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Abstract

Unprecedented sensitivity of measurement is required to detect gravitational waves. Al-
though the first generation of interferometric gravitational wave detectors are the most
sensitive devices ever built, it is expected they will not be sensitive enough to regularly
detect gravitational waves.

The precision of the optical measurement used in gravitational wave detectors is ul-
timately limited by the quantum mechanical fluctuations of the light, called quantum
noise. The first generation of interferometric gravitational wave detectors have reached
the quantum noise limit at some frequencies. Second generation interferometric gravi-
tational wave detectors are expected to be limited by quantum noise across most of the
detection frequency band.

This thesis presents the first experimental demonstration of a gravitational wave de-
tector configuration with sensitivity below the quantum noise limit. The configuration
demonstrated is a power recycled Michelson interferometer with the addition of squeezed
light. The control of the configuration and the method for injection of squeezed light are
compatible with current gravitational wave detectors. A model for the configuration is
derived using linearized operators for the optical fields.

The results obtained demonstrate the improvement below the shot noise limit using
squeezed light, and the interaction of power recycling with squeezed light is investigated.
The predictions made using the model show excellent agrement with the experimental
results. The entire system maintains stable lock for long periods.
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Chapter 1

Introduction

Gravitational radiation [1] is predicted by Einstein’s General Theory of Relativity [2]. This
theory suggests that masses curve space-time. If space-time can be curved it is flexible
and allows wave-like solutions called gravitational waves.

The endeavour to detect gravitational waves is one of the most challenging areas in
science and engineering [3]. Tremendous efforts have been applied to solving both the
technical and fundamental problems, drawing many different fields of physics together.

The fundamental limit to the sensitivity of any measurement is imposed by quan-
tum noise [4], as described by the Heisenberg uncertainty principle. The quantum noise
limit has been recognized in interferometric gravitational wave detectors for many years.
However, up until recently quantum noise has not limited gravitational wave detector’s
sensitivity. The first theoretical proposal to surpass the shot noise limit was published
by Caves in 1981 [5]. Many other theoretical investigations have been published since
including [6-8], but until now quantum noise reduction in a gravitational wave detector
configuration had not been experimentally achieved. This thesis presents the first ex-
perimental demonstration of an improvement to gravitational wave detection sensitivity
using a technique that allows quantum noise reduction.

1.1 Gravitational waves

Gravitational waves can be conceptualized by analogy with familiar electromagnetic
waves [9]. Like electromagnetic waves, gravitational waves propagate at the speed of
light. Electromagnetic waves propagate through space-time, whereas gravitational waves
propagate as ripples in space-time. The emission of electromagnetic waves is caused by
accelerating electric charges. Similarly, gravitational waves are emitted by accelerating
masses. The lowest mode of oscillation for electromagnetic waves is dipole. This is un-
like gravitational waves, where the lowest mode of oscillation for is quadrupole [10]. The
difference arises because electric charge has both positive and negative values whereas
mass is always positive.

To assist in the understanding of gravitational waves, their effect on a region of space-
time is described. Figure 1.1 shows the effect of a quadrupole gravitational wave on a ring
of test masses with each frame advanced by one quarter of a period. The gravitational
wave, propagating into the page, is seen to stretch the ring in one direction and squash: it
orthogonally. This is because of perturbations of the space-time between the masses. This
is the effect of the h polarization wave. The orthogonal polarization, h«, has the same
effect, only with the axes of the distortions rotated by 45°. The strength of a gravitational
wave is measured by the fractional length change it induces,

1
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OO

t=0 t=T/4 t=T/2 t=23T/4

Figure 1.1: The effect of a passing gravitational wave on a ring of test masses floating in space
shown at 1/4 period intervals.

-2 (1.1)

here JL is the change in length, L is the unperturbed length, and & is the strain. The
largest common events are predicted to have h ~ 102! and occur several times per year.
This strain, is equivalent to a length change (JL) of a hairs width in a length (L) of the
Earth to the nearest extra solar star, Proxima Centuri, 4.3 light years away. The sensitivity
required to measure such an effect on a terrestrial scale is extraordinary.

1.2 Why detect gravitational waves?

The direct detection of gravitational waves will have many significant outcomes. Data
taken in the previously unmeasured strong gravity limit will enable a rigorous exami-
nation of General Relativity. Another outcome is the potential it could offer for a new
type of astronomy. Astronomy has used electromagnetic waves for thousands of years to
improve our understanding of the universe. Recently, many parts of the previously un-
measured electromagnetic spectrum have been detected, due to technological advances,
opening new windows for astrophysical study. However, all electromagnetic measure-
ments are limited by both absorption in matter and the lack of emission, locking away
information from the densest and darkest areas of space. Gravitational waves interact so
weakly with matter that they are not absorbed. This allows many astrophysical objects
to be studied that were previously invisible in the electromagnetic spectrum.

An example of an expected gravitational wave source is the collapse of binary neu-
tron star systems. The large masses (~ 2 solar masses) and small radii (~ 10km) involved,
makes them a prime candidate for strong, high frequency gravitational wave emission.
The system will lose orbital angular momentum in the form of gravitational radiation,
emitted at twice the orbital frequency, and the binary neutron stars fall into ever closer
orbits. This in turn produces larger amplitude radiation at increasing frequency. The sep-
aration of the two neutron stars decreases until they eventually coalesce. The coalescence
releases a final burst of gravitational radiation. Much of the physics of the coalescence is
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unknown, and the detection of gravitational waves will shed new light onto the dynam-
ics of this process.

1.3 The direct detection of gravitational waves

The direct detection of gravitational waves is yet to be achieved, due to the unprece-
dented sensitivity of the measurements required. However, indirect evidence of gravita-
tional waves was obtained over ten years ago by Hulse and Taylor [11]. They studied the
orbital period of the binary neutron star system PSR 1913+16 [12] for more than twenty
years and showed it to be decreasing. This decrease in period matched the rate predicted
by the General Theory of Relativity if the angular momentum was lost in the form of
gravitational waves. This work won Hulse and Taylor the Nobel Prize in 1993.

Laser interferometry is the most promising technique for gravitational wave detec-
tion. Long baseline interferometers, between 3 and 4km in length, offer high sensitivity
across a broad frequency range of 10 Hz to 10 kHz. The standard configuration of these
interferometers is an advanced form of the Michelson interferometer, referred to hereafter
as a Michelson.

== Test Mass
L+AL
. Test Mass
Laser Beamsplitter {|
/ L-AL

Photodetector @&

Figure 1.2: Layout of the Michelson interferometer.

A diagram of a Michelson is shown in figure 1.2. The laser light injected into the
interferometer is divided into the two arms by the beamsplitter. The field in each arm
propagates to the end mirrors (called the test masses) then returns to the beamsplitter.
The fields interfere on the beamsplitter, each with a phase shift determined by the path
length travelled. The interference condition is dependent on the phase difference be-
tween the two fields. This interference determines the amount of light that is transmitted
to the output of the interferometer or reflected back toward the laser. The light that is
transmitted to the output is detected by a photodetector.

The transmitted and reflected fields are derived as follows. The average length of the
arms is defined to be L and difference in length to be AL, so that the length of one arm is
L + AL and the length of the other is L — AL. For incident electric field oy, the electric
field at the output, apys, and reflected back towards the laser a.y, are given by,
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Figure 1.3: The effect of a passing gravitational wave on a Michelson interferometer.

Qout = Uin sin(ZwAL/c)eZi‘“L/c (1.2)
Qref = Qin cos(2wAL/c)e?r/e (1.3)

where the laser angular frequency is w and c is the speed of light. Both the reflected and
transmitted fields have a common phase shift due to the average length of the arms and
a sinusoidally varying term due to the difference in arm length. The common phase shift
can be factored out of these equations. It can be seen that the interference condition, and
thus the output, is determined only by the arm length difference. The differential phase
is defined as,

¢ =2wAL/c (1.4)

Gravitational wave detectors operate on a dark fringe, with ¢ = 0, where the fields in-
terfere destructively towards the output. The best signal to noise ratio occurs at a dark
fringe. Also, a dark fringe is preferable since current photodetectors cannot deal with the
high powers used in modern the interferometers.

The effect of a gravitational wave on a Michelson is the same as the effect on the
ring of particles shown in figure 1.1. The test masses of the ring are replaced by the
end mirrors of the Michelson, as shown in figure 1.3. A passing gravitational wave will
shorten one arm and lengthen the other. This modulates differential phase, ¢, and thus
the interference condition, thereby creating the signal. The signal can be measured at the
output of the interferometer in the absence of noise.

1.4 Noise sources in a gravitational wave detector

To detect a gravitational wave signal, the noise on the output must be reduced to unprece-
dented levels. The sensitivity of current interferometric gravitational wave detectors is
limited by three major noise sources: quantum noise of the electromagnetic field in the
interferometer, thermal noise in the mirrors and suspension, and seismic noise.
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1.4.1 Shot noise

Shot noise arises due to the quantum mechanical fluctuations in the phase quadrature
of the electromagnetic field. The sensitivity of first generation detectors are shot noise
limited above a few hundred Hertz. Since the gravitational wave signal is also in the
phase quadrature, shot noise limits the sensitivity. The shot noise limited signal-to-noise
ratio scales inversely with power in the interferometer arms,

1

SNRg o 75 (1.5)

Thus shot noise can be reduced by increasing the power in the interferometer. Shot
noise is completely described in chapter 2.

1.4.2 Radiation pressure noise

Radiation pressure noise arises from the quantum mechanical fluctuations in the ampli-
tude quadrature of the electromagnetic field. The second generation detectors are ex-
pected to be limited by radiation pressure noise at frequencies below a few hundred
Hertz. Radiation pressure noise occurs as a result of the ”graininess” of light. For a bal-
anced (50:50 ratio) beamsplitter there will be slightly different numbers of photons in
each arm, which impart different momentum kicks on the end mirrors. This couples into
phase fluctuations on the light, limiting the sensitivity of the Michelson. The radiation
pressure limited signal-to-noise scales with the square root of the power in the arms,

SNRgp x VP (1.6)

Thus radiation pressure noise becomes significant when high powers are used.

1.4.3 Thermal noise

Thermal noise is expected to dominate the sensitivity of first generation detectors be-
tween a few tens and hundreds of Hertz. The source of thermal noise is from three main
areas: pendulum modes of the suspension of the mirrors, the internal modes of the mir-
rors and the violin modes in the suspension wires. Each of these results in uncorrelated
displacement of the end mirrors, which again limits the sensitivity of the interferometer.

1.4.4 Seismic noise

Seismic noise limits the sensitivity of first generation detectors below ten Hertz. It comes
from a lack of complete isolation of the mirrors from seismic activity.

1.5 Advanced interferometer configurations

Advanced gravitational wave interferometer configurations are used to improve the sen-
sitivity of gravitational wave detectors. Although there are many technical difficulties
introduced the improvements in sensitivity are crucial. The important concepts and con-
tigurations that are involved in gaining these improvements are introduced in this sec-
tion.
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1.5.1 Power recycling

All current and planned gravitational wave detector interferometers use power recy-
cling [13]. As the operating condition of the Michelson interferometer is a dark fringe,
all of the light entering the interferometer exits back toward the laser. This light can be
recycled back into the interferometer via a mirror placed in front of the Michelson. This is
shown in the figure 1.4(a). This ‘power mirror’ forms a cavity, with the Michelson acting
as the other mirror.

The circulating power can be significantly increased, which reduces shot noise. The
reflectivity of the power recycling mirror is chosen to maximize circulating power. This
condition is satisfied when the cavity is impedance matched, i.e. when the transmission
of the power recycling mirror is equal to the round trip loss of the cavity. The power
increase comes at the expense of an extra degree of freedom to control to keep the cavity
on resonance.

a) b)
Laser 7] y | Laser j |
A [ 1
Recyaing Signal
Mirror R‘WFC','PQ
c) d)
Arm Cavities Arm Cavities
< <
\4 \4
Laser Il Laser 1 Il
== i\ || = I I j
Power .
Recycling Signal
Mirror Recycling
Mirror

Figure 1.4: Advanced configurations for gravitational wave detection. a) Power recycling, b)
Signal recycling, ¢) Arm cavities and d) Dual recycling with arm cavities

1.5.2 Storage time

To obtain the maximum phase shift from a gravitational wave, the light storage time must
be optimized. The light in each arm should have round trip time equal to half the period
of the gravitational wave. If the time is shorter and the maximum phase shift will not be
imparted on the light, any more and the phase shift will be ‘undone’. As an example, the
optimal storage time for a 100 Hz gravitational wave signal is 5 ms. Light travels 1500 km
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in 5 ms requiring a Michelson arms of half that length, 750 km. Building arm length of
this order in ultra high vacuum, and controlling the diffraction of light over this distance
is ridiculous. A solution is to fold [10] the interferometer arms, using many bounces to
obtain the optimal storage time. Current detectors use Fabry-Perot [14] cavities to fold
the light.

1.5.3 Arm cavities

Arm cavities in the gravitational wave detector are single ported Fabry-Perot cavities, as
shown in figure 1.4 (c). The storage time is proportional to the linewidth, determined
by the length of the cavity and the front mirror reflectivity (since the back mirror is al-
ways 100% reflective). The fields resonating in a Fabry Perot cavity overlap spatially and
therefore display interference properties. Arm cavities overcome diffraction problems
and minimize the size of mirrors needed. They store power, thus reducing shot noise
without the need for an increase in laser power. These advantages come at the expense of
introducing an extra length degree of freedom for each arm that requires active control.

1.5.4 Signal recycling

The signal recycling mirror is placed at the dark port of the interferometer as shown
in figure 1.4 (b). It reflects the signal exiting the Michelson back in, creating a cavity
with the Michelson called the signal recycling cavity. The signal reflected back into the
interferometer adds coherently with a new signal still being produced. This increases
the sensitivity of the detector inside the linewidth of the signal recycling cavity, at the
expense of deceased sensitivity outside the bandwidth of the cavity. The detector peak
frequency can be adjusted by changing the length of the cavity, whilst the bandwidth can
be varied by changing the reflectivity of the signal recycling mirror. The improvement to
sensitivity and versatility comes at the expense of yet another degree of freedom needed
to be controlled. Some current and all next generation detectors will use signal recycling.

1.5.5 Current long baseline gravitational wave detectors

There are currently four gravitational wave interferometric detectors in the world. The
configuration for three of the four is a power recycled Michelson with arm cavities. These
detectors are LIGO [15] (in USA), VIRGO [16] (in France) and TAMA [17] (in Japan). Only
GEO600 in Germany [18] uses power and signal recycling without arm cavities.

The next generation detectors, such as Advanced LIGO [19], are expected to use res-
onant sideband extraction (RSE) [20], the configuration shown in figure 1.4 d). RSE is a
slight variation on dual recycling with arm cavities.

1.6 Motivation and previous work

The first generation of interferometric gravitational wave detectors are expected to begin
taking data in 2002. Although they will be the most sensitive devices ever built, they
are predicted to detect only large, infrequent gravitational events. To regularly detect
sources, and thereby allow comparison with astrophysical models, a factor of ten im-
provement in sensitivity is required. The second generation of detectors are expected to
reach this goal. Early predictions are that they will be limited by quantum noise over



8 Introduction

most of the gravitational wave signal frequency band (10Hz to 1000Hz) [19]. This has
sparked an explosion in theoretical papers on the application of quantum optical tech-
niques to surpass these quantum limits in laser interferometry. Included in these is: the
use of squeezed light states [8] building on the simple proposal by Caves; What makes
these theoretical proposals even more exciting is the fact that the experimental field of
generating non-classical light states has reached maturity. From the landmark experi-
ment of Slusher et al. [21] in the 1985 in which 0.3dB of quantum noise suppression
was measured, bench-top squeezing experiments can now routinely produce over 7dB
of quantum noise suppression [22]. A combination of current squeezing technology with
the high power and high stability of GW detection laser and optical systems now makes
10dB of squeezing a realistic goal [8].

