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Abstract

The continuous variables regime offers much promise for quantum information and com-

putation protocols. In particular, the continuous variable polarisation teleportation is of

great interest, both theoretically and experimentally, at the moment.

In this thesis three schemes for continuous variable polarisation teleportation are anal-

ysed and their performance is rated. The double teleporter setup, the quantum nondemo-

lition teleporter scheme and the biased entanglement teleporter setup are each discussed

and evaluated. Two methods are employed for the evaluation of the teleportation success.

The TV diagram which stresses the usefulness of the experimental design and the fidelity,

which measures the quantum input to output state preservation. It is later shown that

these two independent assessments, which consider physically different attributes, yield

contradicting conclusions. Further it is shown that it is important to decide whether the

objective of the polarisation teleportation is the transfer of information or the quantum

state recreation before meaningful analysis using TV or fidelity can be made.

Finally, a study of a special cloning limit for a particular input state is made, related

to the two of the above polarisation teleportation schemes. A new cloning fidelity limit is

derived for these cases and TV cloning limits of information transfer and correlations are

discussed.
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Chapter 1

Introduction

Overview

On of the aims of quantum information technology is to create communication and com-

puting systems superior to those offered by classical physics based on the fundamental

differences between the two. Quantum randomness is a tradeoff between acquiring infor-

mation and creating a disturbance. It is because the outcome of a measurement has a

random element that it is not possible to infer the initial state of the system from the

measurement outcome. Furthermore, quantum information, as will be discussed in the

later chapters, can not be copied with perfect fidelity. However, the main feature which

distinguishes quantum information from its classical counterpart is the fact that it can

be encoded in nonlocal correlations between different parts of a physical system, with no

equivalent in classical physics, as was shown by Bell [5].

Quantum entanglement, as first discussed by Einstein, Podolsky and Rosen (EPR) [1],

became an intensive field of study among those interested in the foundations of quantum

theory, but more recently it came to be viewed as a potentially valuable resource. The

exploitation of entangled states allows tasks that are otherwise difficult or impossible, one

of which is teleportation.

The standard approach to quantum information processing has been for a long time

making use of the discrete quantum entanglement, such as single photon entanglement

generated by parametric down conversion, [10]. The research has raised many interesting

possibilities such as quantum cryptography [7, 12, 26] and quantum teleportation [9, 11],

all discussed in the references. Another protocol, quantum dense coding [20, 21], is a term

given to uses of nonlocal correlations to send two pieces of information via a single quantum

bit, qubit, while the classical channel at best allows only a single unit of information per

bit.

Quantum computation with discrete qubits also offers exciting prospects by being

able to solve a special group of problems with a completely new level of complexity not

possible until now. It is also feasible to protect complicated quantum systems from the

debilitating effects of decoherence, which means that quantum errors can be corrected.
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4 Introduction

We are witnessing the dawn of the age of coherent manipulation of quantum information

in the laboratory, so the construction of quantum hardware is no longer a distant dream.

However, as no experimentally realised procedures exist to identify all four Bell states

for any system with single photons and linear optics manipulations, (for example see

paper by Zellinger et al [28]), the measurement central to efficiency of these discrete

quantum protocols is missing. The experimental realisations have been restricted to the

low efficiency inherent in photon counting experiments.

Instead of single particle entanglement, many-photon states of light can be used to

convey quantum information and offer some solutions to the above problems. Their de-

scription uses continuous variables and has a distinct advantage in terms of the availability

of controlled sources, efficient detectors and processing using linear elements. The use of

bright beams of light allows simplification of the inverse Bell-state-like measurement, as

will be shown in chapter 2. However there still exist problems with the continuous variable

quantum information implementation, which must be resolved before further progress can

be made.

Continuous variable systems have been shown to theoretically be equally useful in the

implementation of quantum information protocols such as quantum dense coding [17, 58],

quantum cryptography [41], quantum cloning [29, 30, 36] and other techniques described

in papers [32, 33].

The possibility of teleportation of continuous quantum variables such as amplitude

and phase quadratures of light field (section 2.2) was first suggested by the developments

of L. Vaidman [52] and H. Kimble with L. Braunstein [43]. With the availability of bright

squeezed states, many-photon state entanglement became relatively easy to implement

[35]. The use of highly efficient homodyne detectors, (section 2.5.2) now greatly simplifies

the experimental manipulation of quantum information.

A lot of investigation has been done involving quantum protocols using bright light

beams, with the coding and sending of information in the fluctuations of the two orthogonal

quadratures. However, the properties of the polarisation of continuous wave light are

only becoming of increasing interest since they offer new opportunities for communicating

quantum information. Most importantly though, they dispense with the use of costly

reference or local oscillator beams.

The important advantage of these nonclassical polarisation states for quantum com-

munication is the possibility of experimentally determining all of the relevant conjugate

variables of both squeezed and entangled fields using only linear optical elements, followed

by direct detection.

This thesis investigates the continuous variable regime of quantum teleportation pro-

tocols, for the polarisation states of bright beams.

It proposes several possible experimental systems designed for teleportation of all po-

larisation variables and evaluates their performance in the small signal limit, using two

independent protocol evaluation methods. The first, fidelity, is the overlap of the input

quantum state with the output, (section 2.6). The second, TV approach, deals with the

amount of information transferred and the noise introduced during teleportation experi-

ment, (section 2.7).

Thesis structure

Following this introduction chapter, in chapter 2, I will briefly outline the mathematical

tools which are used in quantum optics to create models for various experimental schemes.
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The standard, continuous wave teleportation scheme will then be described. It will be

followed by the introduction of the two figures of merit, commonly used to evaluate a

continuous variable quantum information protocol.

Chapter 3 provides extensions of the definitions in previous chapter, from quadratures

to Stokes parameters used to describe polarised light. Some major difficulties with the

new description are discussed. The full Stokes parameters variances are given and their

meaning in the small signal limit is described.

