easily find the resonance
(with a signal generator and a spectrum analyzer).

3.4.1 Resonant frequencies

When I tried and test the cavity, I noticed that the crystal inside could move, which meant that
this time, the gap was too big for the crystal. Thomas has the idea to put aluminium foils between
the crystal and the lid and the post. It was rather difficult to cut aluminium foils without folding
them (to avoid stress on the crystal) and as close as possible to the size of the crystal (same reason).

I found that two aluminium foils prevented the crystal from moving inside the cavity, and
modulation and transmission (with the two antennas) proved that there was some modulation at
1.609 GHz. After the crystal cracked, when i changed the crystal i also removed one foil, and then
the modulation occured at 1.702 GHz. Then I removed all the aluminium foils and tried to move
as little as possible the cavity so that the crystal would not move inside. The modulation occured
at 1.987 GHz. We must acknowledge that this frequency varies slightly in the time, maybe because
of temperature shifts. We decided to keep using no aluminium foils for crystal safety reasons and
also because we had a power amplifier in the range 2 to 4 GHz.

It is interesting to emphasize that the modulation occurs at the same frequency as the resonance
of the cavity in transmission, which is very helpful since the Q factor of quality is very high, making
the scanning of the cavity very painful (all the more that there is sometimes a lot of pickup).

3.4.2 Modulation

As we did for the rectangular cavity, we transformed phase modulation into amplitude modulation
thanks to a quarter and a half wave plates. We used a power amplifier after the signal generator
with a 30 dB gain. Its maximum output power was 37 dBm. On the spectrum analyzer, light
modulation looked like fig 3.8.

We can measure the Q factor of our modulator: 300. It is interesting to know that i had
measured a Q factor of 4000 for the New Focus cavity at 4 GHz. Considering that it is the first
time i built a reentrant cavity and that our cavity was made of aluminium and polished the best
we could but still not very well, it looks like a rather good result.

3.4.3 Conclusion

Yacin didn’t see any modulation, but I think the reason is mainly because of his crystal, which was
almost 3 times as high as ours (electric field divided by three) and rather short (5L for our cavity
was 10 times as big as his). In the end, I insisted a lot on the finish of the cavity in the workshop,
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Figure 3.8: Amplitude modulation as seen on the spectrum analyzer

and the gap between the crystal and the lid was much smaller in our cavity. Since I had to feed
the cavity with a lot of power to see some modulation, it is not surprising that he couldn’t see any.

The first step of the optical frequency comb generation took me a bit more than 4 months to
achieve. I had to be independent since it is not the usual field of the quantum optics lab. What
was left was the building of the optical cavity around the modulator.
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Optics

4.1 Design of the experimental setup

We use laser beams with a gaussian profile, and ray optics cannot always be used to determine the
properties of the beam as a function of its location. For this part, I have mostly used |9].

4.1.1 ABCD Matrices

A gaussian beam propagating through a linear medium can be described by its radius of curvature
R and its waist w. We need to introduce ¢ defined as

A A (4.1)

where ) is the wavelength of the optical beam in free space. We can then find ¢ at any other place
using the ABCD matrices:

 Aq +B

q2_0q1+D

(4.2)
Each lens, mirror and medium has its corresponding ABCD matrix. The global ABCD matrix can
be found by multiplying these matrices: M;,; = M, * My, _1 * ... x M,

For example, for a converging lens or a mirror of radius of curvature R, we have respectively

the matrices: (—1/f 1> and (-2/R 1)

4.1.2 Mirrors for the optical cavity

We wanted to build a stable mirror resonator with the crystal inside. This is very well explained in
Siegmann p747 (ref [9]). The length of the cavity is given by the frequency of our modulator, and
we want the middle of the crystal to be on the waist. We also want the waist to be rather small
in order to have non linear effects, and the optimal size of the waist was given to me by Thomas.
We also had a set of mirrors and I had to choose among them. So I wrote a mathematica program
(see A.3) with the radii of curvature of the mirrors, the length of the cavity as inputs, which gave
me the distance between the crystal and each mirror and the size of the waist. We can also check
the stability of the cavity thanks to the criterion given in [9], being careful that the equivalent
length of the cavity is not the optical length but the length given in the mathematica program
(the crystal makes the cavity appear smaller than it really is!).