Despite the potential for squeezing to improve interferometric sensitivity, to date
there has been no experimental demonstration of squeezing applied to an interferometer
bearing any resemblance to a GW detector. Squeezing enhanced performance has been
demonstrated in other interferometers, such as the Mach-Zehnder [23] and polarimeter
[24]. None of these experiments employed a Michelson configuration; used light recy-
cling techniques; or utilized a signal readout scheme compatible with an advanced GW
detector. Theoretical analysis of Gea-Banachloche et al. [6] suggested that squeezing is
broadly compatible with recycling techniques. However, the difficulty in devising a read-
out and control scheme compatible with both squeezing and light recycling has, until
now, prevented any definitive demonstration.

1.7 Overview of the experiment

A power recycled Michelson (PRM) with locked optical squeezing injected into the un-
used port of the beamsplitter is experimentally demonstrated. The squeezing is provided
by an optical parametric amplifier (OPA). The laser system, configuration, control and
readout system used are all compatible with advanced GW detector proposals. The en-
tire system maintains lock for long periods and we measured a signal with noise below
the shot noise limit (SNL). The interaction of power recycling and squeezing is investi-
gated.
A paper has been published on the topic of this research.

- K. McKenzie, D. A. Shaddock, D. E. McClelland, B. C. Buchler and P. K. Lam,
”Experimental demonstration of a squeezing enhanced power recycled Michelson
interferometer for gravitational wave detection”

Phys. Rev. Lett. 88, 231102 (2002)

1.8 Overview of the thesis

In this chapter Gravitational waves and their detection has been introduced. Previous
work in the field has been presented leading to the motivation behind this work.

In chapter 2 the theory of quantum noise and squeezing are introduced. The method
of linearization of the operators is presented in order to perform calculations of detection
theory and the model of the interferometer in chapters 3 and 4 respectively.

Chapter 3 describes modulation techniques and control of the interferometer. The
theory of detection is presented, with important cases being calculated.
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Chapter 4 derives a full model for the PRM with squeezing, allowing both classical
behavior and interaction with quantum noise to be analyzed.

In chapter 5 the experimental setup of the optical configuration and control schemes
are described.

Chapter 6 presents results from the first demonstration of quantum noise reduction in
a gravitational wave interferometer configuration, and many properties of the interaction
with squeezing demonstrated.

Chapter 7 concludes the work and results presented in this thesis.
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Chapter 2

Quantum Noise and Squeezing

2.1 Overview

This chapter introduces the theory of quantum noise to be used in modelling in the fol-
lowing chapters. Important states of light used in the experiment are discussed and rep-
resented by the "ball on stick” picture. The method of linearization of operators is used to
aid in modelling interferometers in the following chapters. Finally, a brief description of
some processes involved in the production of squeezing are presented.

2.2 The Heisenberg uncertainty principle

The limit to the sensitivity of any measurement is imposed by quantum mechanical fluc-
tuations. The Heisenberg uncertainty principle(HUP) describes this limit for a given
system. The HUP states that the simultaneous measurement of two non-commuting
operators can not have arbitrary precision. If two observables, Ot and O satisfy the
commutation relation,

[0F,07]=¢ 2.1)
then they satisfy the uncertainty relation,
AOTAO™ > % (2.2)

where AQ is standard deviation of the operator O. The standard deviation is defined,

AO =1/(02) — (0)2 (2.3)

and the variance is the square of the standard deviation,

V =(A0)? (2.4)

The customary example of the uncertainty principle is the position-momentum un-
certainty relation. This thesis is concerned with the uncertainty relation for the electro-
magnetic field. It can be introduced starting with the boson creation and annihilation
operators, atand a respectively. They have the commutation relation,

11
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[4,a7] =1 (2.5)
and the uncertainty relation,
AalAal > 1/2 (2.6)

The creation and annihilation operators are not Hermitian and therefore do not represent
observable quantities. The Hermitian operator pair can be defined using these operators,

Xt = a+al 2.7)

X- = ia—ah (2.8)

where X is the amplitude quadrature and X ~ is the phase quadrature of the electromagnetic
field.

~

X+, X ]=2 (2.9)

and associated uncertainty relation is

AXTAX™ >1 (2.10)

This relation shows that simultaneous measurements of phase and amplitude quadra-
tures of the electromagnetic field can not be arbitrarily accurate. In optics experiments,
the measurement of fluctuations described here is know as the quantum noise of the
light. The minimum uncertainty state, i.e. AXtAX~ = 1, is desirable for the precision
measurements in interferometers. The manipulation of the minimum uncertainty state is
dealt with in the following section.

2.3 States of light

In this section the light states that are used in the experiment are introduced. To aid the
understanding of the light states and how they interact with optical systems a graphical
representation is introduced. This is the “ball on stick” picture shown in figure 2.1. In
this diagram the length of the stick represents the amplitude of the field and the radius
of the ball represents standard deviation of the field. The vertical and the horizontal axes
represent the phase and amplitude quadratures, respectively. This picture is analogous
to the representation of classical fields on a phaser diagram. Without the ball of noise, the
ball on stick picture reduces to the phaser diagram, and the vertical and horizontal axis
can be relabelled the imaginary and real parts of electric field.

2.3.1 The coherent state

The coherent state of light has a coherent amplitude and minimum uncertainty fluctua-
tions in both quadratures. The standard deviation of the two quadratures is,

AXT=AX" =1 (2.11)
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\ 4

Figure 2.1: Ball on stick picture representation of a state of light. X ~ is the phase quadrature and
Xt is the amplitude quadrature.

This noise has a Poissonian distribution [4] and is white, that is, constant across all fre-
quencies. The ball and stick representation of a coherent state is shown in figure 2.2(a).
The coherent state is important in experimental optics as the light a laser produces can
be well approximated by it [25]. This approximation is valid for a minimum uncertainty
state, where there is no technical or classical noise. Light that can be well approximated
by a coherent state is known as shot noise limited (SNL) light. SNL light is used in most
experiments involving high precision optics, such as gravitational wave detection.

2.3.2 The vacuum state

The vacuum state is a special case of the coherent state. It has the same noise statistics,
but differs from the coherent state as it has no coherent amplitude. The ball on stick
representation of the vacuum state is shown in figure 2.2 (b). The vacuum state also
exhibits white noise. As its name suggests, the vacuum state exists in the optical vacuum,
which is any region in space where their is not already a light state. It occupies all spatial
and polarization modes.

The vacuum state is important in experiments as it couples into optical systems when-
ever losses of light occur. The losses could be due to a beamsplitter or to absorbtion. In
any case, the vacuum state replaces the light that is lost. As more of the light is lost its
noise statistics approaches that of the vacuum state. This is an important result which
will be referred to throughout this thesis.

2.3.3 The squeezed state

A squeezed state of light has the standard deviation of a quadrature less than one. In order
to satisfy the HUP, the product with the variance of the other quadrature must be equal
or large than one. A amplitude squeezed state has,
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Figure 2.2: Ball and stick picture for four states of light. a) The coherent state. b) The vacuum
state. ¢) and d) represent amplitude and phase squeezed states, respectively.

AXT = 1/z (2.12)
AX™ > 2 (2.13)

here z is a real number. The larger z is, the larger the degree of squeezing. A amplitude
squeezed state with z = 2 is shown in figure 2.2 (c). A phase quadrature squeezed state
with z = 2 is shown in figure 2.2(d). These states are shown with no coherent amplitude.
A squeezed state refers only to the noise statistics, it can have any coherent amplitude. A
squeezed state with no coherent amplitude is called a vacuum squeezed state. A squeezed
state with a large coherent amplitude is called a bright squeezed state.

The squeezed state can be used to reduce the quantum noise on a measurement in
the squeezed quadrature. Without using a squeezed state the accuracy of measurement
is limited to the SNL. Of course, if the anti-squeezed quadrature is measured the noise is
larger than the SNL.

Current gravitational wave detectors are limited by quantum noise only in the phase
quadrature. Therefore, the use of a squeezed state in the phase quadrature could improve
to the sensitivity of the measurement to below the SNL. This is the main interest of this
thesis.

2.4 Linearization of the operators

When the fluctuations of an electromagnetic field are much smaller than the steady state
amplitude, the creation and annihilation operators can be linearized [26]. Each operator
is split into two terms, a constant amplitude term and a time varying fluctuations term,
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a(t) =~ a+ da(t) (2.14)
ft) ~ o +dal(t) (2.15)

where a = (a(t)) is the constant amplitude and da(t) is the time varying fluctuations
of a(t). Similarly for the creation operator, a* = (af(t)) and daf(t) is the time varying
fluctuations of af. The fluctuation terms, on average, have no coherent amplitude with
magnitude much smaller than ¢,

(da(t)y = 0 (2.16)
da(t)| < « (2.17)
The linearized fluctuation terms of the amplitude and phase quadratures are,
SXt(t) = da(t)+dal(2) (2.18)
SX—(t) = i(0a(t) —dal(t)) (2.19)

This representation may be thought of as the mathematical equivalent to the ball on
stick picture. Then in figure 2.1,the stick represents a and the ball represents dé(t). One
can also note the comparison with the classical representation of the electric field. With-
out the time varying fluctuations the state reduces to a classical electric field. As an
example of the linearized formalism, the photon number is,

n(t) = al(t)a(t) (2.20)
= (o +dal(t))(a + da(t)) (2.21)
= |a? +a*da(t) + dat(t)) + dal (t)da(t) (2.22)

if we discard second order fluctuation terms and take « to be real we find,

n(t) = o® + a(da(t) + da'(t)) (2.23)

The expectation value of the photon number is,

(n(t)) = o? (2.24)

as the expectation value of the fluctuations is zero. The variance of the photon number is
given by,

(An(t)? = ((n(t)*) — (n(t))” (2.25)
= (@'(Ma(r)*) — (@' (t)a(t))? (2.26)
= o%((da(t) + dat(2)?) (2.27)
= 2((6XT(t)?) (2.28)
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where the substitution for the amplitude quadrature fluctuations of the linearized
field. As an example for the linearized fluctuation terms, the coherent state has the vari-
ance in each quadrature,

(06X (1))%)
((6X~(1))%) =

similarly the vacuum state is described by the same fluctuations.

(2.29)

1
1 (2.30)

2.5 The production of squeezed light

This section gives a brief overview of the processes used to generate squeezed light via
optical parametric amplification. The generation of squeezed light is not the subject of
this research and it should be stated that the device used to generate squeezed light, the
squeezer, was already built. This was achieved over the period of two Ph.D’s by Dr. Ben
Buchler and Dr. Ping Koy Lam with details to be found in [22, 27].

The two elements used to produce the squeezed state are two second order nonlinear
crystals. The crystal used in this experiment is MgO : LiNbO3, named: magnesium oxide
doped lithium niobate.

The squeezing is produced in one crystal, operated as a degenerate optical parametric
amplifier(OPA). This relies on a three wave mixing down-conversion process [14]. One
of the fields required, the pump, is at twice the frequency of the signal and the idler. This
is produced in the second crystal by a up-conversion process called second harmonic
generation(SHG).

An illustration of the two processes is shown in figure 2.3.

e s g

w

Figure 2.3: Second harmonic generation(SHG) is a four wave mixing process where two pho-
tons of frequency w combine into one photon of twice the frequency 2w. The degenerate optical
parametric amplifier(OPA) process has one photon at frequency 2w split into two at frequency w.

2,51 Second harmonic generation

Second harmonic generation, or frequency doubling is a degenerate case of three wave
mixing process. In the nonlinear medium two photons of frequency, w; combine to form
one photon at twice the frequency,
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w9 = 2w (2.31)

This condition is required by conservation of energy. In our experiment the Nd:YAG laser
light@1064 nm is converted to pump@532 nm. Conservation of momentum requires the
phase matching condition [14],

ko = 2k; (2.32)

where k is the wavevector of the photon. If the photons are co-propagating this sim-
plifies to

Nnow39 niwi

=2
c c

(2.33)

where ng, n; are the refractive indices for the two frequencies ws, w; respectively and
c is the speed of light in vacuum. This equation shows that the phase matching condition
requires that the refractive indices to be the equal at both frequencies,

no = Ny (234)

If this condition is not satisfied (which is the case for most materials) SHG does not occur.
The technique used to phase match in MgO : LiNbO3 is known as type I phase matching.
This crystal has different refractive indexes for the orthogonal polarizations. Using this
property the refractive index for the two frequencies can be set to be equal by choosing
the correct orientation for each polarization. This is done for particular temperature,
as the refractive index of the medium is highly sensitive to temperature. Keeping the
temperature controlled is required. Basic control and experimental details required to
operate the squeezer are introduced in chapter 5.

2.5.2 Squeezing from a optical parametric amplifier

The squeezed light is produced in the OPA via parametric down-conversion. The pump
photon, provided by the SHG, is split into two photons, referred to as the signal and the
idler. In our case the signal and idler photons are frequency degenerate. As the pump
is produced in the SHG with input from the same laser as the signal the pump is exactly
twice the frequency of the signal. The idler and signal that leak out of the OPA is squeezed
light. Parametric down conversion is phase dependent process and as such when viewed
on a ball on stick diagram, in the figure 2.4, the effect looks as if there is a stretching
force on the X+ axis and compressing force on the X ~ axis. The process requires phase
matching, which again achieved through temperature control of the crystal. The figure
also shows that the phase of the pump relative to the signal determines if amplification
or de-amplification occurs. The noise on the coherent amplitude also follow this. In the
experiment we use the de-amplified amplitude squeezed beam.

2.6 Summary

This chapter has introduced quantum noise with the HUP and described squeezing and
other important states of light used in the experiment. The method of linearization of the
operators has been presented to simplify modelling in the following chapters. Finally we
have briefly looked at the nonlinear elements involved in squeezing production.
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Figure 2.4: The phase dependence of the optical parametric amplification process can be repre-
sented by the existence of lines of force towards the phase quadrature.



Chapter 3

Interferometer Control and Detection
Theory

3.1 Overview

This chapter introduces techniques used to control the interferometer and some back-
ground to understand these. The second half of the chapter introduces the detection of
light with emphasis on methods to detect small amplitude signals.

3.2 Introduction to control

The control of the interferometer is extremely important in a gravitational wave detector.
Each degree of freedom of the interferometer requires monitoring and control to hold
lengths to sub-nanometer accuracy. The control of each degree of freedom requires three
elements;

- the monitoring of the current operating condition,

- the comparison of the current to the desired operating conditions,

- feedback to cancel the difference.

The PRM with squeezing requires the control of three length degrees of freedom. The
squeezer has an additional four length degrees of freedom. Each degree of freedom has
to be locked on the desired operating point simultaneously, for the experiment to be oper-
ational. The different techniques used to lock each degree of freedom rely on the produc-
tion of an error signal. The error signal has an anti-symmetric form and is proportional
to the difference of the current and desired operating conditions. The error signal is fed
back to the system, with the appropriate electronic filtering and gain, to correct for dis-
crepancy between the current and desired operating conditions.