In chapter 4 the Stokes variances are applied in an evaluation of a full polarisation

teleportation system. Discussion of new behaviour and input polarisation dependence is

made, in a context of imperfect setup and asymmetric squeezing.

An improved version of the polarisation state teleportation scheme is given in chapter

5, where an input of a fixed, known polarisation allows the reduction of the number of

quantum resources. This scheme is called the QND-teleportation scheme. The information

transfer and quantum correlation preservation is evaluated for the three Stokes parameters.

A new visualisation tool, showing the dynamics of the system, is proposed.

Chapter 6 puts forward an alternative, simplified polarisation teleportation scheme,

which in contrast to the previous one, optimises the teleportation fidelity. This scheme is

called the BE-teleportation scheme. The transfer of information is then shown to be non

optimal for such a system, and to be less than in the scheme of chapter 5. The conflicting

results of fidelity and TV evaluation is then discussed.

As an interesting development motivated by chapter 6, the teleportation cloning limit

of a state carrying information on a single quadrature is investigated. The fidelity cloning

limits for the standard and single quadrature cases are compared and contrasted. The

results of the project are summarised.
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Chapter 2

Quantum optics formalism

2.1 Overview of this chapter

This chapter is devoted to introducing the theoretical tools which I used in my Honours

investigation of polarisation state teleportation. The first part of this chapter concen-

trates on the basic quantum optics concepts that will be assumed without further proof.

In subsequent chapters, a list of quantum information protocols using this mathemati-

cal formalism is outlined. Finally, two important methods for evaluating the efficacy of

quantum information schemes are reviewed.

2.2 The linearisation of field operators

The Heisenbergs uncertainty principle, which lies at a heart of quantum mechanics, is

central to the quantum description of light, through the definition of the radiation field

operator.

There are several approaches to the quantisation of the light field. However the most

useful, for the following analysis, introduces the creation and annihilation field operators,

â(t) and â†(t) . These are defined as â(t) = αclassic +δâ(t), and â†(t) = α∗classic +δâ†(t).

The classical amplitude component (which is usually complex), αclassic, is the expectation

value, 〈 â(t) 〉. The quantum operator parts δâ(t) contain all quantum mechanical fluctu-

ations and obey the commutation relation [δâ(t), δâ†(t)] = 1.

Hermitian and therefore observable operator combinations of these are used. The

operators for amplitude and phase quadratures of light are, δX̂(t)+ = (δâ(t) + δâ†(t)),

and δX̂(t)− = i (δâ(t)† − δâ(t)). These two conjugate observables are linked by the

commutation relation, [δX̂(t)+, δX̂(t)−] = 2i.

Most experimentally produced light states belong to a special set of Gaussian states,

where the quadrature noise fluctuations obey Gaussian statistics. This means the first

and second order statistical moments of a light beam, hence α and variance, are all that is

necessary to describe the field fully. The variance of the quadrature operators is defined as:

7



8 Quantum optics formalism

V ± = 〈(δX̂(t)±)2〉 − 〈δX̂(t)±〉2, with 〈δX̂(t)〉 being the expectation value of the operator

δX̂(t). The linearisation principle is used, following naturally from the above definition of

the creation-annihilation operators by assuming that the classical amplitude is much larger

than the quantum operator. The variance in this case simplifies to V ± = 〈(δX̂(t)±)2〉,
as the time average of fluctuations, 〈δX̂(t)±〉, is always zero. Often a combination of

the amplitude and phase quadratures is also defined and called the quadrature amplitude

Xθ = X+cosθ +X−sinθ.

By definition, the variance of quantum vacuum fluctuations is set to unity, and any

signal and modulation has V ± measured relative to this noise limit. For more detail refer

to texts [4, 6, 13].

For convenience the frequency spectra are given by Fourier transforming the time

domain expressions above. Since there are no products, these simply change to operators

describing a light field of a particular frequency. Hence the quadrature parameters δX±

are for the remainder of this thesis assumed to be of form δX±(ω).

A visualisation of the frequency description of light can be seen on figure 2.1. The

modulation sideband at ω = ωRF lies on top of the vacuum noise “floor”, which exists

at all frequencies. The carrier αDC at ωDC = 0 is also shown, however due to its large,

relative size its uncertainty is now effectively zero.

ω

αDC

ωRF

αRF

ωDC = 0

carrier

modulation sideband

δa(ω)  quantum noise

incoherent "sidebands"

 ωRF  frequency "slice"

Figure 2.1: The frequency spectra of the light field in the sideband picture. αRF is the modulation

sideband which lies on top of the white vacuum noise, δâ. The carrier αDC at ωDC = 0 is also

shown. The ωRF “slice” of this diagram inspects the properties of the light at only a single

frequency.

2.3 Phase space representation

The two noncommuting and orthogonal quadratures X̂± define a phase space in which

a continuous variable light field can be described. To combine all the information about

a light field a so called “ball-on-stick” diagram is usually constructed. This is a single

frequency representation, and can be imagined as an ωRF “slice” through the ω axis on

figure 2.1.
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Figure 2.2(a) shows the modulation signal of a carrier beam at a particular frequency

for a minimum uncertainty state. The classical field amplitude αRF , is the length of the

“stick”, while the quantum fluctuations in both the phase and the amplitude quadrature

are the circular uncertainty region, or the “ball”.

��
���
��
� �

PHASE

δX
-
in = √V-

in

δ
X
+

in
 =

 √
V
+

in
α RF

	 

� �

� � D

E

PHASE

δX
-
in = √V-

in

δ
X
+

in
 =

 √
V
+

in

α RF

(a) (b)

V
-

inV
+

in= 1

Figure 2.2: Two minimum uncertainty states: (a) coherent state, (b) amplitude squeezed state.