In the end, I chose to use two mirrors with equal radii of curvature: R = 40 mm and 99%
reflectivity . The corresponding waist is around 80 pm, but is slightly dependent on the size of the
cavity and thus on the modulation frequency.

27
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4.1.3 Lenses: mode matching

Knowing the size of the waist and its position (at the centre of the crystal, in the middle of the
optical cavity), I needed to find a set of lenses able to produce the right waist in the correct location
(ie not too far from the laser). It is very important to mode match the laser to the cavity, otherwise
most of the power will be reflected, since only a few modes are stable in the cavity and can go
through.

Calculations

Knowing which focal length were available for the lenses, I made another mathematica program in
order to calculate the different lengths between the lenses. In the end, I chose to put two lenses.
All the results of the calculations can be seen in fig 4.1

=]

-— -——

43 cm L, =50 cm L, 75 cm 2 cm
40 em

= 14.7 cm

Figure 4.1: Results of the calculations for mode matching the optical cavity: data in bold, results
in italic, input with normal letters

The first lens is mounted on a translation device so that we can adjust the waist size and
position slightly without having to realign everything.

Beam scan

In order to caracterize the beam, we need to know its waist size and position. This can be done by
using a beam scanner, which gives the size of the beam thanks to a photodiode mounted behind
two rotating blades. Taking many measurements at different positions, we can then use a computer
program to find the waist size and position.

For our laser after the faraday isolator, we found a waist size of 135 pm located at —425 mm for
one of the coordinates and 153 pm and —434 mm for the other transverse direction. This means
that there is probably an alignment problem somewhere, but it is a common problem in optics.

For the mode matching, after adjustment of the first lens position, I found that the waist size
was 82 pm, which is rather satisfying.



CHAPTER 4. OPTICS 29

4.2 Setting up the laser

I have used a YAG laser pumped by a single diode driven at 2.000 A. It delivres in these conditions
1.20 W of continuous infrared light at 1064 nm.

4.2.1 Quarter and half wave plates

Quarter and half wave plates are anisotropic media, like our crystal (see chapter 1). They are
very useful in optics because they allow to change the polarization of the light. They are usually
mounted on a rotating device (in the plane perpendicular to the beam) so that we can modify the
polarization as we want. A half wave plate (respectively quarter) induces a 7 (respectively 7/2)
phase shift on one of its axis compared to the other. They work at a given wavelength.

We used these plates for three purposes. The first one was to make the polarization of the laser
linear so that we could use it in the Faraday isolator.

The second one was to convert phase modulation to amplitude modulation. A quarter wave
plate placed before the phase modulation made the polarization circular. Then the light was phase
modulated on one of the axis, and thus was delayed compared to the other. A half wave plate at
45° of the optic axis of the modulator combined with a polarizing beam splitter making another
45° transforms the phase modulation into amplitude modulation (calculations are rather easy).

The third use for these plates is to control the power of the beam in the experiment: after the
Faraday isolator, we put a half wave plate followed by a polarizing beam splitter. By turning the
half wave plate, the energy of the beam goes progressively in one or the other direction. One beam
is stopped, the other goes in the experiment.

4.2.2 Faraday isolator

This device prevents the light from going back into the laser, which can make its output unstable
and even damage it. Its input must be linearly polarized light. It is made of a first polarizing beam
splitter (PBS) which lets all the incoming lightfrom the laser through, then there is a medium which
makes the linear polarization change by 45°, always in the same direction, whatever the direction
of the light. Then, there is anoher polarizing beam splitter which lets all the light from the laser
through. If some light comes back, the first PBS lets only one polarization go through, it is stirred
of 45° like the light of the laser and is all reflected away from the laser by the first PBS.