3.3 Phase and amplitude modulation

Phase modulation(PM) and amplitude modulation(AM) on an optical field can be used
to readout of the status of a optical system and obtain an error signal. PM or AM can be
imparted on a optical field using an electro-optic modulator(EOM). An EOM consists of
a crystal that exhibits the Pockels effect [14] with a time varying voltage applied across
it. The Pockels effect is the change of refractive index with applied voltage. Usually,
the applied voltage is at a single frequency, which modulates the effective crystal length

19
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at that frequency. This modulates the phase of light transmitted through the crystal.
Sinusoidal PM of a carrier field, ¢, is mathematically represented by,

o= aoei(wct—i-A sin wy, t) (3.1)
here ay is a constant amplitude1 and w, is the carrier angular frequency. The modulation
is at angular frequency, wy, and has modulation depth, A. The modulation depth cor-
responds to the amount of light coupled from the carrier into the sidebands(usually on
order of 5%). For small A, the above equation can be approximated by the first term in a
Taylor expansion.

a =~ apet(1+iAsinw,t) (3.2)
. A A
~ age! (14 et — Demiont) (3.3)

This shows three terms; a carrier field and sidebands at + the modulation frequency.
The carrier and sinusoidal PM sidebands are represented in figure 3.1 a). The axes are
frequency in the horizontal direction and imaginary and real parts of the electric field in
the vertical and coming out of the page respectively. This figure also shows cosine PM,
sine AM and cosine AM.

Re(q) a) b)
sin PM sin AM
Im(a)
W RO w, Wt
W~ W ™%
c) d)
cos PM cos AM
W, W tw
@ 0+, W, e T
W ~Wy

Figure 3.1: sinusoidal AM, PM and cosine AM and PM.

The detection of AM and PM on a optical field is important. PM can not be directly
detected on a photodetector as only the phase of the field is changing. AM can be directly
detected, as the total intensity of an AM field is changing. This differentiation between
PM and AM becomes is used in the generation of an error signal.

'The quantum fluctuations are neglected in this calculation as they are small compared with the ampli-
tude of PM.
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3.4 The Fabry-Perot cavity

The optical cavities described in this thesis are a slight variation of the Fabry-Perot cavity.
Some of the important parameters of the cavity include; the free spectral range, F.SR; the
finesse, F; and the linewidth, [.

C

FSR = o (3.4)
1/4
Fo= TR (3.5)
1— VR.R;
FSR
| = == (3.6)

here c is the speed of light and L is the length of the cavity. The power reﬂectivity2 of
the two mirrors of the cavity are R; and Ry. The F'SR gives a measure of the frequency
separation between adjacent longitudinal modes. The finesse is analogous to the quality
or ) of a electronic circuit. The linewidth is the full-width-half maximum of the cavity
resonance.

Reflectivity

Linewidth > <

0.5

Reflected/Incifdent Power

Phase Response J

Phase Shift (rads)
o

—

0‘? Angular Frequency
es

Figure 3.2: The magnitude and phase response of a field undergoing reflection from an under-
coupled Fabry-Perot cavity . wy.s is the angular resonant frequency

The phase response on reflection and reflectivity for a undercoupled Fabry Perot cav-
ity [14] are shown in figure 3.2. The phase response inside the cavity linewidth has an
antisymmetric form which crosses zero on resonance. Well outside the cavity linewidth
the reflected field receives almost no phase shift. The reflectivity on resonance is low, as
the field is mostly transmitted. Off resonance the reflectivity is larger and approaches 1
outside the linewidth.

The complex reflectivity of a cavity is important for the locking techniques presented
in the following sections, but also for the squeezed light interaction with the PRM as

’The amplitude reflectivity r = VR=+1—-1—a2
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discussed in chapter 4.

3.5 Interaction of PM with an optical cavity

The PM sidebands on a carrier can be used as a reference for the interaction with a cavity.
This can be understood by use of an example. Consider the field described by equation
3.3 incident on the cavity with properties shown in figure 3.2. Assume the modulation
frequency much larger than the cavity linewidth. The reflected field is measured on a
photodetector as the carrier frequency is varied. When the carrier field is on resonance

Re(a) a) b)

sin PM

Reflection ™
Im(a) -> off cavity > |

Figure 3.3: a) The phase modulated carrier field is incident on the cavity slightly off resonance. b)
The reflected field consists of an attenuated and phase shifted carrier and the phase modulation
sidebands which, because they are well outside the linewidth of the cavity, do not receive any
phase shift or not attenuation on reflection.

a small fraction of the incident light at w, is reflected and it receives no phase shift. The
sidebands, at wy,, are well outside the linewidth of the cavity. They are completely re-
flected and receive no phase shift. If the carrier frequency is lowered slightly, still within
the cavity linewidth, the reflected field at w. increases and receives a positive phase shift,
¢. The sidebands, still well outside the cavity linewidth, remain unchanged. This case
is shown in figure 3.3. Instead, if the carrier frequency is higher than the resonance fre-
quency, still within the cavity linewidth, the reflected field increases and this time re-
ceives a negative phase shift, —¢. Again the sidebands are reflected unchanged.

Since the interaction of the carrier and PM sidebands with the cavity is different, with
some novel thinking an error signal can be extracted.

3.6 Locking Techniques

The two locking techniques used to lock the degrees of freedom are discussed in this
section.

3.6.1 Pound Drever Hall locking

Pound-Drever-Hall (PDH) locking [28] is a commonly used technique in optics to mea-
sure and control a cavity on resonance. PDH is used in the experiment to lock the power
recycling cavity. This is the standard technique in long baseline interferometers. We also
use PDH to locked the relative phase of the squeezed light to the interferometer, and in
the squeezer for 3 additional locking loops.

The PDH error signal is obtained by the measurement of the relative phase of the
carrier field and PM sidebands reflected off the cavity. The previous section showed
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that when near resonance, the reflected field at w. receives a phase shift, ¢ whilst the
sidebands at wy, are unchanged. This is shown in figure 3.3. Equivalently, this can be
drawn with the carrier having no phase shift and the sidebands with the phase shift
—¢. This is shown in the figures 3.4 a) for the case where the carrier receives a positive
phase shift and b) where the carrier receives a negative phase shift. These fields can be
decomposed into a sum of the original sin PM and a component of sin AM. In figure 3.4
a) the positive phase shift means the sin AM component has a positive value. In figure 3.4
b) the sin AM component is negative. On resonance the carrier receives no phase shift,
therefore there is no sin AM component. The sin AM component gives a antisymmetric
signal used as the error signal for PDH locking.

Re(a)
sin PM sin AM 3)
w
2
Im(@), | — +
‘ [ A/H/'
K
Re(a) b)

sin PM -sin AM
w
A
Im(a) | — +
@

Figure 3.4: The reflected fields can be redrawn equivalently with the carrier pointing straight
up and the sidebands having the phase shift. This picture can be decomposed into a sum of the
original sin PM and a component of sin AM. If the carrier frequency is slightly lower in frequency
the carrier

The experimental layout for a PDH locking system is shown in figure 3.5. The incom-
ing light is phase modulated with a frequency well outside the linewidth of the cavity.
The reflected light is measured on the photodetector. The detected signal (the amount
of sin AM) at the modulation frequency is demodulated electronically. Demodulation
transfers the measured signal at w,, down to DC to be fed back as an error signal. It also
introduces a term at 2w,, which is removed by a low pass filter. The error signal is used
lock the cavity length on resonance with the laser frequency using the PZT. It can also be
used to lock the laser frequency to the cavity resonance.

3.6.2 Offsetlocking

Offset locking [19] is a simple technique used to lock an interferometer slightly off res-
onance. We use it to lock the differential mode of the Michelson interferometer. A top-
ical technique, it has been proposed for use in the Advanced LIGO configuration, as it
presents many benefits over modulation techniques.

The error signal is derived by subtracting a DC offset from the power transmitted to
the output of the Michelson. The figure 3.6 shows the power at the output as a function
of the phase difference between the fields in the arms, A®. It also shows the power at the
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a)Pound-Drever-Hall locking setup b) Offset locking setup l;_:'i_IPZT
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Figure 3.5: Locking techniques experimental setup; a) Pound-Drever-Hall locking. PM-Phase
modulation, RF Signal- Radio frequency signal. PZT-Peizo electric transducer, HS Photodetector-
High speed photodetector. The phase modulation sidebands are imparted on to the carrier field
before incidence with the cavity. The reflected field is detected on a high speed photodetector
before being mixed down, producing an error signal. The error signal is processed by a servo then
fed to one cavity mirror PZT to control the length of the cavity, controlling the cavity resonance to
the laser frequency. b) The Offset locking setup has a tap off before the Michelson interferometer
to obtain a DC offset. This is subtracted from the DC power at the dark port, producing the error
signal. This is fed into the servo which filters and outputs two opposite polarities error signals,
fed to different mirrors to control the relative arm length.

output with a DC offset subtracted. This is the error signal to lock the Michelson differ-
ential mode. The operating point is slightly offset from the usual dark fringe. This point
can be tuned by changing the DC offset. We obtain the DC offset optically, by tapping off
some light before the Michelson. This measure is taken rather than simply using a volt-
age supply so that the offset lock point is isolated from the laser power fluctuations. For
example, if the laser power increases, the power in the Michelson and the offset voltage
increase by the same proportion, leaving the lock point unchanged. The setup is shown
in figure 3.5 (b). The error signal is fed back differentially to the Michelson arms.

All current long base-line detectors use a RF modulation scheme similar to that of
PDH locking also called Frontal or Schnupp modulation [29]. Offset locking requires no
modulation, so unlike Schnupp/frontal modulation, the signal readout does not require
demodulation. This is a benefit as the squeezing is only required at the GW signal fre-
quencies. If modulation techniques are used, squeezing is also required at the signal
frequency and twice the modulation frequency + the signal frequency [7]. This simplifi-
cation on the requirements for the squeezed light in a GW detector is valuable.

In high power systems, such as the LIGO interferometers, phase modulator crystals
heat up, introducing undesirable effects such as wavefront distortion. Offset locking
does not encounter this problem. The other advantage of offset locking is that it does
not require the Michelson to have a Macroscopic arm length mismatch (as is the case
for Schnupp modulation). This is an advantage for the bench top squeezing system as a
macroscopic arm length mismatch would introduce extra losses for the squeezing at high
frequencies.
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Figure 3.6: The offset locking error signal is obtained by taking a DC offset from the voltage at the
detector at the output of the interferometer.

3.7 Detection theory

This section introduces the theory of the detection. The techniques used are direct de-
tection and standard homodyne detection. This is done using the method of linearized
operators. These are discussed in terms of measurements and of a GW signal. Finally, the
effect of inefficient detection is reviewed.

3.7.1 Direct detection

The direct detection of light is performed on incidence with a photodiode. The current
out of the photodiode, the photocurrent, is proportional to the incident intensity or photon
number. The photocurrent is converted to a voltage and viewed on a CRO for a DC value
or a spectrum analyzer for broadband detection. For a light field, @, the photon number
using linearized operators, derived in equation 2.23 is given by,

n(t) =~ l|a|® +adX[(t) (3.7)
then the photocurrent is,
i(t) o n(t) (3.8)
o o+ adX[(t)
This can also be represented in the frequency domain. Taking the Fourier transform of
the linearized operators, a(w) = @d(0) + da(w), then calculating the photon number once
more,
nw) =~ |a?§(0) + ad X, (w) (3.9)

to give the photocurrent,
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i(lw) o n(w) (3.10)
o |a?6(0) + ad X,f (w)

This equation shows the photocurrent contains a large DC term plus the frequency
dependent amplitude quadrature fluctuations, scaled by the amplitude of the field. It is
interesting to note the absence of phase quadrature fluctuations in this equation. When
detecting a large amplitude field, only the fluctuation in quadrature with the field ampli-
tude become important. This is the principle used for the local oscillator explored in the
following section.

3.7.2 Standard Homodyne

The sensitivity of measurement of small optical signal, & can be improved by beating
with a large amplitude local oscillator(LO), b, using the standard homodyne configuration.
This configuration is shown in the figure 3.7. The fields & and b are combined on a beam-
splitter, with each output detected with a photodetector. The sum and difference of the
photocurrents is taken. The fields at the respective output ports, ¢ and d can be calculated.
The phase difference between the fields at interference is §. For a balanced beamsplitter
we find?,

1 P
e:-ﬁmﬂwﬁ (3.11)
” 1 P
d = 7§a+a¢] (3.12)

The phase difference between the fields in this calculation is arbitrary. For mathemat-
ical convenience the a —i phase shift to b is introduced giving,

é:-%mwﬁ] (3.13)
d:-%miw] (3.14)
using linearized formalism,
A 1 . 7\ .0
é = %[a +da + (B + db)e"”] (3.15)
. 1 .
d:-ﬁm+m—w+mw] (3.16)

3The notation used to calculate fields: Introduce an i on transmission of the beamsplitter. For a bal-
anced(50:50) beamsplitter each transmission and reflection receives a factor of 1/ V2
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b)

Loss

A dayac(t)

Figure 3.7: a) The standard homodyne configuration. The small signal a is interfered on a bal-
anced beamsplitter with the local oscillator, b. The detected photocurrents can be either added
or subtracted. b) A model for inefficient detection. A mirror with reflectivity equal to the loss of
detection is placed in front of an ideal photodetector.

Taking the photon number at each detector, discarding the 2nd order fluctuation
terms,

1
de ~ §[|04|2 + |BI* + 28 cos 0 + (3.17)
a(6X; + dbte™ + obe'd) +
BOX, + dale + dae )]
PRI 1
did =~ §[|a|2 + 18> — 2aB cos 0 + (3.18)

a(6X; — obte™ — 5be') +
BOOX, — daTe — sae )]

here the substitutions for X/ and §X," have been made. If |a| < |B| terms without
the amplitude of the LO, 3, are discarded. We are left with,

Q

1
ce §[|B|2 + 2aB cosb + B(6 X, + 6X .} cos + 6X, sin6)] (3.19)

dtd

Q

1 B2 —2aB cos® + B(0X; — 86X} cos® — X sinb)] (3.20)
2 b a a

for the fields at the two photodetectors. Here the fluctuation terms have been simplified
using Eulers equation and the substitutions for X, and X .

These equations are not particularly enlightening. The largest term is the LO beating
with itself, | 3|?. There are many cross terms that involve fluctuations which have phases
difference dependence. Taking the sum and difference photocurrents we find more in-
sight.
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iy oo |B*+B6X, (3.21)
i o 2afcost+ B[6X] cos®+ X, sinb) (3.22)

The sum of photocurrents gives the same fields as if the LO was directly detected.
This is because of its large coherent amplitude and our assumption of the signal being
negligible. Taking the difference, we find many terms are cancelled out, leaving a cross
term between the amplitudes of the LO and signal, with dependence on the phase be-
tween them. To measure the amplitude of the signal it is ideal to have the # = 0, that is,
in quadrature with the LO. We also find two terms involving the amplitude and phase
quadratures fluctuations of the signal with phase dependence. By tuning the phase differ-
ence, #, measurement of either phase or amplitude quadrature fluctuations of the signal
can be performed. It is important to note the noise of the LO does not enter into this
equation. This however, is only the case for perfect subtraction and 50:50 beamsplitter.