αRF : the modulation sideband amplitude, V ±: phase and amplitude noise variance of the light

beam.

2.4 Squeezing of light

It is possible to manipulate even the quantum mechanical fluctuations of a light field. This

can be done by the passage of light through a nonlinear crystal, such that correlations

between the fluctuations of the two quadratures take place. In this situation the variance

of the quadratures can become less than the quantum noise level, while the conjugate

variance is increased to preserve the uncertainty relation, V +V − ≥ 1, as shown on figure

2.2(b). [13, 23]

Light with V < 1 is said to be squeezed in that quadrature. In the limit of V → 0 we

obtain perfect squeezing however this requires infinite energy. When V > 1 the light is

referred to as anti-squeezed or having a super-Poissonian state.

2.5 Quantum theory for experiments

Following is a summary of basic quantum optical elements, using the operator formalism

introduced so far in this chapter. Quadrature variances can be detected as the fluctua-

tions of the current and in all, experimental quantum protocols it is the transfer of these

variances through the system that is analysed.

2.5.1 Beam splitters and vacuum noise

The beam splitter (BS), is an optical element central to most quantum information pro-

tocols. It introduces uncorrelated quantum noise into the system, which degrades the

signal-to-noise ratio of the input and randomises the output. The figure 2.3 illustrates

this. All beam splitters behave like this and are the source of the precision limit encoun-

tered by quantum optics assigned to the presence of vacuum noise.
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ε
XA

Xν   (vacuum noise)

√ε XA − √1−ε Xν

√1−ε XA + √ε Xν

Figure 2.3: The input and output quadratures of a beamsplitter with transmittance ε, showing

the vacuum noise fluctuations coupling to the light field, Â.

Many processes, like absorption, also introduce uncorrelated vacuum noise to a passing

light beam. Such processes can be modelled by such a beam splitter with a transmission

or efficiency of η, to keep account of the losses.

2.5.2 Standard homodyne detection

The homodyne detector is a crucial experimental tool, which facilitates the measurement

of the quadrature amplitude of a light beam [6, 13, 27].

In a homodyning scheme, the signal is interfered with a bright beam of a known phase,

called the local oscillator, LO. The sum and difference of the photocurrents, when LO

amplitude is assumed to be much larger than the signal, are [23]

I+ ∝ |αLO|2 + αLO δX+
LO

I− ∝ 2αsigαLO cos θ + αLO( δX−
sig cos θ − δX+

sig sin θ )

This approach uses an approximation, valid if the LO is much brighter than the signal,

to extract only the information about the fluctuations of the signal, which are now scaled

by the bright, LO amplitude, αLO. That is, the sum photocurrent I+ is to first order

approximately that of the direct detection of the LO field, δX+
LO. However, depending on

the relative phase of the interfering beams, any projection of the quadratures, X±
sig, can be

detected, and this continuous measurement of the signal quadrature amplitude is given by

the difference photocurrent, I−. The standard homodyning is hence a useful measurement

in situation where the maximum squeezing quadrature is not the amplitude quadrature.

The experimental setup is shown on figure 2.4.

2.5.3 Teleportation

Teleportation is a procedure by means of which two conjugate quadratures are measured,

destroyed and reconstructed in an identical quantum state [43, 52]. In a classical scheme,

without the use of quantum resources like entanglement, such a task is not possible, as

Heisenberg’s uncertainty principle prevents measuring and reconstructing both quadra-

tures without adding external quantum noise, as the beam splitter section demonstrates.

It is the use of squeezed light and non local quantum entanglement that enables the
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ε = 1/2

XLO

Xsig   (small signal fluctuations)

(large local oscillator)

D1

phase control

D2

+
_

Spectrum annalyser

               I_

Figure 2.4: The basic principle of homodyne detection. LO amplitude is much greater than

signal. The difference of the currents gives the signal fluctuations scaled by the LO, see text. D1,

D2: detectors, ε: beam splitter transmission coefficient, +/- : electronic adder and subtracter.

teleportation scheme to surpass the classical limits, (first proposed by C. Bennett [8]). The

quantum teleporter is shown in figure 2.5. The central part of the protocol is the entangled

EPR pair of light beams, [1, 37]. When the EPR2 beam is injected into the BS at the

sender’s station, instead of introducing the usual vacuum noise, (section 2.5.1), it ‘plugs’

the vacuum input and correlates the noise that is mixed with the signal, so that it can be

cancelled in the receiving station by EPR1 beam. If λ± are the modulator gains and the

efficiency of transmission and detection is assumed ideal, the transfer of the input signal

variances, (V ±in ), through the system is described by the transfer function (full expressions

given in Appendix B.1) [48]

V ±out =
1

2
|1 + λ±|2V ±SQ2 +

1

2
|1− λ±|2V ∓SQ1 + |λ±|2V ±in (2.1)

If the modulator gains are adjusted to λ± = ±1, with opposite signs, the transfer function

of each quadrature reduces to

V +
out = 2V +

SQ2 + V +
in and V −out = 2V +

SQ1 + V −in .

As the amplitude squeezing of the beams increases, (V +
SQ1,2 → 0), the unwanted terms

above become small and the required teleportation condition of V ±
out = V ±in is obtained

[47, 48].

2.5.4 Quantum nondemolition measurement

The quantum nondemolition measurement, (QND) [49, 50, 51, 53], deals with a simpler

problem of reconstructing all quantum information of only one of the two conjugate ob-

servables. When for example, an experiment tries to measure position of a particle it

necessarily disturbs its momentum. This momentum disturbance creates a greater uncer-

tainty in the position reading and hence couples the noise from the unmeasured quadrature

to the one being inspected. This problem is called the back action noise and QND proto-
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SQ1
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Figure 2.5: Basic experimental teleportation setup. SQ1,SQ2: two squeezed input beams; D±:

amplitude/ phase homodyne detectors; +/- : amplitude/ phase modulators; λ±: amplitude/ phase

modulator gains; BS: beam splitter.

cols attempt to circumvented it. The aim of QND is then to simultaneously observe and

preserve the input signal [6].