4.2.3 Beam stirrer

The beam stirrer is a device made of two mirrors 4 ¢m apart, mounted on the same mount. One
of the mirror can be moved idependently of the other. It allows translation of the beam in a plane
transverse to its propagation. The beam can also be tilted slightly. This device is used for fine
alignment, everything coarse is usually made before using it.

A schematic of the beginning of the experiment is in fig 4.2.

4.3 Alignment

In optics, it is very important to know where the beam is, especially for an invisible laser beam
like ours. It is the reason why in the lab every optical objects are placed at a height of 13 cm
above the table. It is also important to center as well as possible the lenses and mirrors so that
the beam remains in the T Ey, mode.
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Figure 4.2: Schematic of the first part of the experiment.

4.3.1 Mirrors, lenses

A good way to do that is to tighten a screen at the end of the table, as far away as possible from
the last object put on the table and to mark where the beam is. We also put an iris but this time
just after the last object. Then, we put in the new lens and check that the back reflexion goes back
through the iris and that the beam hasn’t moved on the screen. Then the lens can be tightened to
the table. For mirrors, there is a big and a small reflexion and it is a good idea to try and make
them one: usually mirrors are mounted on a stirring device so there are more degrees of freedom
than for a lens. It is still necessary to look on the screen to make sure that the beam still goes
straight. This can be a rather long process, especially with mirrors. Due to the size of the optical
cavity, we had to mount the mirrors on a heavy overhanging piece of metal, which made adjusting
the height of the mount really annoying (see fig 3.7)

4.3.2 Optic fibers

Another tricky part in optics is to couple the light of the laser in an optic fiber, especially when
it is a single mode fiber. There were two types of connector to the mount in my lab, one was the
Angled Physic Connector, the other one was not angled. For each one, there is a corresponding
fiber coupled laser which i could use. The fiber coupled laser is mounted in the place where the
optic fiber will be in the end, facing the big laser beam. The idea is then to align the two laser
beams using mirrors. and the mount for the optic fiber. This can be done by choosing two points
and checking that both laser beams are at the same place. It is also important to mode match the
fiber, and this can be done roughly (which is often enough) by moving lenses trying to make the
two laser beams the same size at different points.

4.3.3 Cayvity

Aligning the cavity was the hardest bit: there are three adjusting screws on each mirror of the
optical cavity, five on the mount of the microwave reentrant cavity and five others on the beam
stirrer. Since the holes on the microwave cavity are only 1 mm?, it is hard to get the laser beam
inside without clipping. It is also hard to put the crystal manually, since even movements that are
not visible can make big difference on the amount of light going through. Magnus and I aligned
the cavity at least 4 times, putting the elements in different orders (mirrors, microwave cavity and
crystal.).

The output mirror is mounted on a PZT (a piezo-electric crystal: when we apply a high voltage
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to this crystal, it gets a little bit bigger or smaller, pushing the mirror backward or forward a
few wavelengths) and we use it once there is enough light going through the cavity. If we apply a
triangular signal to the PZT (from —100 V' to 200 V' for example), we scan the cavity, which means
that we can see the different modes going through the cavity one after the other. By reducing the
amplitude of the signal and changing its offset, we can select a given mode. Using an infrared
camera, we can see the shapes of the different modes on a TV screen. Our aim is to make the
different modes as "circular" as possible by moving the mirrors and the beam stirrer. Pictures of
different modes at this stage are given in fig 4.3

Figure 4.3: Examples of modes that can be seen after the cavity. Left: not aligned. Middle : T Ey
mode. Right: doughnut mode.