This calculation indicates, if one wants to measure a small amplitude signal «, it
would it desirable to have the minimum fluctuations on a and the phase difference with
the LO, 6 = 0. If the signal has squeezed fluctuations in the correct quadrature the mea-
sured noise can be reduced.

3.7.3 The measurement of squeezing

The measurement of squeezing before it interacts with the interferometer in the exper-
iment is performed using the standard homodyne. In this case, the small amplitude
signal, a is the squeezing and the LO, b s a large amplitude coherent state. The difference
current is taken, and the phase difference, € is scanned. The fluctuations in each quadra-
ture can be easily measured. A shot noise limit can be easily obtained by blocking the
squeezed field and taking the difference photocurrent. In this case the small signal is the
vacuum state @ = dayqc

3.7.4 The Local oscillator in gravitational wave detectors

A gravitational wave detector uses a LO to improve the measurement sensitivity of the
GW signal. The LO for the signal is the field also used for the control of the differential
mode of the Michelson. In our interferometer, since we use offset locking, the LO is the
DC field coupled to the output of the interferometer when the arms are offset. A vector
diagram of fields in the Michelson arms and the resultant, the LO, is shown in figure 3.8.
The GW signal, which arises dues to differential motion of the arms, is in phase with the
LO. The coherent state fluctuations are shown on the signal. This figure shows that only
the noise in phase with the signal is important. This is exploited, by the use of squeezing.
A full model of this is found in the following chapter.

3.8 Inefficient measurements

The efficiency of a shot noise or sub-shot noise experiment is important. Inefficiency
couples in vacuum fluctuations, which degrade the signal. Any linear inefficiency, or
loss, before detection can be represented by a simple model is shown in figure 6.2. A
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Figure 3.8: A vector diagram of the fields in the Michelson arms and the resultant, the local
oscillator. A GW signal is in phase with the local oscillator.

mirror with power reflectivity equal to the loss, A, is placed before an ideal photodetector.
The efficiency is defined,

n=1-X (3.23)

The field at ¢ is a sum of the field @ and the vacuum scaled appropriately,

¢ =/Mna++/1—ndv (3.24)

in the linearized formalism,

¢ =M(a+déa)++/1—ndv (3.25)

Taking the photon number for the field at the detector,

de = (Vnla+dah) + /1 —nov")(/n(a+ da) + /1 — niv) (3.26)
~ n(la?+ad X))+ 0l —n)adX, (3.27)

The loss means that the signal is smaller (first term) but also the vacuum fluctuations are
added (second term). It can be seen that if the fluctuations on the field a are squeezed,
the loss degrades this.

3.81 Mode mismatch in homodyne

Mode mismatch describes the case when two fields don’t interfere completely. This can
arise due to different effects, the outcome is the same as a linear loss. Mode mismatch
occurs when two fields have; different spatial distribution, different wavefront curva-
tures or different polarizations. This is modelled the same way photodetector loss is as
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in 6.2 b). A measure of the interference or mode matching is given by the fringe visibility.
When two fields of the same coherent amplitude are combined on a balanced beamsplit-
ter and the phase between them scanned the fringe visibility is defined by looking at the
minimum and maximum voltages on one photodetector,

Vmaw - Vmin

Fys=—77"""—"7""— 3.28
v Vmaz + Vmin ( )

The interference efficiency is defined as the square of the fringe visibility.
n=Fys (3.29)

3.8.2 Electronic noise

The photodetector and signal processing units introduce uncorrelated electronic noise to
any measurement. This noise can be made to be negligible and reduced to much below
shot noise by having high enough power on the detectors.

3.9 Chapter summary

In this chapter we have introduced some background to modulation theory and the com-
plex reflectivity of a Fabry-Perot cavity. This is used in the discussion of the techniques
used to control the interferometer. Finally we have calculated some detection theory and
discussed how this relates to gravitational wave detection.



Chapter 4

Theory of a Power Recycled
Michelson Interferometer with
Squeezed Light

4.1 Overview

This chapter introduces a theoretical model of a power recycled Michelson (PRM) with
squeezed light using linearized operators. The interaction of squeezing, vacuum fluctua-
tions and losses with the interferometer is examined. The model is used to analyze both
the classical behavior of the interferometer and the quantum fluctuations at the output.

4.2 Equivalent optical circuits

Interferometer configurations used for gravitational wave detection are becoming in-
creasingly complex. To understand the behavior and operation of these systems it is
useful to use an equivalent optical circuit. This mathematically represents the transfer
function of the interferometer. A complex configuration can be simplified by breaking
it into sub-configurations and representing each with a transfer function. Then combin-
ing the transfer functions the full configuration transfer function is obtained. This tech-
nique results in the most complex interferometer being represented by a single transfer
function. It is analogous to Thevenin or Norton circuits in electronics, where a transfer
function is used to represent complex electrical circuits.

The components in the interferometer have linear media® and the transfer functions
are derived in steady state. These conditions make equivalent transfer functions very
powerful.

4.2.1 The Michelson interferometer

The transfer functions for the reflectivity and transmission of the Michelson interferome-
ter are found by dividing equations 1.2, 1.3 by the incident field,

'The model of the squeezer is not derived here. As the squeezer contains cavities with non linear crystals,
these conditions would not be valid
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Figure 4.1: A power recycled Michelson can be represented by a Fabry Perot cavity, with the
back mirror having reflectivity r,,, and transmissivity ¢,, equal to that of a Michelson. The power
mirror reflectivity is 7, and transmissivity ¢,

Qref

Tm = . 4.1)
= cos 2¢dei2¢m

t = O‘Z—;’“ (4.2)
= sin2¢dei2¢m

where ¢4 = w,AL/c and ¢, = w.L/c represent the differential and common phase shifts
the light recieves in the Michelson arms, respectively.

Using these transfer functions a Michelson interferometer can be replaced with a mir-
ror with ¢, and r,,. Then the PRM reduces to a Fabry Perot cavity as shown in figure
4.1. The Michelson mirror has variable reflectivity and transmission, however, whilst
operational it is locked to a constant value.

4.3 Power recycled Michelson with Squeezing

In this section a mathematical model of the PRM with squeezing is derived using the
linearized formalism. The model describes the fields and respective transfer functions to
the output. It is used to analyze the behavior of the interferometer and specifically, the
quantum noise at the output.

A schematic of the experimental setup for the PRM with squeezing is shown in figure
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Figure 4.2: The model of the power recycled Michelson interferometer with squeezing injected
into the dark port is simplified to a ring cavity. The three mirrors represent different elements
of the power recycled Michelson interferometer. The top mirror is used to represent loss in the
cavity, here vacuum fluctuations enter. The first mirror is the power recycling mirror. The final
mirror represents the Michelson interferometer. The squeezing reflects off the last mirror

4.2 (a). A equivalent model is shown in figure 4.2 (b). This representation uses a Fabry
Perot ring cavity. The three mirrors represent: The power recycling mirror with reflec-
tivity and transmisson, r,t,, the Michelson interferometer with r,,,t,, and losses in the
cavity with, r;,¢;. The loss mirror transmission, ¢; is equal to the total round trip loss in
the cavity.

4.3.1 Fields in the interferometer

The fields in the model are represented in the frequency domain using the linearized
operators. The three fields that couple to the output of the interferometer are; the carrier,
the squeezing and the vacuum fluctuations,

ain(w) = a+ dajp(w) (4.3)
i) = Giy(w) @4
ay(w) = day(w) (4.5)

The carrier field is represented by the coherent state?. It has the DC amplitude, a =
a6(0) and fluctuations, dd;, (w). The squeezed field is represented by the fluctuating term,
das(w). It has small coherent amplitude, s < « not included in this model. The vacuum
state is da, (w).

*This representation is valid for the operational frequency range, since it it shot noise limited
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4.3.2 The transfer functions of the interferometer

Each of the fields has a different transfer function since it enters the cavity from a different
port. The laser field is incident on the power mirror. The squeezing field is incident on
the Michelson interferometer beamsplitter, or in the simplified picture, the last mirror of
the Fabry Perot ring cavity. The vacuum fluctuations enter the mirror which represents
the losses in the cavity.

The transfer functions for the respective fields in the frequency domain are,

T,(0) « « (4.6)
Tho (@) ©  0in(w) (47)
Tyo,(0) € Gi(w) 8)
Tsq, (W) <> day(w) 4.9)

Using these transfer functions, the annihilation and creations operators at the output
can be defined,

dout(w) = Ta(0)a+ Tsq,, (W)dain(w) + Tsq, (w)das(w) + Thq, (w)day, (w)  (4.10)
al (W) = Ta(0)a+ Tsa,, (w)0a! (w) + Tha, (w)dal (W) + Tsa, (w)da (W)  (4.11)

here each field is multiplied by the respective transfer function. The transfer functions
are similar to that of a simple Fabry Perot ring cavity. The transfer function for the carrier
DC component is3,

tptmeie

Ta(0) = = 1 — rprpriet2®e

(4.12)
where ¢, is the cavity round trip phase shift for the carrier. When the experiment is
operational the carrier is kept on resonance with the cavity, thus ¢, = n2mw where n is an
integer. On resonance the transfer function becomes,

T, (0) = — (4.13)

1 —rprmr

which is a constant. The transfer function for the carrier fluctuations is a function of
frequency,

B tptmei% (w)
Toain (@) = = 1 — rprpriei2ée (@) (4.14)

here the round trip phase shift the fluctuations receive, ¢,(w) = wy,L/c, which is depen-
dent on the frequency relative to the carrier. As these two transfer functions are small the
amount of carrier and carrier fluctuations that transfer to the output is small. As the off-

3derived in the appendix A
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Figure 4.3: Plots of the magnitude of the transfer functions from each port of the cavity to the
output of the interferometer.

set used to lock the interferometer decreases(r,,, — 1) these transfer functions approach
zero. The transfer function for the squeezing is,

Ty — T rleizd’”(“’)
T(sas (w) = = B

1-— Tp’]"m’rlei2¢v (W) (415)

which is generally close to unity as 7, is large. The transfer function of the vacuum is
given by

tmtlrpeid’” (w)

1 — rprpriei2de@)

Tsa, (W) = — (4.16)

it is close to zero since the transmission of the loss mirror, ¢; (equal to the losses inside the
cavity)is small. The power magnitude of each transfer function is plotted as a function
of frequency in figure 4.3 for typical experimental parameters(r,, = v/0.99,7, = V0.9,
t = V0.01 and L = Im). The highest transfer function is from the squeezing port.
It approaches 1 outside the cavity linewidth. Near resonance (DC) more of the carrier
tield fluctuations transfer to the output, replacing some of the squeezing. These transfer
functions are strongly dependent on the Michelson reflectivity, r,,. For high transfer
of squeezing to the output it is preferable to have r,;, — 1. The frequency dependent
behavior shows that it the transfer function of the squeezing port is high far from the
resonance of the cavity. Thus to reduce quantum noise below the shot noise limit improve
the sensitivity of the interferometer it is preferable to operate outside the cavity linewidth.
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4.3.3 The field at the output of the interferometer

The fields and respective transfer functions have been defined the behavior of the system
can be analyzed. Taking the photon number at the output, with « as real, and discarding
second order fluctuations terms,

Rout(®) = By () tout () (417)
= T2(0)a® + To(0)Tsa,, (w)abiin (W) + Ta(0)Tsa,, (w)ada! (w)
+ Ta(0)Ts0, (w)adis () + Ta(0)Tsq, (w)ada) (w)
+ Ta(0)Tsa, (w)adiy () + Ta(0)Toa, ()b} (w)
This can be simplified using Eulers equation, some factoring and the substitutions for
X (w) and 6X, (w). Then,

T2(0)a? (4.18)
aT,(0)Tsa,, (w) [6X;h (w) oS Psay, + 6X;, (w) sin Pga,, |

T, (0)Ts,, (w) [(5Xs+(w) o8 ¢sq, + 0X, (w) sin </’6as]

AT (0)Tsq, (w) [0X, (w) cos ¢sq, + 0 X, (w) Sin dsq, |

nout(w)

+ + +

Here the angles ¢, , $o, and ¢,, define the phase difference of each of the fluctuations
relative to . The carrier and vacuum fluctuations have isotropic distribution of noise
in amplitude and phase quadratures. Their phase relative to « is unimportant, as any
projection of noise has the same cross section. Then for convenience, we choose ¢4,,, =
$sa, = 0, then the photon number simplifies to

M) = 02T2(0) + aTa(0){Thop, (@)X (@) + Thny (@)0XF () (419
4+ Toa, (w) [6X, (w) cos o, + 0 X, (w) sin ¢, | }

The first term in this equation is the DC power at the output. This is the LO for the
Michelson, used for control and signal readout. The rest of the terms have fluctuations
scaled by the carrier amplitude. The squeezing term (last term) is the dominant fluctua-
tion term as the squeezing term, as T,, (w) = 1. The quadrature of the squeezing fluctua-
tions measured is phase dependent. This is important as one quadrature is squeezed and
the other antisqueezed. To reduce quantum noise on the signal, the squeezed quadrature
phase relative to the carrier should be set to zero. Therefore, either quadrature squeezing
can be used to supress quantum noise, given that it has the correct relative phase. We use
amplitude quadrature squeezing so we lock to ¢s,, = 0. A vector diagram of the fields is
shown in figure 4.4. The two long vectors represent the fields in the Michelson arms, the
phase difference between them couples the offset locking LO (T (0)) to the output. A
gravitational wave signal induces phase modulation of the two long vectors, and couples
the signal in phase with the LO. The squeezing ellipse is set to minimize phase noise on
the fields in the arms of the interferometer, which is in the amplitude quadrature of the
signal. The large fluctuations are in the orthogonal quadrature are not measured.

The photodetectors are plugged into a spectrum analyzer. The spectrum analyzer
measures the power spectrum of the photocurrent which is proportional to the variance
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Figure 4.4: Vector diagrams of the fields in the Michelson arms and the resultant, the field coupled
to the output. In (a) the orientation of the squeezed light has been shown to minimize the fluctu-
ations on the signal. (b) shows incorrect orientation of the squeezing results in more fluctuations
on the signal.

of the photocurrent. The variance of the field at the output is given by,

Vour@) = ((@fusout)”) = (@5usout))’ (420)
= 0’[Ta(0)Tay, ()16 X7, (@))? + 0| Ta(0) Tsa,, (w) (|6, (w)])*
+ 02|Ta(0)Tha, (@)[* [{J0X5 (W))? cos® bia, + {|0X7 (w)[)? sin® s, ]
The terms with the product of uncorrelated noises sources are on average zero and

have been discarded. Rewriting this equation substituting in the variances of the each
field,

|
2

Vout(w) = O‘Q‘Ta(O)Téam (w) |2‘/z: + QQ‘Ta(O)TJav (w) ‘2Vv+ (4.21)
+ 0P|Ta(0)Tsq, (W)I? [ViT cos® psa, + Vi~ sin® ¢ga, |

To model our experiment we consider 3dB of input squeezing over the detection fre-
quency range. Theoretical plots of the frequency spectra of the detected output variance
for a simple Michelson and a power recycled Michelson (PRM) are shown in Fig.4.5. The
results show improved performance of the PRM compared to the simple Michelson. This
difference is a result of two separate effects. Firstly, to keep the same power at the homo-
dyne photodetector, the position of the Michelson fringe changes, such that the effective
Michelson reflectivity increases. In our experiment the reflectivity for the simple Michel-
son is R, ~ 0.92, where as R,,, = 0.99 for the PRM. The result is an increase in T, (w)
and a decrease in Ty(g) (w), so that more squeezing is transferred to the interferometer out-
put. In the presence of a power recycling mirror, therefore, less squeezing is wasted in
the interferometer. Secondly, the power mirror introduces a frequency dependence to the
squeezing transfer function, T,,. Outside the power cavity linewidth, the interferometer
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Figure 4.5: The variance of the output field of a Michelson and power recycled Michelson with
3dB of squeezed light added to the dark port. The variance for the with simple Michelson case
(no power mirror) sits at -2.4 dB and displays no frequency dependence. The power recycling
cases have a distinct frequency dependence due to the linewidth of the power recycling cavity.
The variance out improves as the frequency is further from resonance since the cavity reflectivity
increase, reflecting more squeezing.

becomes highly reflective so that transfer of the squeezing becomes close to ideal.