A particular example of an all destructive QND circuit, used for a specific task of

detecting a single light quadrature will be introduced in chapter 5. Other examples of

using QND in quadrature detection can be found in references [15, 23, 39, 40].

2.6 Fidelity

Fidelity is a way to measure the success of a quantum state reconstruction of any quantum

protocol. It does this by considering the overlap integral of the initial and final wave

functions, F = | < ψ̂in |ψ̂out > |2.

Since the statistics of a light beam are contained in the variance measurements for

the special subset of states called Gaussian states, (section 2.2), simply the overlap of two

Gaussian distributions in quadrature phase space can be made.

F = 2e−(k++k−)

√

√

√

√

V +
in V −in

(V +
out + V +

in ) (V −out + V −in )
(2.2)

Here k± = α±in
2
(1−|λ±|)2/(V ±out +V ±in ), while λ± is the modulation gain [54]. The square

root part of the equation 2.2 deals with the overlap of the variance “balls” of input and

output (see figure 2.2). The exponential part of the equation compares the amplitudes or

the “stick” lengths of the two states.

Fidelity is input state dependent, as seen in the above equation, so noise inputs V ±
in = 1

are agreed upon when calculating F, for easy cross comparison of various results. At unity

gain, the output is the same size as the input, and fidelity is optimum. If this is not

the case the exponential term in equation 2.2 reduces fidelity considerably, even at small
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deviations from unity gain condition. These assumptions, which are going to be made

throughout this thesis, make the overlap equation simplify to:

F =
2

√

(V +
out + 1) (V −out + 1)

(2.3)

This simplified version of fidelity integral is used in the remainder of my work. The

coherent or Gaussian states considered in the above fidelity evaluation, are convenient due

to their symmetry and experimental relevance.

The case of F = 0 implies the input and output are orthogonal and bare no resemblance

to each other, while F =1 marks perfect reconstruction of the input. The classical limit to

fidelity, without the presence of entanglement, is 0 ≤ F ≤ 1
2 . This is because the output

variance V ±out, has to increase from the input unity value to at least three, as a consequence

of adding two units of vacuum noise at the measuring and reconstructing stations. Only

if quantum resources such as EPR are present, can these vacuum inputs be circumvented

and fidelity in a quantum experiment will yield: 1
2 < F ≤ 1.

2.7 The TV approach

Another useful way of evaluating teleportation is by considering information transfer, on

a TV diagram [47]. Here two parameters are evaluated.

The first is the transfer coefficient which is simply the signal to noise ratio of the output

and input beams for each quadrature :

T± =
SNR±out

SNR±in
(2.4)

This number measures the extent of signal or information transfer. Classically at unity

gain, it is always below 1
3 for each quadrature, (total of Tclassical = 2

3), again because of

the double noise penalty which adds a unit of uncorrelated vacuum when measuring and

when reconstructing the state. However for a perfect teleportation the transfer coefficient

has undegraded SNR values for both quadratures, as the noise problem is circumvented,

hence giving the total of Tmax =2.

The second parameter is the conditional variance, which is a measure of the correlation

between the input and the output 1 , and is defined as:

V ±cv = V ±out −
< |δX̂±

inδX̂
±
out|2 >

V ±in
(2.5)

The conditional variance is a measure of how accurately the input signal can be repro-

duced on the output. Classical limit at unity gain is the already discussed double vacuum

noise penalty (for measurement and reconstruction), hence V classic
cv = 2, while the ideal

teleportation replicates the input exactly, giving V quantum
cv = 0.

These two parameters can be subsequently plotted on a TV diagram as a function of

the modulator gain, where λ+ = −λ− is assumed. Examples of such plots will be shown

1However experimentally such a correlation is impossible to measure, as the input is destroyed before
the output is created, hence the two don’t coexist at the same time. In order to evaluate the variance
experimentally, it is possible to redefine equation 2.5 in terms of the transfer coefficient, which is an easily
measurable quantity. Then: V

±
cv = N

±

out (1 − T
±). N is the output of the system with only noise input.

[47].
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in chapter 3. Once evaluated, both equation, 2.4, and 2.5 become independent of the

input signal variances and do not critically rely on unity gain for useful results, a major

advantage of the TV formulation over fidelity in an experimental situation.

2.8 Conclusion

This chapter summarises the quantum formalism necessary in understanding the later

chapters of the thesis. An overview of the linearisation approach was given, followed by

examples of quantum optical systems, analysed in this fashion. Finally, the fundamental

ideas of protocol evaluation were given, all of which will be revisited in later chapters.



Chapter 3

Quantum Stokes operators of

polarised light

3.1 Overview of this chapter

In this chapter further definitions and discussion need to be made before a full investigation

of various polarisation teleportation schemes in the later chapters.

I will outline the general transition from quadrature amplitude to polarisation telepor-

tation and introduce some major difficulties with the latter description.

The linearised variances of the quantum Stokes parameters for polarisation modulation

are then defined in the small signal limit, and two different evaluations of teleportation

protocols are discussed, namely TV and fidelity.

3.2 Stokes formalism

When the light beam being teleported has an unknown polarisation state, it is no longer

sufficient to describe it quantum mechanically using the two quadrature picture.