Once we get good looking modes, we put a photodiode after the cavity and scan it. We can send
the signal of the photodiode to an oscilloscope triggered by the triangular signal. The photodiode
shows us for which size of the cavity there is a mode going through. The aim is to increase the
T Eyy mode and decrease the other by adjusting all the screws, until this mode is as big as possible
(see fig 4.4)

o e A N W o S N A

Figure 4.4: Signal sent by the photodiode when the cavity is aligned and scanned

Two other modes can usually be seen, they are he T'E}y and T'E5y modes. The first one is due
to misalignment and the other one to mode matching problems. At this stage, at the beginning, we
could see the laser mode hoping which resulted in a very unstable picture on the oscilloscope screen.
We solved the problem by changing the temperature of the laser until the problem disappeared.
Now, we want to find a way to lock the cavity on the T'Ey, mode, which means that even when
the cavity is moving due to sounds or other vibrations, there is a feedback that compensates these
vibrations.
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4.4 Cavity locking

4.4.1 Principle

We used the idea of Pound Drever and Hall. It consists in putting on the PZT on the output
mirror a weak triangular signal at around 200 kH z. This creates a small phase modulation on the
light, which can be seen as sidebands. When the cavity is for example just a little bit bigger than
its usual size for the T'Eyy mode, one of the sidebands goes less through the cavity than the other,
which results in the apparition of amplitude modulation, which can be detected by the photodiode.
Using a demodulator, this gives an error signal that can be sent back to the PZT to correct the
size of the cavity.

4.4.2 Experimental realization
Electronics used

In order to see the error signal on an oscilloscope, we want to send the addition of two signals
to the PZT, a low frequency one (to scan the cavity) and a high frequency one (to get the error
signal). This will also be useful when we want to add the error signal to the modulation signal
to acually lock the cavity. This was realised thanks to a home made box with two inputs (one
connected to a capacitor, the other one to an inductance) and one output which is the addition of
these signals.

We also needed a demodulator, which is a device which takes two inputs, one being the mod-
ulation and the other the signal. The output is the amplitude of the signal at the modulation
frequency. The signal and the modulation have to be in phase, so there is an optimization to do,
which consists in adding or removing coaxial cable between the modulation signal generator and
the demodulator.

Another object is the PID (Proportional Integrator Differentiator) which is used as a filter and
to lock the cavity from the error signal. The one I used was home made, with a preintegrator, an
adjustable offset (to be able to choose on which mode we want to lock, just like when we scanned
the cavity with very little amplitude), and an amplifier.

There were also two high voltage amplifiers that I used. The modulation generator was a very
good (SRS) function generator on which we could choose the power delivered. We chose 10 dBm
because the demodulator needed 7 dBm to work properly (and the signal is divided by two). We
adjusted its frequency to reach a resonance of the PZT (bigger error signal).

Optimizing the error signal

To get the best error signal as we could, we decided to look at it on the oscilloscope, with the
circuit built according to fig 4.5

The second generator has a low frequency so that the photodiode has time to get enough signal
(otherwise the signal to noise ratio is very low).

This way , once everything is working properly, we can see the error signal on the oscilloscope
corresponding to the apparition of a T'Eyy, mode in the cavity (see fig 4.6). Since the error signal
was already rather big (big enough for the cavity to remain locked) and i was running out of time,
i didn’t spend much time optimizing it. Intead I locked the cavity and tried to find a comb.
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Figure 4.5: How I saw an error signal.
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Figure 4.6: Error signal and transmission of the cavity as a function of time while the cavity is
scanned

Locking the cavity

The schematic could be the same as in fig 4.5, except that the error signal doesn’t go through the
PID and to the oscilloscope but through the home made PID, which output is then amplified with
high voltage and sent to the PZT through a coaxial cable replacing the 10 Hz signal.

We adjusted the gain and preintegrator of the PID and the cavity could remain locked for a
long time unless someone would bang the door or something like that.