4.4 Chapter summary

This chapter has introduced a theoretical model of the power recycled Michelson inter-
ferometer with squeezing. This has been presented using linearized operators and the
transfer function approach. It has described the source of shot noise in the interferometer
and how to minimize it. Theoretical predictions of the operation of the interferometer
with squeezing have been calculated for comparison to experimental data in chapter 6.



Chapter 5

The Experiment

5.1 Overview

This chapter describes the experimental setup of the PRM with squeezing. The first part
of the chapter introduces the laser and the preparation of the laser light for the PRM.
Then the techniques used to generate a signal, in order to characterize the interferometer,
and the method to inject the squeezing into the interferometer are presented. The last
part of this chapter is concerned with the optical and control configurations. The optical
layout for the PRM with squeezing and the squeezer are discussed separately before the
control of both systems is presented.

5.2 The laser

The laser is a Nd:YAG non planar ring oscillator with maximum output power of 700
mW at A = 1064 nm. It operates at a single frequency with a slightly elliptical spatial
mode output similar to the TEMy.

The light from a Nd:YAG laser has large classical intensity noise from DC to around
100 MHz due to the relaxation oscillation(RO) [30]. RRO intensity noise arises from the
coupling of energy back and forth from the lasing atoms to laser radiation. In Nd:YAG
lasers the RO resonance frequency is typically around 500 kHz where there is a large
intensity noise spike up to 108 times larger than the SNL. The classical intensity noise
rolls off at higher frequencies until it reaches the SNL at around 10MHz. The phase noise
of a laser is typically larger than the intensity noise. This however, is common to all
beams and is cancelled out on interference to the extent that it is difficult to measure.

The frequency of the laser light can be controlled (varied) in the slow and fast regimes
to maintain lock with the modecleaner. The lasing crystal sits on a peltier element and
a piezo electric transducer (PZT) is bonded onto it’s upper surface in order to change
the crystal length and therefore the lasing frequency. The peltier element heats or cools
the crystal, producing a large dynamic range (order of several GHz) at bandwidth of
~100mHz. The PZT bonded to the lasing crystal stresses the crystal and has a smaller
dynamic range (order of 50MHz) at a higher bandwidth of up to ~200kHz.

5.3 Preparation of the light

The laser does not produce an ideal state of light. For the squeezer and the carrier field
in this experiment, we require SNL TEM light with the desired polarization and mode
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size. The laser light is conditioned to achieve this before it enters the PRM. This section
describes the techniques used to prepare the light.

5.3.1 The modecleaner

The laser light is transmitted through a modecleaner before incidence on the PRM. The
modecleaner performs two important operations: It filters high frequency intensity and
phase noise and it defines a high quality TEMy spatial mode.

This experiment requires SNL light at around f = 5 MHz in order to get below the
SNL by use of squeezing. The modecleaner used in this experiment is a Fabry Perot ring
cavity with linewidth, I ~ 2 MHz!. The transfer function on transmission is equivalent to
a low pass filter (LPF). Noise sidebands outside the modecleaner linewidth are removed,
leaving the laser light classical noise only at low frequency. The transmitted light reaches
the SNL at a frequency around 4 times the cavity linewidth.

The squeezed light comes from a cavity (the OPA) and therefore has the well defined
TEMyg spatial mode of this cavity. For high interference efficiency the carrier must be in
the same spatial mode as the squeezed light. The modecleaner ensures the spatial purity
of the carrier as it forced to resonate only the TEMyp mode; all higher order modes being
rejected by the cavity.

5.3.2 Mode-matching

While both the OPA and the modecleaner cavities produce TEMyy modes, these modes
must be transformed to ensure that they are spatially identical at the point of interference.

In this experiment the squeezed light and the carrier modes are matched to the PRM
cavity mode for high coupling efficiency. The match of the squeezed light to the PRM cav-
ity is particularly important as the interference with the carrier field takes place inside the
PRM cavity. Bad mode-matching gives poor fringe visibility and therefore poor squeez-
ing detection efficiency(see equation 3.27). The carrier field mode-matching into the PRM
cavity is less important, mismatch results in less field coupling into the cavity, reducing
only the DC power in the cavity. Mode-matching is also performed for the measurement
of the squeezing on the homodyne configuration. In this case the squeezing mode is set
to match the local oscillator.

L1 Lz My M2

Cavity
I nput

Figure 5.1: Mode-matching the squeezed beam to the power recycled Michelson cavity. Lens focal
length and separations are adjusted to produce the required mode that is resonant in the cavity.

The modes supported by a cavity depend on the separation and curvature of the
mirrors. The PRM cavity has a flat power mirror (radius of curvature, R = oo) and
Micheslon arm mirrors with R = 1.5 m. For the cavity to be stable the length from the

'The modecleaner was setup by B. Buchler previous to the start of this experiment. Full specifications to
be found in [27]
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power mirror to the Michelson arm mirrors, L is required to be less than or equal to the
radius of curvature of the curved mirrors ie L < R. We choose Ly, = 1 m. The mode
shape of the cavity2 has the waist at the flat power mirror and wavefront curvature equal
to the arm mirror curvature at the Michelson arm mirrors. This is shown schematically
in figure 5.1. The incident mode shape is adjusted using lenses to match this shape when
it enters the cavity. This is achieved to high precision by measuring the beam size and
manipulating it using lenses until the incident field matches the calculated cavity mode.

5.3.3 Polarization optics

Polarization optics are used to match the polarization state of the squeezed and carrier
tields at interference. The injection of squeezing into the interferometer uses polarization
optics discussed in the following section. The polarization optics used in the experiment
are:

. % plate. This rotates the linear polarized component of the light by up to 90°.

. % plate. This imparts a phase shift between the orthogonal polarizations thus chang-
ing linear polarized light to circularly polarized or vise versa. The combination of the
two wave plates can transform any polarization state to any other.

- Polarizing beam splitter (PBS). This beamsplitter separates the polarization. compo-
nents of light by transmitting horizontal and reflecting vertical.

- Faraday rotator. This consists of a crystal that exhibits the Faraday effect with a static
magnetic field applied along the optical axis. The polarization state of light transmitted in
either direction through the rotator is rotated in the same direction. The applied magnetic
field can be manipulated to give a 45° rotation upon transit of the rotator. For example,
on double pass a vertically polarized beam is transformed to horizontal polarization. (In
contrast, the double pass polarization shift of a % plate to a linear polarization state is
zero. The polarization shift in one direction is exactly undone by the opposite imparted
in the other direction.)

- A Faraday isolator is made up of a PBS on each end of a Faraday rotator. One
PBS is 45° to the horizontal, thus transmitting 45° linear polarized light. It isolates a
component from reflections travelling back toward it, by allowing light to pass though
one way only. Isolators are used in front of lasers in order to prevent optical feedback.
In this experiment an isolator is used to inject squeezed light into the interferometer as
discussed in section 5.4.2.

5.4 Experimental techniques

In this section the technique used to generate a signal in order to characterize our inter-
ferometer and the method used to inject the squeezed light into the interferometer are
described.

5.4.1 Signal generation

An RF sinusoidal voltage is applied to one Michelson arm mirror PZT which modulates
the arm length. This produces a signal used to characterize the interferometer similar to

*Calculated using the computer program ABCD
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the effect of a gravitational wave (orders of magnitude larger). The RF signal is used in-
stead of a real gravitational wave detection signal frequencies (10’s Hz - 10 kHz) because
of the scaling required from the bench top to long baseline interferometers.

The signal frequency, fsi; = 5.46MHz is chosen after searching the PZT response
for a mechanical resonance around the optimal squeezing frequency (~ 5MHz). The
signal frequency is well outside the usual PZT operating bandwidth and the amplitude
response is poor. To find the signal we locked the PRM and applied a signal to the PZT
and looked at a spectrum analyzer output. The interferometer is quite sensitive, and we
found many such signals.

5.4.2 Squeezed light injection optics

: Squeezed Interferometer
A Michelson Input light Output light
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Figure 5.2: The polarization states of the light as it passed through the Faraday isolator.

A Faraday isolator (Gsanger FR 1060/5) is used to inject the squeezing into the dark
port of the Michelson beamsplitter. With this method the standard configuration for GW
detectors is maintained and the readout is unaffected.

The tigure 5.2 shows the polarization states of the light as it enters and passes through
the isolator. The input and output light is shown to be spatially separated for clarity, how-
ever in the experiment they overlap. The squeezed light has linear vertical polarization
when it exits the OPA. It is incident and reflects off the first PBS of the isolator into the ro-
tator. Here the polarization is rotated by 459, Then it is transmitted through the PBS@45°.
The light then passes through a % plate set at 22.59 which rotates the polarization back
to vertical. The squeezed field then interferes with the carrier field (also in the vertical
polarization) inside the Michelson. Part of the carrier field, now with the squeezed noise
sidebands exits to the homodyne detector. It passes through the 4 plate changing the po-
larization to linear 45°. It is transmitted through PBS@45° then passes through the rotator,
receiving a further 450 polarization shift, leaving the polarization state in horizontal. This
is transmitted through PBS out to the homodyne detection.
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5.5 Optical Layout

The optical and control configurations for the PRM were decided on before we started to
build the configuration in the lab. The squeezer was already built up and was operational
prior to this experiment.

5.5.1 Discussion of the optical layout

A schematic of the optical layout for the power recycled Michelson with squeezing is
shown in figure 5.3. The carrier and squeezed fields optical path will be introduced sep-
arately before the combination is discussed.

PZT1
Signal@5.46 MHz

75.9 MHZ

Modecleaner

Laser

Spectrum
Analyser

sQzL

Figure 5.3: Schematic of the experiment. The laser light passed through a modecleaner is divided
for the squeezer and the PRM. Squeezed light can either be injected into the output port of the
interferometer using a Faraday isolator or interrogated using a homodyne detection system with
a flipper mirror. L1,L2,L.3 =Modematchig lenses. A/4, A/2 = Waveplates, FL=flipper mirror, FI =
Farraday isolator OL=offset locking detector, PDHL=PDH locking detector, H1, H2 = Homodyne
photo detectors, PZT=piezo-electric transducer PM=Phase modulation and SQZ=squeezed state
generation system.

Carrier field

Approximately 20mW of the laser light transmitted through the modecleaner is directed
towards the PRM. It passes through a mode-matching lens (L1) and polarization optics
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adjusting the light’s polarization state to linear vertical. It passes through a phase modu-
lator (PM) which introduces PM sidebands at the modulation frequency f,, = 75.9MHz.
A tap off of the beam is measured on a photodetector (OL) used for the differential mode
Michelson locking loop. The light is then transmitted through a PBS@90° to insure only
vertical polarization is incidence on the PRM.

Both the differential mode of the Michelson and the power recycling cavity are locked
and the power builds up with in the PRM. Light that is reflected from the front of the
PRM is detected on a high speed photodetector (PDHL) and used for PDH locking of the
power recycling cavity. The offset locking technique requires the differential mode of the
Michelson to be locked to a point slightly to one side of the dark fringe. This couples some
of the circulating light to the output of the interferometer. This light passes through a A/2
plate and a Faraday isolator before it is detected on the homodyne detection system. For
operating the PRM the sum of the two detectors (H1+H?2) is taken which is equivalent to
having a single detector®. The DC voltage taken from the homodyne is used for the offset
locking (OL). The high frequency component (RF signal) is split into two outputs with
one output used to lock the squeezing phase (SQZL) while the other is viewed directly
on a spectrum analyzer.

Squeezed light in the locked PRM

The squeezing passes though the isolator and into the interferometer. It is incident on
the dark port of the Michelson beamsplitter where it interferes with the carrier field. The
small amount of the carrier coupled to the output has squeezed noise. The noise on the
output field is measured on the spectrum analyzer by taking the sum of the homodyne
detectors (H1+H?2). The squeezing phase is scanned by applying a sinusoidal signal to
PZT3. The squeezing is locked with relative phase to the carrier output such that the
minimum projection of the squeezing ellipse measured. This gives the local oscillator the
noise characteristics of the squeezing, improving the sensitivity of the interferometer.

When the PRM and squeezing are locked, a test signal is applied to one of the Michel-
son arm PZT’s at fs, = 5.46MHz. The results are taken on the spectrum analyzer.

The squeezed field measurements

The squeezing is measured on the homodyne detector before it is injected into the PRM.
It is redirected using the flipper mirror (FL) and incident on the homodyne configura-
tion setup at the the output of the PRM. The output field from the PRM is used as the
local oscillator. The subtraction of the photodetectors(H1-H2) is taken and viewed on the
spectrum analyzer. The squeezing phase can be locked or scanned by applying a signal
to PZT3 whilst the parameters of the squeezer are adjusted to improve the amount of
squeezing.

5.5.2 The optical layout of the squeezer

The squeezer was already built prior to the commencement of this research with full
specifications to be found in [27]. A schematic of the squeezer setup is shown in figure
5.4. Most of the laser light (~500mW) is used in the SHG to produce the pump@532nm
(~220mW) for the OPA. The pump passes out of the SHG and reflects off the dichroic

*This is if the other input of the beam splitter is vacant. See section 3.7.2
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mirror (DC1) (transmissive to 1064nm and highly reflective to 532nm). This is directed to
the OPA off a mirror mounted on a PZT, through a second dichroic mirror (DC2) (trans-
missive to 532nm and highly reflective to 1064nm) and into the front of the OPA. The
OPA has reflectivities on the front and back mirrors of 95.6% /4% and 99.96% /99.96% for
1064nm and 532nm respectively. The pump therefore performs a double pass of the OPA.

The seed for the OPA comes from a tap off after the modecleaner, as SNL light is
required to produce squeezing. It is transmitted into and resonates in the OPA, where if
the phase matching is correct the optical parametric process takes place[4]. The squeezed
light then exits through the front of the OPA and reflects off the dichroic mirror (DC2)
towards the PRM. The type of squeezing produced, (amplitude or phase) is determined
by the phase of the pump relative to the seed. This is controlled by a PZT in the pump
path.

The OPA is a monolithic MgO : LiNbO3 crystal 7.5 mm in length. The OPA temper-
ature is controlled to obtain the phase matching condition. Since the OPA is monolithic,
it has no means of length control, so the laser is locked to it. The crystal has a phase
modulation voltage applied across it. This imparts PM sidebands on the reflected and
transmitted fields. Thus the squeezing field has the PM sidebands that are used to lock it
to the PRM.