By drawing an analogy with classical Stokes parameters, [46] a new set of non commut-

ing, Stokes polarisation operators can be defined, providing a convenient description of the

polarisation properties of light. Like in the classical case, an arbitrary polarisation state

is decomposed into three bases: vertical (horizontal), +(-)45 deg and LH (RH) circular,

[42]. This vectorial representation can be readily visualised on a Poincaré sphere shown in

figure 3.1(a). Classically, the Ŝ0 vector length equals the coherent amplitude of the light

field, while its orientation describes the polarisation state. The Ŝ1 − Ŝ2 plane shows the

ratio of horizontally to vertically polarised photons. The azimuthal deviation from this

plane towards the Ŝ3 axis indicates the phase relationship between these two modes.

15
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a)

S1 S2

S3

right-circularly 
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  polarized 45° polarized
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S0

classical Poincare surface
quantum Poincare surface
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√SS√S0202+ 2S0

S3
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Figure 3.1: The comparison of (a) classical and (b) quantum Poincaré spheres. The explicit

meaning of the “stick” is illustrated, in terms of the photon number S0 for the classical case, and a

larger value of
√

S2
0 + 2S0, due to the quantum uncertainty in the second case [34]. The presence

of the uncertainty relations (eq. 3.4) noise “ball” absent in the classical picture and also indicated.

The quantum expressions for the four Stokes parameters, in terms of the field and

photon number operators [19, 42], become:

Ŝ0 = â†H âH + â†V âV = n̂H + n̂V

Ŝ1 = â†H âH − â†V âV = n̂H − n̂V

Ŝ2 = â†H âV + â†V âH = n̂+45 − n̂−45

Ŝ3 = iâ†V âH − iâ†H âV = n̂RC − n̂LC (3.1)

The âH and âV are creation (and annihilation) field operators for the horizontal and

vertical polarised states, respectively.

It is experimentally convenient to rewrite the last two Stokes parameters, by explicitly

including the phase angle, θ, between the two orthogonal horizontal and vertical modes.

This operation is equivalent to making âH/V real but keeping one mode complex through
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the relative phase term.

Ŝ2 = â†H âV e
iθ + â†V âHe

−iθ Ŝ3 = iâ†V âHe
−iθ − iâ†H âV e

iθ (3.2)

The equations above reduce to 3.1 if θ = 0 is chosen.

In the quantum description the parameter Ŝ0 is proportional to the classical intensity

of the quantum light beam, or the number of horizontal and vertical mode photons present,

while the other three operators obey coupled set of commutation relations of the Pauli

matrices:

[Ŝ1, Ŝ2] = 2i Ŝ3, [Ŝ2, Ŝ3] = 2i Ŝ1, [Ŝ3, Ŝ1] = 2i Ŝ2 (3.3)

This suggests that simultaneous measurements of physical quantities described by these

Stokes operators are impossible in general and their means and variances are restricted

by the uncertainty relations reminiscent of those for a minimum uncertainty quadrature

state.

VS2VS3 ≥ |〈Ŝ1〉|2, VS3VS1 ≥ |〈Ŝ2〉|2, VS1VS2 ≥ |〈Ŝ3〉|2 (3.4)

Here, VSi = 〈(Si)
2〉 is the variance of each Stokes operator defined in the usual way.

Figure 3.1(b) shows the graphical representation of the quantum Stokes vector, and

the meaning of each parameter enabling comparison to its classical counterpart. The

Stokes vector length of
√

S2
0 + 2S0 now exceeds the classical amplitude and the Poincaré

sphere has a finite thickness or “skin”, due to quantum uncertainty. The coupled uncer-

tainty relations of the Stokes variances are exhibited further in the appearance of a three

dimensional noise “ball”, superimposed on the Poincaré surface.

3.3 Linearisation of Stokes parameters

The linearisation of the Stokes operators is now carried out, in the fashion demonstrated

in section 2.2. When the field operators â, (â†) are expanded as a large classical amplitude

and a quantum fluctuation, the expressions of equations 3.1-3.2 become

δ̂S1 = αH δX+
H − αV δX

+
V (3.5)

δ̂S2 = αH (δX−
V sin θ + δX+

V cos θ ) + αV (δX+
H cos θ − δX−

H sin θ) (3.6)

δ̂S3 = αH (δX+
V sin θ − δX−

V cos θ ) + αV (δX−
H cos θ + δX+

H sin θ) (3.7)

To obtain linearisation of these equations, all terms higher than first order fluctuation are

ignored.

These linearised parameters now describe the polarisation state of the “carrier”, or

the bright laser beam, without the presence of any modulation. The angle θ and the

coherent amplitudes αH , αV , indicate the orientation of the light field’s Stoke vector on

the Poincaré sphere.
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3.4 Comparison of Stokes operators with quadrature ampli-

tudes

If the carrier light beam is phase and amplitude modulated, sidebands on either side of

the input carrier frequency (ωDC) appear1. It is the polarisation state of these that is of

practical interest, since this is where the information content resides in the laser beam.

In the quadrature amplitudes picture, when the carrier is modulated, the fluctuation

part of the quadrature operators, δX̂±, can be measured directly, using homodyne detec-

tion, (section 2.5.2). In phase space of X̂+ and X̂−, the phase and amplitude modulation

of light at a specified frequency can be drawn as on figure 2.2. The size of the modulation

sidebands, or the number of photons taking part in the modulation, is equivalent to the

sum of the variances of the two axes. The photon number can be written as :

δa†δa = 1
4((δX+)2 + (δX−)2 − 2)

Once the average is taken, the expression becomes

〈 δn̂X
RF 〉 = 1

4( V + + V − − 2)

This implies that it is only necessary to use homodyne detection to deduce the mod-

ulation extent on the two quadratures of a light beam, and to ignore the DC carrier

amplitude. The “stick” on figure 2.2 contains δn̂X
RF information only.

However the Stokes operators themselves are already photon number operators, and

hence their variance 〈(Ŝi)
2〉, without linearisation, will contain fourth order creation and

annihilation operator terms. In this case, to quantify the polarisation modulation photon

number, δn̂S
RF requires the ability to perform photon counting on bright light beams.