4.5 No results

The cavity wouldn’t remain locked when I turned the microwave generator and amplifier on, so I
tried to look at what was happening when I turned them on while scanning the cavity: the 1" Eyg
modes were moving on the oscilloscope, which is probably due to some thermal effect (the crystal
gets bigger and the optical length of the cavity is changed). So I locked the cavity after letting the
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microwaves on for a while and then the lock worked properly.

I then sent the signal through a poorly coupled optical fiber to an optical spectrum analyzer
hoping to see a comb. Unfortunately, its maximum resolution was of about 5 teeth of my comb
(10 GHz), so it didn’t mean that there was absolutely no comb.

So I borrowed a confocal cavity that could be scanned (like a spectrum analyzer, with a much
better resolution but with no absolute frequency measurement) from the gravity wave group. I
optimized the signal and I could see sidebands adding when I turned the microwaves on. This
probably meant that i needed to adjust the modulation frequency (in a range of only 10 M Hz) or
harder adjust the distance between the two mirrors (which can be done because each mirror has
three screws to be adjusted) to meet the condition 1.26. Another way to adjust the modulation
frequency, and perhaps the best way in this case, would have been to put a screw in the lid of
the reentrant cavity and to screw it in or out to change the resonance frequency of the cavity
(by changing the capacitance) . Anyway, before I could try any of these, the crystal moved in its
cavity, but i thought something went wrong with the alignment so I lost the alignment trying to
get it back. Since I had no time left for the experiment, I stopped there.

I worked very hard on this part of the experiment and Magnus really helped me a lot. We
got a lot of advice from Warwick and Andrew and borrowed a lot of equipment from the Gravity
Waves and Atom Optics groups. Many other things happened but they would be too long to tell
(for example, I repaired a photodiode whose condesator blew, we tried to look at the power in
reflection,...).
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Conclusion I didn’t achieve a non linear optical frequency comb. Nevertheless, I made a first
step toward it: I designed and tested a reentrant cavity that modulates light at around 2 GHz. It
involved some microwave engineering, which is not the usual field of the Quantum Optics Group.
I had to be rather independent during this period. Unfortunately, when I started the optical part
of the experiment, it was a really busy time for the physics department, with conferences and the
opening of the Centre of Excellence in Quantum Atom Optics, but I was able most of the time to
find someone to answer my questions.

This experiment didn’t involve very high level physics, but I started it from scratch and thus
got acquainted with many useful techniques. It also gave me an outlook on many aspects of
research: I learnt a bit of theory (~ 1 month), did some numerical simulations (1 — 2 months),
designed and tested two types of cavities (=~ 1 month each) and an oven, and i was in charge of
building my experiment (1 — 2 months), which involved alignment and locking, but also suldering
and electronics.

This training period gave me a brief overview of the life of a researcher and I really enjoyed it,
with the hard times (when I abandoned the rectangular cavity for example) and the great times
(when I first saw modulation, when we locked the optical cavity). During all this period, I got
help from all the people in my group, but i was also helped a lot by Mel from the Gravitational
Waves group and borrowed a lot of equipment from the Atom Optics group. Shane Grieve in the
electrical workshop advised me on suldering and wiring and Paul Mc Namara in the mechanical
workshop did a very good (and fast) job with the cavities and the oven. Thanks to all these people
and all my other "mates", even though I am a bit disappointed i couldn’t see an optical frequency
comb, I had a really good time in Australia
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Mathematica programs

A.1 Rectangular cavity

Be careful using this program because the notations are not the ones used in the report.
eql = B2 ==, x ki — k3
eq2 = (* == ki — k2
eq3 = Tanlky * 1/2] == ky/kq * Cot[k, * a
eqd = C/anght - Qmicrowauebis/ﬁ
€q5 = ko == Qmicraw(webis/(c)

nlight = 2.23;
c=3x%108

€ = 28;

[ =0.003;