The SHG is a hemilithic cavity MgO : LiNbOj3 crystal with one high reflective mirror
coating and an output coupler with 94% /4% for 1064/532nm reflectivity mounted on a
PZT actuator. The SHG is also temperature controlled for phase matching and has phase
modulation voltage applied to it used for locking purposes.

Seed(1064nm)

@ 15.8VMHZ
| @im

1064nm — Squeezing(1064nm)
S Srs

S>—
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p)4

L Pump(532nm) pzT
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Figure 5.4: A schematic of the squeezer. DC1, DC2 = Dichroic mirrors.

5.6 Control

The control scheme for the squeezer relies on having the laser locked to the OPA res-
onance frequency since it is monolithic. Thus the power recycled Michelson must be
locked to the laser frequency rather than vise versa. The control scheme for this entire
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experiment is quite elaborate. The PRM requires three length degrees of freedom lock-
ing loops and the squeezer requires another four. Seven length degrees of freedom are
controlled as the acoustic and thermal disturbances conspire to push the cavities off res-
onance.

5.6.1 Control of power recycled Michelson with squeezing

The three degrees of freedom that need to be controlled in a PRM with squeezing are
the power recycling cavity, the differential mode of the Michelson and the phase of the
squeezed field relative to the carrier. Schematics of each locking loop are shown in figure
5.5.
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Figure 5.5: The three control loops of the PRM with squeezing. The output of the photodetectors,
also shown in figure 5.3, are conditioned to extract error signals, then fedback to the interferom-
eter via PZTs. PDHL=PDH locking photodetector, OL = Offset locking photodetector, H1, H2
= Homodyne photodetectors, HF= High frequency, HV = High voltage amplifier, PZT=piezo-
electric transducer

The power recycling cavity

The power recycling cavity is held on resonance with the laser frequency using PDH
locking. The carrier field has sidebands at 75.9 MHz imposed on it by a phase modula-
tor. The field reflected from the PRM is detected on a high speed photodetector (PDHL).
This contains a DC component plus a RF component at 75.9MHz. The RF signal from the
photodetector is firstly amplified then demodulated with a local oscillator signal. The rel-
ative phase of RF signal and the local oscillator is adjusted using different cable lengths
so that the in-quadrature error signal is demodulated. The error signal, now at DC, is low
pass filtered to remove the high frequency components introduced in demodulation. The
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error signal is fed into the common mode (PDHL) servo. The positive output of the servo
is split into two and fed into the both Michelson arm mirror PZT’s high voltage ampli-
tiers. This changes both PZT’s by the same amount thus changing the average length of
the Michelson, and therefore the power recycling cavity length in order to maintain lock.

The differential mode of the Michelson

The differential mode of the Michelson is controlled by offset locking. A DC offset ob-
tained optically before the PRM on the photodetector (OL) , is subtracted from the DC
voltage measured at the output of the homodyne photodetectors (H1,H2). This creates an
error signal which is fed into the differential mode (OL) servo. The positive and negative
outputs of the servo then drive the different Michelson arm mirror PZT’s high voltage
amplifiers. The different polarities of the signals changes the differential length of the
Michelson arms to maintaining the desired operating point on the Michelson fringe.

The squeezed light phase in the PRM

After the power recycling cavity and differential mode of the Michelson are locked up,
the squeezed field is injected to the dark port. The relative phase is locked using PDH
locking. The squeezed field has very low coherent amplitude (~30 W), which carries PM
sidebands at 15.8 MHz. The error signal is read out from the high frequency component
of the sum of the homodyne photodetectors at the output. This is demodulated, low pass
tiltered and fed into the squeeze servo. The signal out of the squeeze servo is amplified
and then fed into the PZT on the squeezing path to the interferometer.

The squeezed light measured by the homodyne detector

The squeezing phase is locked to the local oscillator much like it is to the power recycling
cavity.

5.6.2 Gain estimates

The locking of each loop requires the correct gain. To lock a system with many parameters
such as the power recycling cavity, estimates for the required gain are essential. Estimates
are made by modelling each of the cavity and the power cavity and differential mode of
the Michelson error signals. A comprehensive MATLAB code used to perform this gain
estimate can be found in the appendix C.

5.6.3 Control of the squeezer

Since the OPA is monolithic and has no means of fast length control the laser must be
locked to it. This is done indirectly as the seed for the OPA first passes through the
modecleaner. The order for locking the squeezer is the following,

- The laser to the modecleaner, using tiltlocking[31],

- The modecleaner (and indirectly the laser) to the OPA using PDH locking,

- The SHG to the laser, using PDH locking and

- The pump from the SHG to the OPA, using PDH locking.
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5.7 Electronic equipment

The control electronics used in this experiment are mainly custom items built in-house
at ANU over the last 10 years. The main elements are the servo mechanisms and piezo-
electronic transducers. The photodetectors are also custom makes, built prior to the com-
mencement of this research.

Servos

The servo mechanisms are used to filter and prepare the raw error signal before it is fed
into the PZT’s. The servos used in this experiment are built to perform high gain at low
frequencies with a sharp drop of gain at the PZT resonant frequency. This is done using a
third order elliptic filter with the first zero coinciding with the PZT resonant frequency. It
allows high gain to control acoustic disturbances (low frequency) without sending signal
to the PZT at its resonance frequency. The frequency response of the servos is shown in
appendix D.

Piezo-electric transducers

The two Michelson arm mirrors are mounted on PZT actuators which deliver fast length
control to the PRM. A PZT is located in the squeezing path to control the relative phase
of the squeezed light to the carrier light.

When a voltage is applied to a PZT it expands or contracts(~ 1ym) depending on the
voltage magnitude and sign. A PZT can be used to control the frequency range from just
above DC to near the resonance frequency at ~ 10 kHz. The response drops of dramat-
ically at higher frequency. The amplitude and phase response of the PZT’s used on the
Michelson arm mirrors is shown in appendix D.

Photodetectors

The homodyne photodetectors were built around the EXT500 photodiode specifications
and circuit diagrams can be found in [32]. The photodetector used for power recycling
cavity PDH locking is a custom built detector with response suited to the modulation
frequency with specifications [32]. It has HF and DC outputs used for the error signal
and DC power measurements respectively. The specifications for the photodetector used
for offset locking can be found [33].

Adder/Subtractors

The active adder/subtractor used for the Homodyne is custom built with specifications
[27]. It provides HF (~ MHz) addition and subtraction and a DC output making this
ideal for both RF signal readout and locking, and offset locking at DC.

We used a passive adder/subtractor for the calibration of noise on the carrier with
shot noise.

The adder/subtractor used for offset locking is a Stanford Research systems low noise
pre-amp.
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Bias T piece

A ’bias T’ piece is used before one Michelson arm mirror PZT to combine the high voltage
error signal (f<10kHz) and the mock GW signal (5.46MHz).

5.7.1 Total experiment

The total experiment including the squeezer and control is shown in figure 5.6. The left
half of the bench is occupied by the squeezer and the right half is occupied by the PRM
experiment. The complete control system is also shown.

5.8 Chapter summary

In this chapter the experiment has been described. The method for preparation of the in-
put light, the squeezed light injection optics and signal generation have been discussed.
The optical layout, the readout of the results and the control of the system has been pre-
sented in detail.
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Figure 5.6: A detailed diagram of the total experiment. PDHL=PDH locking photodetector, OL
= Offset locking photodetector, H1, H2 = Homodyne photodetectors, PID=Servos, HV = High
voltage amplifier, PZT=piezo-electric transducer, FL=flipper mirror, FI = Farraday isolator, TH =
thermal control, SQZ = squeezer



Chapter 6

Experimental Results

This chapter presents the results from the first experimental demonstration of an inter-
ferometric gravitational wave detector configuration that was operated below the shot
noise limit. An improvement in the signal-to-noise ratio of 2.3dB was measured and the
interferometer locked stably for over 15 minutes.

Section 6.1 presents measurements of the initial parameters that were required to op-
erate the PRM below the shot noise limit and characterize it. We report the results of the
intensity noise on the carrier and the squeezed light before it was injected into the PRM.
We demonstrate the stability of the signal that was used to measure the power recycling
factor.

In section 6.2 the power recycling factor, the inferred intra cavity PRM loss and loss
of the isolator used for injection of the squeezed light are presented.

In section 6.3 the results of the signal measurements using the PRM with and without
squeezing are presented. The results are compared with the modelled predictions and
the lock stability is measured.

Finally a comparison of the PRM with different power mirror reflectivities is made.

6.1 Initial parameters

The demonstration of the PRM below the SNL requires the following parameters;

- Shot noise limited carrier light at the signal frequency.

- Squeezed light.

- A signal for the characterization of the interferometer at a frequency outside the
PRM cavity linewidth.

The measurements taken to demonstrate these parameters are presented in this sec-
tion.

6.1.1 The carrier noise measurement

At the signal frequency the carrier light is required to be shot noise limited. The addition
of squeezed light then enables the system to be operated below the SNL.

The spectrum of the carrier intensity noise can be compared with shot noise to de-
termine the frequency at which it reaches the SNL. The measurement of the carrier light
is performed using the standard homodyne configuration after transmission through the
modecleaner. The sum of the photocurrents gives the intensity noise on the carrier light;

51
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Figure 6.1: The carrier light intensity noise and shot noise spectra out of the modecleaner before
the PRM. The electronic noise floor lies at -95dB. Resolution bandwidth (RBW) = 68kHz, Video
Bandwidth (VBW) = 51Hz

the difference of the photocurrents gives the SNL.

Figure 6.1 a) shows the carrier intensity noise and shot noise from 1 — 6MHz2. The
intensity noise reaches the SNL at f,,; ~ 4.5MHz. The figure 6.1 (b) shows the intensity
noise on the carrier after transmission through the PRM with a 90% reflectivity power
mirror. The carrier is SNL at f,,; ~ 3.8MHz. The carrier reaches the SNL at a lower
frequency as more intensity noise is removed on transmission through the PRM, as it
acts as a further modecleaner. These measurements indicate that to operate the PRM
below the SNL the frequency chosen should be above 4.5MHz.

6.1.2 Measurement of the squeezed light

The squeezed light was measured before it was injected into the PRM for comparison of
results taken after the PRM.

The squeezed light is measured using the standard homodyne configuration at the
output of the PRM. The squeezed light is directed into the homodyne using the flipper
mirror and the local oscillator is provided by the field transmitted through the PRM.

The figure 6.2 (a) shows the measurement of the squeezing noise at 5.5MHz. The flat
trace shows the shot noise at & —77.3 £+ 0.2dBm. The curved trace is the projection of the
squeezed noise ellipse as the relative phase of the squeezing and local oscillator is varied.
The maximum noise, at & —66dBm, is the projection of the anti-squeezed quadrature.
The minimum noise —80.6 + 0.2dBm is a projection of the squeezed quadrature which is
3.3 + 0.2dB below the SNL.

The phase difference of the squeezed light and local oscillator was locked to show
the spectrum of the squeezing. Figure 6.2 (b) shows the spectrum of the squeezing from
3-10MHz. In this spectrum the frequency response of the electronics (photodetectors,

!This calculation is shown in section 3.7.2. When only one input of the homodyne is filled with coherent
light (the carrier) the vacuum is incident in the other port.
“The shot noise trace is curved due to the photodetector frequency response
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Figure 6.2: a) Scan of squeezing and shot noise at 5.5 MHz measured before the interferometer
by homodyning; b) Locked squeezing and shot noise across 3-10MHz. c) Locked squeezing and
shot noise across 3-10MHz with the electronic frequency response in b) normalized off. Electronic
noise lies at -84.9dBm and the fringe visibility is measured at 97%. a) RBW = 100kHz, VBW =
300Hz. b) and c) RBW = 30kHz, VBW = 220Hz

adder/subtractor) imparts a common curved shape to the shot noise and squeezed noise.
In Figure 6.2 (c) the common shape is removed by fitting a curve to the shot noise, and
using this as the reference for shot noise. The squeezing is approximately 2dB below the
SNL across the spectrum. The reason for the reduction in squeezing from 3.3dB to 2dB is
thought to be poor homodyne efficiency on the second data run. Also, due to the experi-
mental complexity of the squeezer the amount of squeezing produced and measured can
vary on each data run.

These results can be compared to the squeezed light after interaction with the PRM,
thereby allowing analysis of the PRM behavior

6.1.3 Signal
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Figure 6.3: The signal power measured by locked 97% PRM for 5 minutes. Taken at 5.48 MHz
zero frequency span.

A modulation signal was applied to one Michelson arm mirror PZT to simulate the
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effect of a GW signal3. The signal measured at the output of the PRM was used to study
the interaction of squeezing and power recycling.

The signal frequency was chosen to satisfy four conditions. The first condition was to
be outside the PRM cavity linewidth (~ 2.5MHz) which is comparable to long base line
GWD*. Secondly, a frequency where the carrier is SNL(> 4.5MHz). The third condition
was at a frequency where squeezed light was optimal. The final condition satisfied was
to be at a frequency where a mechanical resonance of the PZT could be found.

A mechanical resonance of the PZT is found at 5.46MHz which satisfies all four con-
ditions. However it is well outside the designed operational bandwidth®. The signal
amplitude was therefore analyzed over time to determine its stability. The signal power
is plotted in figure 6.3 over a period of 5 minutes taken with zero frequency span. The
measurement was read out from the output of the locked PRM with a 97% power mirror.
The signal power over 5 minutes is,

Amp = 10.5+0.7dB (6.1)

The variation in signal power was possibly due to thermal fluctuations in the laboratory.
The properties of the PZT crystal may change with changing temperature, therefore the
mechanical resonance frequency may change causing a different amplitude response to
the modulation.

In this section we have demonstrated measurements of the initial parameters that are
required to perform the PRM below the SNL and to analyze its behavior.

6.2 Power recycling factor and losses

This section reports the results of the power recycling factor of the PRM with a 90%
reflectivity power mirror and the losses to the squeezed light when it was transferred to
the PRM.

Given the squeezed light before the PRM and the measured losses on transfer, we can
predict the result after the PRM with modelling and compare this to the results taken
after the PRM.

6.2.1 Power recycling factor

The power recycling factor was obtained by comparison of the signal power at 5.46MHz
measured with the simple Michelson (no power recycling) and the PRM with a 90% re-
flectivity power mirror.

The power recycling factor is directly proportional to the PRM intra cavity power.
The power of the signal is determined by the intra cavity power. Therefore the ratio of
the measured PRM signal power to the simple Michelson signal power gives the power
recycling factor.

3A GW signal modulates both arms differentially. Since we modulate only one arm there is a negligible
component of common phase shift.

*GW signals are expected between 40 Hz and a few KHz, which is outside the linewidth of power cavity
for long baseline interferometers. Since this is a small scale prototype we simulate a signal a MHz.

°The operational bandwidth is approximately DC to 20 kHz. The measured PZT frequency response is
shown in appendix D
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Figure 6.4: The power recycling factors for the 90% PRM can be calculated from the signal power
measured by each configuration. Electronic noise lies at -93.5dBm, RBW = 100kHz, VBW = 30Hz.

The figure 6.4 (a) shows the signal measured by the simple Michelson and the PRM
with a 90% reflectivity power mirror. The power recycling factor measured was,

Fooy, = Sprm/Ssm (6.2)
= 94409 6.3)

where the error was implied from the signal stability measurements. This measure-
ment was taken with Michelson fringe visibility of 99%.