This is a task, which at the present moment is very difficult to carry out efficiently in a

laboratory.

If a method similar to that of the quadrature approach is taken in analysing the po-

larisation of the modulation sidebands, by linearising operators and finding the variances,

several problems arise.

The cyclic and dynamic commutation relations are the first major difference in the

Stokes, quantum description of light from the quadrature picture, (section 2.3). There is

also an increase in number of parameters. The full phase space for the Stokes operators

can not consist of simply a linear combination of the quadratures, as in equations 3.5-3.7.

The length of the polarisation, photon number “stick” in quadrature phase space becomes
√

2S0 + S2
0 , which is more than the total photon number, S0, due to the uncertainty “skin”

of the Stokes sphere, as shown on figure 3.1(b). Both, the modulation and vacuum noise

form a three dimensional ball which is superimposed on top of this uncertainty.

The problem of not being able to define a natural phase space for the Stokes operators

is connected to the lack of a complete Stokes state representation. The Gaussian, coherent

states can be fully defined in terms of quadratures as

|α 〉 ≡
∣

∣

∣

∣

1√
2
〈X+〉 +

i√
2
〈X−〉

〉

.

The polarisation state can be represented by a “super state”, which is a product of two

coherent states, each belonging to one of the horizontal or vertical modes. This can be

1For further discussion of the sideband picture refer to PhD thesis [6] or [23].
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again expressed in terms of the quadratures of the two modes as

|α H 〉|α V 〉 ≡
∣

∣

∣

∣

1√
2
〈X+

H〉 +
i√
2
〈X−

H〉
〉

∣

∣

∣

∣

1√
2
〈X+

V 〉 +
i√
2
〈X−

V 〉
〉

.

However, it is not possible to write the polarisation “super state” in terms of the Stokes

parameters. In the quadrature example above, a product of commuting, horizontal and

vertical operators exists. On the other hand, the Stokes parameter representation poses a

problem, as a product of noncommuting operators is required. This suggests that values in

the two kets mutually influence each other. Alternative way of explaining this limitation

is that the “super state” descriptions in Stokes parameters are incomplete.

|α H 〉|α V 〉 ≡
∣

∣

∣

∣

1√
2
〈Ŝ1〉 +

i√
2
〈Ŝ2〉

〉 ∣

∣

∣

∣

1√
2
〈Ŝ3〉 +

i√
2
〈??〉

〉

Hence the Ŝ1, Ŝ2 and Ŝ3 are not able to fully characterise the Gaussian state without

some additional measurement. The problem manifests itself further in the observation

that polarisation vacuum squeezing doesn’t preserve the volume of the “noise ball” [55],

as in the case of the preserved area of quadrature squeezing. This also indicates that the

quadratures are not a natural way to describe the polarisation operators.

The polarisation state of the RF sidebands can’t be fully described in terms of the

formalism introduced so far. However, despite these problems, certain special cases of po-

larisation modulation can be examined by looking at the Stokes parameters in quadrature

space. In the next two sections I am going to use two methods to study the modulated

polarised light. First I will concentrate on describing the light field by the Stokes mea-

surements, in particular in context of teleportation. This means that only the accessible

information carried by the quantum nature of the laser beam will be examined, not the

complete quantum state of the modulation. However this method is still very relevant

experimentally, where sending and extracting information becomes the main objective of

the teleportation protocol. The evaluation of the protocol is then made using the TV

method, already introduced in section 2.7. Secondly, the teleportation of the input state

will be assessed, by using the full quantum mechanical description, in terms of fidelity.

3.5 TV assessment

A first step to including polarisation modulation is expanding the definition of the field op-

erator to include classical modulation , (mod), explicitly: â(t) = αDC +δa(t)mod +δâ(t)vac.

Only the second fluctuation is a quantum operator, (vac), with the usual commutation

relations, while the first is purely classical, hence [δa(t)mod, δa(t)†mod] = 0. The δa(t)mod

is equivalent to α(ω)RF because in the time domain the classical modulation is one of

the time fluctuations of the carrier DC while in the frequency domain it’s a sideband at

ωRF , as in figure 2.1. Then this â(t) expansion is substituted into Stokes equations 3.1-3.2

and the Fourier transformation of the operators is taken. The increased complexity of the

quantum description of polarised light can be seen in the expanded set of Stokes operators

from equations 3.5-3.7. However now, each δX± = δX±
mod +δX±

vac, so there are two inde-

pendent modes of fluctuations, the classical signal and the quantum noise. This approach

is sidestepping the problem of higher order operator products discussed in the previous

section by introducing a bright, DC carrier, to allow linearisation to take place. All of

the small parts of the quantum system are now ignored and only the oscillations in the
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direction of the bright laser beam remain. The variances, V (δŜi), of the Stokes operators

are defined as 〈δŜ2
i 〉, and are calculated due to linearisation in section 3.3, to take form of

VS1 = αH
2 (VH

+ + 1) + αV
2 (VV

+ + 1) − 2αHαV 〈δX+
V δX

+
H〉 (3.8)

VS2 = αH
2(cos θ)2 (VV

+ + 1) + αV
2(cos θ)2 (VH

+ + 1) +

αH
2 (sin θ)2 (VV

− + 1) + αV
2(sin θ)2 (VH

− + 1) +

2αHαV sin θ cos θ 〈δX−
V δX

+
H〉 − 2αHαV sin θ cos θ 〈δX+

V δX
−

H〉 +

2αHαV cos θ cos θ 〈δX+
V δX

+
H〉 − 2αHαV sin θ sin θ 〈δX−

V δX
−

H〉+

2αH
2 sin θ cos θ 〈δX+

V δX
−

V 〉 − 2αV
2 sin θ cos θ 〈δX+

HδX
−

H〉 (3.9)