L =0.02;
8= Pi/L;

determination frequence = Solveleq4d, Qmicrowavevis)[[1]]
determinationk0 = Solveleqb/.determination frequence, kol[[1]]
determinationkakb = Solveleql, eq2/.determinationk0, k,, kq][[4]]
determinationa = Solve[eq3/.determinationkakb, al[[1]]

A.2 Optical length

The input in this program is the frequency f,.s. The program calculates the distance between the
two mirrors of the optical cavity.

eq =n*c/(2% Lyy) == fres

c=3x%108

fres = 2.095 % 10%;

n=2;

Lopt = Legy + (ncris - 1) * Lergs;

Neris = 2237

(Leris = 20 % 1073;

Solveleq, Leqy|

A.3 Mirrors

This program calculates the waist of the beam as well as the distances between each mirror and
the crystal. Its inputs are the radii of curavature of each mirror and the distance between the two
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mirrors (Ley ). It also checks the stability of the cavity.
eql =1/R2 == (Lc¢/(2 xnc) + L2)/((Le/(2 % ne) + L2)? + (Pi x wi/A\)?)
eq2 =1/R1 == (Lc¢/(2 xnc) + L1)/((Le/(2 % ne) + L1)? + (Pi x w3 /A\)?)
eq3 = L1+ L2+ Lc == Lopt

Lopt = 50.7;

R1 = 40;

R2 = 40;

nc = 2.23;

A = 1064 x 1076;
Le = 20;

Solveleql, eq2, eq3, wy, L1, L2]

Leq = 64.6 — 20 + 20/2.21
gl=1— Leq/R2

g2 =1— Leq/R1

gl x g2
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Superfish programs

B.1 Yacin’s empty cavity

&reg kprob=1, ;set for RF
conv=0.1, ;units in mm
icylin=1, ;cylindrical symmetry
freq=130.91416, ; Starting frequency in MHz
dslope=-1, ; Allow convergence on first iteration
xmin=0.000, xmax=20.000, ymin=0.000, ymax=22.5000,
nbsup=1, ;upper
nbslo—1, ;lower
nbslf—1, ;left
nbsrt=1, ;right
dx=0.5000, ;x increment
dy=0.5000 & ;y increment
xdri—1,ydri—=10.5 & ; Drive point location
; problem boundary
&po x=0.000,y=0.000 &
&po x=0.000,y=22.5000 &
&po x=20.000,y=22.5000 &
&po x=20.000,y=0.000 &
&po x=0.000,y=0.000 &
; cylindre simple
&reg mtid=0,mat=0 &
&po x=0.000,y=0.000 &
&po x=0.000,y=7.5000 &
&po x=15.000,y=7.5000 &
&po x=15.000,y=0.000 &
&po x=0.000,y=0.000 &

B.2 Design of our cavity

&reg kprob—1, ;set for RF
conv=0.1, ;units in mm
icylin=1, ;cylindrical symmetry
freq=2000.0, ; Starting frequency in MHz
dslope—-1, ; Allow convergence on first iteration
xmin—10.000, xmax—20.1000, ymin—0.000, ymax—15.000,
nbsup=1, ;upper
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nbslo=1, ;lower

nbslf=1, ;left

nbsrt=1, ;right

dx=0.2000, ;x increment
dy=0.200 ;y increment
xdri=12.5,ydri=13.5 & ; Drive point location
; problem boundary

&po x=10.000,y=10.000 &
&po x=10.000,y=15.000 &
&po x=20.1000,y=15.000 &
&po x=20.1000,y=0.000 &
&po x=18.5000,y=0.000 &
&po x=18.5, y=10&

&po x—=10,y—=10&

&reg mat—=2 &

&po x=18.5000,y=0.000&
&po x=18.500,y=4.4700&
&po x=20.000, y=4.4700&
&po x=20.000, y=0.0000&
&po x=18.5000, y=0.0000&
; cristal

&mt epsilon=28 mu=1.000 &
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