6.2.2 PRM intra cavity losses

The PRM intra cavity loss can be inferred from the power recycling factor. This can be
done since the power in, the power out and mirror reflectivities of the PRM are known.
These parameters along with power recycling factor are used in the model presented in
chapter 4 to calculates the intra cavity loss.

Fyyy, = Lossintra = 8 +0.8% (6.4)

The reason for the high intra cavity loss is unclear. The measured fringe visibility for the
Michelson is very high which ensures that the loss is not only in one arm of the Michelson.
Thus the loss is either in the power recycling mirror or symmetric loss in the Michelson,
or a combination of both. The location is unimportant for the PRM, but it is important
for the simple Michelson. We consider two extreme cases to give the upper and lower
bound on loss to squeezed light for the simple Michelson;

- Case 1: The loss is in the Michelson.
- Case 2: The loss is in the power recycling mirror.

Both these cases are modelled for comparison with the results.
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6.2.3 Injection optics loss

The injection of the squeezed light into the interferometer is performed using a Faraday
isolator. This method maintains the standard gravitational wave detector configuration,
however a large loss of squeezed light was encountered. The loss was measured by
increasing the squeezed light DC power and comparing it before and after the double
pass of the isolator. We measured a double pass loss of,

Lossinj = 15% (6.5)

Although this is less than the manufacturer’s specified single pass loss of 0.5dB (10%)
it was a substantial loss of squeezed light. The 15% loss was reduced to as low as 5%
using a different isolator (OFR), however this came at the expense of poor isolation. Poor
isolation presented problems with the OPA locking, as some of the power in the PRM
was transmitted towards the OPA. This created an uncontrolled low finesse cavity, with
the PRM acting as one mirror and the OPA acting as the other mirror. The OPA lock was
effected creating unpredictable experimental behavior.

The cause of poor isolator performance is thought to be an imperfect Faraday rota-
tor. If the magnetic field in the rotator is partially inhomogeneous, the rotation of the
polarization state is not exactly 45° single pass. After double pass not all of the vertically
polarized light is converted to horizontally polarized state. Consequently the isolation
was poor and some of the light from the PRM was transmitted towards the OPA. The
isolation was improved by rotating the polarizing beam splitter cube slightly off its usual
45°. This ejected the incorrectly polarized light from the system and increased the loss®.

With a Faraday isolator correctly setup it is expected that the double pass loss of the
isolator could potentially be as low as 1%, given by transmission loss of the crystal (such
as terbium gallium garnet with absorption of 0.55% cm ).

6.3 Power recycled Michelson with squeezed light

In this section the main results of the experiment are presented. The noise out of the PRM
with squeezed light is compared to the squeezed light in, and the interaction of squeezing
with power recycling is demonstrated.

6.3.1 Noise out of the PRM

The measured noise on the carrier field noise at the output of the PRM with a 90% power
mirror are shown in Figure 6.5. Trace (a) shows the noise on the carrier when squeezed
light was injected into the PRM with the phase scanned. Trace (b) shows the SNL, at
~ —84.6 + 0.2dBm, which was flat across 5-6MHz. Trace (c) shows the carrier noise
when the squeezed light is injected and the phase is locked to the minimum projection
of noise. The noise was 86.7 + 0.2dB, which was 2.3 + 0.2dB below the SNL. Trace (d),
the straight line, is the modelled prediction of the carrier noise given the losses inferred
in the previous section.

The uncontrolled cavity could be used for good rather than evil. If the effect of the uncontrolled cavity
was seen, then the alignment of the squeezed light to the OPA was very good. The PBS was then rotated
slightly and the isolation was improved.
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Figure 6.5: a) The noise power on the carrier light at the output of the PRM with 90% reflectivity
power mirror from 5-6 MHz. This is shown with a)Scanned squeezed light injected, b)Shot noise
and c)Locked squeezed light injected. d) The modelled prediction of the carrier noise. (straight
line). The electronic noise floor is approximately flat across the frequency scan lying at -95 dBm.
RBW = 100kHz, VBW =30 Hz

The noise on the carrier light in figure 6.5 (c) can be compared with the squeezed light
before it entered the PRM, shown in figure 6.2 (a). Before squeezed light entered the PRM
it was measured to be 3.3 4+ 0.2dB below the SNL and after the PRM it was measured to
be 2.3+ 0.2dB. Thus a reduction of squeezing by approximately 20% was measured. This
reduction is consistent with the prediction of the model which is 2.46 & 0.2dB.

6.3.2 Characterization of the system

The PRM with squeezed light is characterized with a signal at 5.46MHz. Figure 6.6 trace
(a) shows the results for a simple Michelson. This noise floor is at the SNL. When squeez-
ing is introduced, trace (b), we find a noise suppression of 1.8 £0.2 dB below the SNL.
Traces (c) and (d) show the response of the 90% PRM with and without the squeezed
input. The power recycling factor is ~ 9.5. The noise floor of trace (d) is 2.3 + 0.2 dB
lower than SNL. The predicted improvement that is shown in figure 4.5 of the squeezing
performance with power recycling is evident in the different noise floors of traces (b) and
(d). The amount of squeezing before injection is shown in the figure 6.2 a). It can be
seen that a reduction of 15-20% was measured after interaction with the 90% PRM. The
measured and predicted values for noise reduction below the SNL in the 90% PRM are,

Nprm = 2.3 £0.2dB (Measured) <> 2.4dB (Modelled) (6.6)

This measured result corresponds to the model’s predictions within the experimental
error. For the simple Michelson the measured and predicted values for noise reduction
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below the SNL are,

Ngpr = 1.8 £0.2dB (Measured) <> 1.7dB (Modelled casel) (6.7)
+ 2.1dB (Modelled case2) (6.8)

These two cases of the model represent the extremes of the loss distribution intra
cavity, hence the experimental result should have fallen between the their values, as it
did. The first case of the modelled predictions, that is the loss is located in the Michelson,
was very close to the experimental results. It is thought more likely that the loss would
be in the Michelson than the power mirror, as in the Michelson their are five surfaces that
the light is incident on and loss could occur, whereas the power mirror only has one. It
could also be a combination of Michelson and power mirror loss.

6.3.3 PRM with squeezed light locking performance

Good locking stability in gravitational wave detectors is vital for their continuous op-
eration. In our experiment we wish to demonstrate that our control scheme can lock
the entire system. The locking stability of our system is different to that achievable in
the vacuum conditions of a long baseline gravitational wave detector. The difference is
principally attributed to thermal fluctuations in the atmospheric environment in the lab-
oratory. Figure 6.7 shows the locked PRM with locked squeezed light over a 15 minute
period. It shows a trace of the carrier noise and shot noise at 5.5MHz. The limit to the
locking stability is expected to be from the limited range of the PZTs and the effect of
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Figure 6.7: Carrier noise at the output of the locked PRM with squeezed light for over 15 minutes.
Traces taken at 5.5MHz, zero frequency span. RBW =330kHz, VBW = 30HZ

temperature change.

The trace of the carrier noise shows a slight reduction of squeezing over time. The
reduction could be attributed to a possible reduction of squeezed light out of the OPA.
On another occasion it has been shown that the squeezed light could be locked without
reduction for over one hour [27].

6.3.4 Comparison of different power mirror reflectivities

To further investigate the interaction of squeezed light with power recycling, a data run
was taken using two different power mirror reflectivities. Figure 6.8 traces (b) and (c)
show the carrier noise below the shot noise level for the 90% and 97% power mirror
reflectivities, respectively. The squeezed light was not measured before these results were
taken, the model assumes the regularly seen 3dB of squeezing. The power recycling
factors for the 90% and 97% power mirror reflectivities were obtained from the figure 6.8
(a). The power recycling factors and inferred intra cavity losses are,

Fogy, = 71 +£1.0dB = LosSisracon = 11 £ 1.1%
F97% =99+1.0dB = LOSSintv‘a97% =6+ 0.6%

(6.9)
(6.10)

These results are taken with a Michelson fringe visibility of 99%. The straight lines
in figure 6.8 traces (b) and (c) show the modelled predictions using these inferred losses.
The modelled traces agree with the results within the experimental errors.

Their was a discrepancy between the power recycling factors for the 90% power mir-
ror in the two data runs of the experiment (first data run Fyg9, = 9.5, second data run
Fyy, = 7.1). This may have been caused by extra loss due to poor alignment after chang-
ing the power mirror from the 90% reflectivity to the 97% reflectivity.

The alignment procedure for the 97%/90% PRM was as follows: the 97% power mir-
ror was aligned with the Michelson by varying both the power mirror and Michelson
arms tilt. The squeezed light is then aligned and optimized for the 97% PRM, and data
was taken. The 97% mirror was then replaced by the 90% PRM. Since the squeezed light
was already aligned into the Michelson, the alignment was not changed. The 90% power
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mirror was the aligned to the Michelson. This method was much more difficult to align
as there was only one degree of freedom to control.

It was hoped that their would be some distinction in the results between the 90%
reflectivity and 97% reflectivity PRMs, however both the model and results are similar
for both cases. To obtain a better comparison it would be ideal to operated at lower
frequency, closer to the PRM cavity linewidths. Near the cavity linewidths the PRM’s
complex reflectivities have quite different responses, and it is thought these differences
could be measured. These low frequencies could not be accessed since the carrier light is
not SNL until ~4MHz.

6.4 Summary of results

The results presented here show the first experimental demonstration of an interferomet-
ric gravitational wave detector configuration that operated below the shot noise limit.
Squeezed light was injected into the PRM and a reduction of 2.3dB below the shot noise
limit was obtained. The interaction of the squeezed light with the Michelson, with and
without power recycling has been analyzed. The improvement when power recycling
was introduced has been demonstrated and confirms the model’s predictions. Conclu-
sive evidence of the effect on the interaction of squeezed light with the PRM using dif-
ferent power recycling mirrors was unable to be obtained. The control of the PRM was
shown to be compatible with squeezed light since the entire system was stably locked for
over 15 minutes. The system lock is thought to be limited only by the PZT range and the
thermal stability of the laboratory. Comparison of the predictions of the model derived
in chapter 4 with the experimental results an excellent level of agreement.



Chapter 7

Conclusion and further work

This thesis has introduced gravitational wave detection, the theory of quantum noise,
and squeezed light. The method of linearized operators was presented to simplify quan-
tum noise calculations in the derivation of the properties of a power recycled Michelson
interferometer with squeezed light. The optical layout and control techniques have been
presented. The configuration, control scheme, injection of the squeezed light and signal
readout demonstrated in this experiment are all compatible with current gravitational
wave detectors.

The results presented are the first experimental demonstration of an interferomet-
ric gravitational wave detector configuration operated below the shot noise limit. The
noise was measured to be 2.3dB below the shot noise limit. The interaction between
the squeezed light and the Michelson, with and without power recycling was analyzed,
and it was determined that use of power recycling improves the amount of shot noise
reduction. The predictions by the model derived with linearized operators show excel-
lent agreement with the experimental results. The entire system locked stably for over
15 minutes. The locking stability is thought to be limited only by the PZT range and the
thermal stability of the laboratory.

7.1 Further Work

It is expected that this research is the first of many experiments using squeezed light in
gravitational wave detector configurations, with the view to ultimately applying squeezed
light to long base line interferometric detectors. One such experiment is at an early
stage of planning, involves building up a similar experiment in collaboration with Mas-
sachusetts Institute of Technology:.

Since second generation detectors are expected to employ resonant sideband extrac-
tion, the investigation of the interaction of squeezed light with this configuration is im-
perative. Also, the second generation of detectors are expected to have high enough
optical power to reach the radiation pressure noise regime. Thus detectors would be lim-
ited by radiation pressure noise at low frequencies of 10Hz-100Hz and shot noise above
100Hz. Squeezed light could be used in such a interferometer, with the correct prepara-
tion to reduce radiation pressure noise at low frequencies and shot noise at high frequen-
cies. At ~100Hz, where the two noise sources are equal called the standard quantum
limit, squeezed light can be used to reach sensitivities below this point[4].
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Appendix A

Derivation of Transfer functions

Derivation of the Power Recycled Michelson with a Squeezed Input at the Dark Port
of the Michelson

A schematic of the experimental setup for the PRM with squeezing is shown in figure 4.2
(a). A equivalent model is shown in figure 4.2 (b). This representation uses a Fabry Perot
ring cavity. The three mirrors represent: The power recycling mirror with reflectivity and
transmisson, r,,t,, the Michelson interferometer with r,,t,, and losses in the cavity with,
r;,t1. The loss mirror transmission, ¢; is equal to the total round trip loss in the cavity.
The fields in the model are represented in the frequency domain using the linearized
operators. The three fields that couple to the output of the interferometer are; the carrier,
the squeezing and the vacuum fluctuations,

Gin (A.1)
s (A.2)
o (A.3)

The fields all enter from a different port. Explicit frequency dependence is not shown
here, as all of the fields are frequency dependent it is implied. The field circulating inside
the cavity in steady state, d.i,. is defined to be the sum of all the fields multiplied by the
appropriate transmission into the cavity located just after the power mirror, r,. Thus it is
a sum of; a;, multiplied by the transmission of the power mirror, ¢,. G, multiplied by the
reflectivity of the Michelson, ¢,,, and the reflection off the loss mirror, r; and the power
mirror, 7, and it receives a phase shift during cavity round trip of, ¢,. a, multiplied by
the transmission of the loss mirror ¢; and the reflection off the power mirror. Plus the
circulating field already in the cavity advanced by a round trip.

Geire = tplin + itmrirpePM ™ ag 4 ityrpe® 4 rrrpe®® agy, (A.4)

which can be solved for Gy,

1tplin + itmrlrpei"b” as + itlrpeid’”

beire = . A5
cire 1 . Tm'rl'rp621¢v ( )

Now the field at the output, @4y can be written down.
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Gout = Z'tmeiqbdcirc‘I'des (A6)
—tmtpe @iy — t2 TP iy + —tptyrye®iPe
_ mlp in m!l'p 2.5 mUlp +Tm&5 (A7)
1 — rpryrpe?iev

now this can be separated into components of each field. For the input field, a;,,

R —tmtyetPa;
Qout = 1 =P ;Zt‘ (A.8)
— Ty TTpet P
thus the transfer function of the field a;, is,
Ta = dout/&in (A9)
tptme€'®
_ o ptm® _— (A.10)
1 — rprmret2te
Similarly for as,
—¢2 e2itv
Gout = TP s i (A.11)

1 — rpryrpe?ity
T'm — rprlezzm

= — 5 0 A12
1 — rprpret2®y s ( )

which gives the transfer function for a,,

Tas = &out/&s (A13)
_ 26y
Tm — TpTi€’
_ _ A.l4
1 — 7rpryp,riet2®o ( )
and for a,,,
. —tmtyrpe?iér
_ _ A.15
Aoyt 1— Tm’l"l‘l"pe2l¢” ( )
and the transfer function is,
T(Sav = &out/ds (A16)
tmtiTpet?r
_ o tmUTp® (A.17)

1 — rprmret2®e

Explicit frequency dependence has not been stated in this derivation, it is contained
in the phase shift ¢,,.