VS3 = αH
2 (cos θ)2 (VV

− + 1) + αV
2(cos θ)2 (VH

− + 1) +

αH
2 (sin θ)2 (VV

+ + 1) + αV
2(sin θ)2 (VH

+ + 1) +

2αHαV sin θ cos θ 〈δX+
V δX

−
H〉 − 2αHαV sin θ cos θ 〈δX−

V δX
+

H〉 −
2αHαV cos θ cos θ 〈δX−

V δX
−

H〉 + 2αHαV sin θ sin θ 〈δX+
V δX

+
H〉 −

2αH
2 sin θ cos θ 〈δX+

V δX
−

H〉 + 2αV
2 sin θ cos θ 〈δX+

HδX
−

H〉 (3.10)

The equations 3.8 to 3.10 depend on two kinds of variances, since the fluctuation operator

δX̂± was decoupled into the classical modulation (the “RF stick”) and quantum operator

(the “ball”). V ±H/V is the signal or the classical information residing in the modulation

sideband, while the variance of the vacuum operator, which is assumed to be at shot noise

level, is the origin of the unity term in the equations above. The classical and quantum

δX̂± parts are independent and uncorrelated, so no cross terms exist. However the classical

modulation allows for correlations of various δX̂±
mod quadratures with one another, and

this freedom is included in the above variance expressions.

The key result of the linearisation assumption is that the Stokes variances depend on

the polarisation orientation of the DC carrier beam, through scaling by the amplitude of

each mode, αH and αV , and the phase angle between these, θ. The problem of αDC scaling

in quadrature modulation doesn’t occur, as all terms are multiplied by a single, bright

amplitude so the DC has no overall effect on the result. However in the above case, the

two amplitudes will add an additional degree of freedom in redistributing the information

between the quadratures, and their effect can’t be simply removed by uniform re-scaling

of the polarisation signal. The effects of this DC dependence will be demonstrated in the

later chapters.

3.6 Fidelity assessment

With the recollection of section 2.6, fidelity measures the overlap of the two Gaussian

distributions which characterise the input and (teleported) output states of the field. This

actually yields a quasi-probability distribution of a Wigner function; however in the special

case of Gaussian states, it can be interpreted as a real probability distribution of the two

observables. Refer to figure 3.2.

Using this analogy, the fidelity of a teleported polarisation state should take form of a

three dimensional overlap integral, where a Gaussian distribution, (described by the Stokes

variances) is assumed for each Stokes parameter. However this is erroneous, because of the

assumption that a Gaussian state can be fully described by Stokes operators, in parallel to

characterisation by quadratures. This was already argued in section 3.4 to be an invalid

statement.
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X
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Figure 3.2: The meaning of the two dimensional Wigner function overlap integral, or fidelity, in

quadrature space. Each conjugate observable is seen to be characterised by a Gaussian distribution

with a given variance, and this is sufficient to describe the laser beam fully.

Hence, the open question of Stokes state description for polarised light results in in-

ability to define fidelity in terms of Stokes variances. The three dimensional Gaussian

overlap function simply doesn’t exist.

Fidelity 6=
∫ ∫ ∫

e
x2

VS1
+ y2

VS2
+ z2

VS3 dx dy dz

Where VSi = V mod
Si + V vac

Si , so the vacuum noise (“noise ball”) and classical modulation

(“stick length”) are both included.

Instead, if fidelity is to be evaluated, the linearised Stokes parameter states must be

expressed in full, quadrature space, including all four operators δX̂+
H , δX̂

−
H , δX̂

+
V and δX̂−

V .

Fidelity is then a four dimensional overlap integral, and each integration variable has its

Gaussian distribution characterised by the variances V ±
H and V ±V .

Fidelity =

∫ ∫ ∫ ∫

e
x2

V
+
H

+ y2

V
−

H

+ w2

V
+
V

+ z2

V
−

V dx dy dw dz (3.11)

This description of the polarised quantum state is valid since the modulation is assumed

to be small, and S0 ( = α2
H + α2

V ) is large. This makes the δn̂S
RF “stick”, approach the

total photon number, so S0 ≈
√

2S0 + S2
0 , as S0 →∞. The analogy with the quadrature

phase space approach can be made.

Finally it is stressed, that the special nature of the input state allows this operation.

I am still unable to provide a general Stokes quantum state and fidelity expressions.

3.7 Relevance

A question of relevance of the above, approach can be raised by the reader, in the light of

the explanation that since there is no Stokes phase space, how is the above evaluation a

correct quantum mechanical description of reality?

The answer lies in the perspective which is taken by the experiment teleporting a

bright, polarised light beam. Most often the object of such a protocol is to send as much

information as possible, encoded on the three degrees of freedom of a bright, polarised
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carrier. The presented analysis is then perfectly valid, using linearised Stoke operators

and variances, which are decomposed into quadratures and then measured. The other

fluctuations that are present on the input but do not scale with the carrier are ignored,

as the relative information carried by them is small hence insignificant.

This returns us to the point made in section 3.5 that, instead of scaling all terms equally

as in the quadrature case, here the carrier’s amplitudes in αH and αV modes will select

special projections of signal fluctuations along the DC direction, while ignoring others.

When the condition of a bright laser beam is met, this allows, through the linearisation

approach, to simplify the system studied. The polarisation “super state” |α H 〉|α V 〉, has

then a valid representation in the product of horizontal and vertical Gaussian-quadrature

states.

3.8 Conclusion

In this chapter I have attempted to outline the procedures which will be used in the re-

mainder of the thesis to evaluate the teleportation of the signal in polarisation modulation.

The open question still remaining in connection to the full description of light in Stokes

parameter phase space was discussed, and the validity of the linearised approach was justi-

fied. I then proceeded to introduce the linearised variances for the Stokes operators, which

could be used in the bright carrier limit, as a useful description of information carrying

polarisation. Finally the TV and fidelity methods in the context of Stokes parameters

were described, to be used in later chapters.