Appendix B

Model MatLab code

B.1 Code for PRM with squeezed light

% This file is used to simulate squeezng In a power recycled

% michelson. It is used to plot squeezing measured at the output
% detector as a function of frequency

% It calls the transfer functions from ringTFfreq.m

clear all;

global tbs rbs rp tp tm rml rms r3 t3 X0 X y z a_in freq P_out G
Aw_sq F _sq

%9%%%%%%%%%%%%%%%% Interferometer parameters %%%%%%%%%%%%%%%%%%%

P_in = 20; % power into michelson (mW)

a in = sqrt(P_in); % amplitude coming into michelson
c = 3e8; % speed of light

T sq = linspace(4e6,10e6,1001); % frequency of the squeezing
w_sq = 2*pi*f_sq;

Rp=0.0; % Power recycling mirror reflectivity
Ap=0.0; % Power recycling mirror loss

R3 = 1; % 3rd mirror used to simulate loss

A3 = 0; % 3rd mirror loss.

Loss = .15;

A = (1-Loss); % Simulates loss in the rotator

Rbs=0.5; % Main beamsplitter reflectivity
Abs=0.0; % Main beamsplitter loss

rp=sqrt(Rp); % Power mirror amplitude reflectivity
tp=sqrt(1-Ap-Rp); % Power mirror amplitude transmissivity
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r3=sqrt(R3); % 3rd mirror amplitude reflectivity
t3=sqrt(1-A3-R3); % 3rd mirror amplitude transmissivity
rbs=sqrt(Rbs); % beamsplitter amplitude reflectivity

ths=sqrt(1-Rbs-Abs); % beamsplitter amplitude transmissivity
%6%%%%%%%%%%%%%%%%%%%%%%%% Interferometer lengths %%%%%%%%%%%%%%%%%

Lp=1; % Distance from main beamsplitter to PRM
Lm=0; 6 Average distance from main beamsplitter
% to Michelson mirrors

o Michelson arm length mismatch

o

X

dL=0;
9%6%%%%%%%%%%%%%%%%%%%%%%% Interferometer phases %%%%%%%%%%%%%%%%%%
phi_p0=0; phi_m0=0;

phi_d0=0.27; % offset of the michelson from a dark fringe;

9%0%%%%%%%%%%%%%%%%%%N%%%%%5% Phases of variences %%%%%%%%%%%%%%%%%%%%%%%

phi_x0x = 0O; %phase of laser fluctuations relative to the carrier
phi_x0y = 0O; %phase of squeezing fluctuations relative to carrier
phi_x0z = 0; %phase of vaccum Fluctuations relative to carrier

%0%%%%%%%%%%%%%%%0%%%%%%%%%%%%%% Carrier Field %%%%%%%%%%%%%%%%%%%%%%%

w=0; % frequency offset from carrier
phi_p=w*Lp/c+phi_pO; % PRC single pass phase
phi_m=w*Lm/c+phi_mO; % Ave Mich single pass phase
phi_d=w*dL/c+phi_dO; % Diff Mich single pass phase

%0%%%%%%%%%%%%%% %% %% %% %%%%%%%% Squeeze Field %%%%%%%%%%%%%%%%%%%%6%%

phi_sgm=phi_m+(w_sq)*(Lm)/c; % Phase shift SQZ receives in michelson
phi_sgp=phi_p+(w_sq)*(Lp)/c; % Phase shift SQZ receives in power cavity

%0%%%%%%%%%%%%%%%%% %% %% %% % %%%%%%%%%%% Call the varience from ringTFfrq %%%%%

vl =
ringTFfreq(phi_p,phi_m,phi_d,phi_x0x,phi_x0y,phi_x0z,phi_sqgm,phi_sqgp)

minsg = min(10*1ogl10(V)) maxsqg = max(10*loglo(V))
%$%%6%%%%%%%%%%%%6%%%%%%%6%%%%%% %% % %%%%%%%%% Plots %%%%%%%%%%%%%%%%%6%%%%%%%%%%

figure(l) subplot(3,1,1) plot(f_sq,10*1ogl0(V))
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title(’Squeezing vs freq.(flat 3dB input)(90% PRM and simple mich)”)
axis([4e6 10e6 -3 1]) grid on; hold on;

B.2 transfer functions for PRM with squeezed light

%transfer functions file = ringTFfreq.m

function [V] =
ringTFfreq(phi_p,phi_m,phi_d,phi_x0x,phi_x0y,phi_x0z,phi_sqm,phi_sqgp)

% this 1s used to define transfer functions for michelson ect
global tbs rbs rp tp tm rml rms r3 t3 X0 X y z a_in phi_x0z freq

P out G A w sq f _sq

%%%% Phases and variences of fluctuations %%%%

N

dXap = 1/sqgrt(1); o Amplitude fluctiations on laser
dXam = 1/dXap; » Phase fluctions on laser

dXsp = 1/sqrt(A*(1/0.5)); % Amplitude fluctiations of squeezing
dXsm = 1/dXsp; o Phase fluctions of squeezing

dXlp = 1/sqgrt(1); o Amplitude fluctiations of vaccum
dXIm = 1/dXlp; » Phase fluctions of vaccum

X

XXX

%%%% Define Michelson ref/trans for the carrier %%%%

rml = (tbhs™2.*(exp(i*2*phi_d))+ rbs 2_*(exp(-i*2*phi_d)))
Fexp(i*2*(phi_m)) ; % [Eref/Ein]

rms = (ths™2.*(exp(-i*2*phi_d)) + rbs™2.*(exp(i*2*phi_d)))
Fexp(i*2*(phi_m)); % [Ed/Es]

tm = #1*rbs.*tbs.*(exp(i*2*phi_d)-exp(-i*2*phi_d))

Fexp(i-*2.*(phi_m)); % [Eref/Es]

%%%% Define Michelson ref/trans for squeezing %%%%

rml_sq = (tbs™2.*(exp(i*2*phi_d))+ rbs™2.*(exp(-1*2*phi_d)))
Fexp(i*2*(phi_sgm)) ;% [Eref/Ein]
rms_sq = (tbs™2.*(exp(-i*2*phi_d)) + rbs ™ 2.*(exp(i*2*phi_d)))

Fexp(i*2*(phi_sgm));% [Ed/Es]
tm sq = 1*rbs.*tbs.*(exp(i*2*phi_d)-exp(-i*2*phi_d))
Fexp(i-*2.*(phi_sgm)); % [Eref/Es]

%%%% Cavity Transfer Functions %%%%%

X0 = -tp.*tm.*exp(i.*(phi_p+phi_m))./
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A - rp.*rml.*r3.*exp(i*2.*(phi_p+phi_m)));
% X0 Is the coefficient In transfer function for the carrier

d = - rp-*rml_sq.*r3.*exp(i*2.*(phi_sqp+phi_sgm)));
% denominator for each variable, x, y, z.
X = —tp.*tm_sqg.*exp(i.*(phi_sqgp+phi_sqgm))./d;
%transfer function for the noise on the laser
y = (rms_sq - rp.*rml_sqg.*rms_sq.*r3.*exp(i*2.*(phi_sgp+phi_sqgm))
- tm_sq."2.*rp.*r3.*exp(i*2.*(phi_sqgp+phi_sgm)))./d;
%transfer function for squeezing (Function of frequency)
z = —-tm_sq.*t3.*rp.*exp(i*2.*(phi_sgp+phi_sgm))./d ;
%transfer function for the vaccum noise due to losses

%%%% Squeezing out as a function of frequency %%%%

sg_out = (rms_sq - r3*rp.*exp(i*(2*phi_sgm+phi_sgp))-*(tm_sq."2 +
rml_sq.*rms_sq))./(1-rml_sq.*r3*rp.*exp(i*(2*phi_sgm+phi_sqgp)));
%%%% Normalising factor %%%%

T = a_in"2*(abs(conj (x0).*x) . 2+abs(conj(x0).*y)
."2+abs(conj(x0).*z).72); %normalising factor

Cx = a_in"2*abs(conj (x0.*x))."2./T;

Cy = a_in"2*abs(conj(x0.*y))."2./T;

Cz = a_in"2*abs(conj(x0.*z2)).72./T;
%%%% Signal at output and Varience %%%%

V = Cx.*(dXap."2.*cos(phi_x0x) . 2+dXam."2.*sin(phi_x0x)."2)
Cy.*(dXsp."2.*cos(phi_x0y) . 2+dXsm."2.*sin(phi_x0y)."2)
Cz.*(dXIp."2.*cos(phi_x0z).72+dXIm."2_.*sin(phi_x0z).72)
% Normalised Varience at dark port

oo+ o+



Appendix C

MatLab code for gain estimates

C.1 Mainfile

XXX

%
» K. McKenzie 8/2001.

=S

o This m-File model the error signal response of the power-recyled
o Michelson intereferometer with a bright squeezed input at the dark
o fringe. It is intended for control purposes only.

global tbs rbs rp tp tm rml rms FWHM

PLO = 20;

PS = 0;

c = 3e8;

fm = 75.9e6;

delta = 0.1;
phi_demod = 0*pi/180;

% Local oscillator power [mW]
% Squeezed input power [mW]

% speed of light [m/s]

% modulation frequency [Hz]

% modulation depth [radians]

% demodulation phase [radians]

%%%% Interferometer parameters %%%%

Rp=0.9; %
Ap=0.005; %
Rbs=0.5; %
Abs=0.0; %

rp=sqrt(Rp); %
tp=sqrt(1-Ap-Rp); %

rbs=sqrt(Rbs); %
ths=sqrt(1-Rbs-Abs) ;%

Power recycling mirror reflectivity
Power recycling mirror loss

Main beamsplitter reflectivity
Main beamsplitter loss

Power recycling mirror amplitude reflectivity
Power recycling mirror amplitude transmissivity

Main beamsplitter amplitude reflectivity
Main beamsplitter amplitude transmissivity

%%%% Interferometer lengths %%%%

Lp=0.6; %
Lm=0.4; %

Distance from main beamsplitter to PRM
Distance from main beamsplitter to Michelson
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dL=0.; % Michelson arm length mismatch

%%%% Interferometer phases %%%%

start=-100; % start point of scanning phase [degrees]
stop=-start; % stop point of scanning phase [degrees]
points=10000; % number of plotting points

phi_offset = linspace(start,stop,points)*pi/180;% offset phase [radians]
phi_p0=0; phi_m0=0;

phi_dO= phi_offset;%-1.926*pi1/180;%for 1/2% loss %-1.873*pi/180; %
phi_s0=0;

%%%% Carrier Field %%%%

w=0; % frequency offset from carrier

X

phi_p=w*Lp/c+phi_pO; t» PRC single pass phase
phi_m=w*Lm/c+phi_mO; % Ave Mich single pass phase
phi_d=w*dL/c+phi_dO; % Diff Mich single pass phase
phi_s=phi_sO0; % signal recycling phase

X

Ein=sgrt(PLO); Es=sqrt(PS)*exp(i*phi_s);
[Ed,Er]=PRMtF(phi_p,phi_m,phi_d,Ein,Es);
%%%% Upper sideband field %%%%

w=2*pi*fm;

phi_p=w*Lp/c+phi_pO; % PRC single pass phase
phi_m=w*Lm/c+phi_mO; % Ave Mich single pass phase
phi_d=w*dL/c+phi_dO; % Diff Mich single pass phase
phi_s=phi_sO0; % signal recycling phase

Ein=delta/2*sqrt(PLO); Es=0;
[Edl,Er1]=PRMtF(phi_p,phi_m,phi_d,Ein,Es);

%%%% Lower sideband field %%%%

w=-2*pi*fm;

phi_p=w*Lp/c+phi_pO; % PRC single pass phase
phi_m=w*Lm/c+phi_mO; % Ave Mich single pass phase
phi_d=w*dL/c+phi_dO; % Diff Mich single pass phase

phi_s=phi_sO0; % signal recycling phase
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Ein=delta/2*sqrt(PLO); Es=0;
[Ed_1,Er_1]=PRMtf(phi_p,phi_m,phi_d,Ein,ES);
%%%% Error signals %%%%

Dr=(conj(Er).*Erl-Er.*conj(Er_1))*exp(i*phi_demod);
% Reflected field discriminant

Dd=(conj (Ed) .*Ed1-Ed.*conj(Ed_1))*exp(i*phi_demod);
% Transmitted field discriminant

Ir=imag(Dr); Qr=real(Dr); Id=imag(Dd); Qd=real(Dd);
Fdc = abs(Ed)."2-PL0*0.15;
%%%% Calculate Slopes of error signals %%%%

Fdcslope = (Fdc(points/2+1)-Fdc(points/2-1))/(-4*start/points)
Irslope = (Ir(points/2+1)-1r(points/2-1))/(-4*start/points)

%%%% Control matrix %%%%
C =1 2.2690 -0.0350
-0.6501 -2.9206 ]

Ci = inv ()
06696%696%66%696%96%60%

%%%% Plots %%%%

Ffigure(l) subplot(3,1,1) plot(phi_offset*180/pi,abs(Ed)."2)
title(C’Power at dark port”) subplot(3,1,2)
plot(phi_offset*180/pi,abs(Er)."2) title(CReflected Power?)
subplot(3,1,3) plot(phi_offset*180/pi,Fdc) title(COffset locking
error signal?)

% Figure(d)
% plot(phi_offset*180/pi ,FWHM)

figure(2)

subplot(2,2,1) plot(phi_offset*180/pi,abs(Er)."2) title(CReflected
Power (mW)”) subplot(2,2,3)
plot(phi_offset*180/pi,lr,phi_offset*180/pi,Qr); title(CReflected
in phase and quadature components of comon mode error signal?”)
subplot(2,2,2) plot(phi_offset*180/pi,abs(Ed)."2) title("Power at
dark port”) subplot(2,2,4)
plot(phi_offset*180/pi,ld,phi_offset*180/pi,Qd);
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titleCTransmitted In phase and quadature components of comon mode
error signal?)

C.2 Subfile

function [Ed,Er]=PRMtf(phi_p,phi_m,phi_d ,Ein,ES)

% This function calculates the dark fringe, reflected port and
% circulating fields as a function of the single pass phases
% and the Input Fields. All phases are zero on resonance.

global tbs rbs rp tp tm rml rms FWHM
%%%% Define Michelson ref/trans %%%%

rml=(tbs™2*exp(i*2*phi_d)+rbs™2_*exp(-1*2*phi_d)) . *exp(i*2*phi_m);
% [Eref/Ein]

rms=(tbs 2*exp(i*2*phi_d)+rbs™2_*exp(-1*2*phi_d)) . *exp(i*2*phi_m);
% [Eref/Ein]

%rms=-(tbs™2.*exp(-1*2*phi_d)+rbs™2_*exp(i*2*phi_d)) - *exp(i*2*phi_m);
% [Ed/Es]

tm=2*rbs.*tbs.*sin(2.*phi_d) . *exp(i.-*2_*phi_m);
% [Eref/Es]

%%%% Cavity transfer functions %%%%
X=(1-rp*rml . *exp(i*2*phi_p));
Ed=Es*(rms+(tm."2_*rp*exp(i*2*phi_p)) ./X)+Ein_*i*tp.*tm.*exp(i*phi_p) ./X;

Er=Ein*(rp-(tp."2.*rml*exp(i*2*phi_p)) ./X)+Es_*i*tp.*tm.*exp(i*phi_p) ./X;
90%9%%%6%%%%6%6%%% %6%6%% %% %6%6%%% % %6%6%%% % %6%6%% %% %%6%% %%



Appendix D

Control Equipment

D.1 Servo frequency response
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Figure D.1: Power recycling cavity and differential mode locking servos frequency response.

D.2 PZT response
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Figure D.2: The two Michelson arm mirror PZT amplitude and phase response.
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