Chapter 4

Polarisation teleportation - four

squeezers

4.1 Overview of this chapter

In this chapter I will investigate the Stokes variances introduced in chapter 3, in light

of information transfer, using the slightly modified TV diagrams. The most trivial, and

also the most resource expensive method of implementing the polarisation teleportation

protocol is then described, using two independent teleporters, hence two EPR pairs and

four squeezed, bright beams.

4.2 Teleportation of the Stokes information

To experimentally teleport all the information contained in equations 3.8-3.10, the polari-

sation information can be broken down to the familiar quadrature amplitude information.

Here a set of four bright, squeezed beams (SQ1, SQ2, SQ3, SQ4) entangled to make two

sets of EPR pairs, and hence two standard, quadrature teleporters are needed. Each tele-

porter transfers information about one of the mutually independent modes of quantum

fluctuations: horizontal and vertical. The experimental setup is shown in figure 4.1. A

polarising beam splitter, PBS, first separates the signal into the horizontal and vertical

components, after which each teleportation protocol is almost identical to the one dis-

cussed in section 2.5.3. The only major difference is the detection technique. Instead of

using the standard homodyne detectors, each requiring a bright LO, if the EPR beam is

arranged to have a carrier with equal power to that of the signal carrier, it is possible to

make direct measurements which are equivalent to those that are made with vacuum EPR

23
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Figure 4.1: Polarisation teleportation setup which consists of a set of quadrature teleporters, with

an advantage of LO free homodyne detection, (see text). SQ1-SQ4: four squeezed input beams;

D±: amplitude/ phase homodyne detectors; +/- : amplitude/ phase modulators; λ±: amplitude/

phase modulator gains; PBS: polarising beam splitter.
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beams and a bright LO [14]. This useful experimental modification dispenses with the

use of costly LO beams in the laboratory, and offers a great advantage to the detection of

polarised states. On the output, the two teleported modes of light are recombined by a

second PBS into a single polarisation signal.

4.3 TV diagrams for polarisation

The TV description of teleportation introduced in section 2.7, must be now tailored to

the polarisation setup described in the preceding section. A more thorough explanation

of the parameters involved and examples of resulting TV diagrams will now be made.

Transfer coefficient

Transfer coefficients of the Stokes parameters, TS1, TS2, TS3, can be evaluated by simply

applying the variances of the Stokes equations 3.8-3.10 to the usual information transfer

formula, (equation 2.4). The result is very complicated if all four beams have indepen-

dent squeezing parameters, (shown in Appendix B.3(a)). However if the two teleporters

are completely symmetric and the amplitude squeezed variance parameters V +
SQ1,2,3,4 are

defined as SQ1,2,3,4, the SQ1 = SQ2 = SQ3 = SQ4. In this case, the three transfer

coefficients all equal to

TS 1,2,3 =
2λ2

+ SQ

1 + SQ2 + λ2
+ (1 + SQ)2 + 2λ+ (SQ2 − 1)

, (4.1)

where λ± is the gain from the teleportation transfer function equation 2.1, and SQ is the

amplitude squeezed variance parameter of the four beams, (V +
SQ ≤ 1).

Conditional variance

When the correlations between the input and the output Stokes operators from equa-

tion 2.5 are found, the three conditional variances can be calculated. (Full expressions

in Appendix B.3(b)). Once again, these become much simpler when the very realistic

assumption of symmetric squeezing in the four beams is made1. All three variances then

equal:

V 1,2,3
cv =

1

2 SQ
− λ+

SQ
+

λ2
+

2 SQ
+
SQ

2
+ λ+ SQ +

λ2
+ SQ

2
(4.2)

The experimental assumption from section 2.7 that V 1,2,3
cv = N1,2,3

out (1 − TS1,2,3) still

holds, as the variances of the quadratures in which the Stokes operators are expressed still

obey Gaussian statistics.

TV diagrams

Three sets of the parameters: V 1,2,3
cv and TS1,2,3 are plotted on a TV diagram in figure

4.2. The results, (figure 4.2(a)), are identical for all Stokes parameters when symmetric

squeezing is assumed on all four beams. The curves, plotted as a function of the modulator

1In a real experiment the mismatch of the two squeezers can be reduced down to only 0.3 dB (7 %),
and over this range no significant changes to the TV description can occur.
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Figure 4.2: (a) The symmetric squeezing case - all three Stokes TV plots are identical and the

same amount of the original polarisation information is teleported in all three Stokes parameters,

hence all three polarisation components; SQ = 0.5. (b)-(d) The asymmetric squeezing case - In a

non-ideal system the amount of information successfully teleported on each Stokes parameter will

vary with the DC polarisation, as demonstrated for three different θ values. αH = 1√
7
, (arbitrary);

SQ1 = .3, SQ2 = .6, SQ3 = .2, SQ4 =.5 The classical limit curve (pale solid line) is also indicated

on all the diagrams.
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gains, seem to reflect the original quadrature TV results for equal squeezing values, (SQ

→ VSQ1,2).

On the other hand, when the squeezing parameters of the four entangled beams are

changed independently, the teleported information becomes dependent on the polarisation

of the bright carrier, carrying the input state. The main advantage of the TV formalism is

that the teleportation evaluation is independent of the input signal form so any unknown

state of a carrier beam gives the same result in particular experimental conditions. How-

ever this no longer holds when the squeezing is non-symmetric. In the polarisation case,

the modulation can also be either represented by a “ball” of classical noise on the end of

a coherent DC amplitude (time domain, figure 3.1(b)) or a RF modulation sideband (fre-

quency domain). The DC “stick” scales these classical modulation sidebands in equations

3.8-3.10, and their relative orientation now determines the teleportation success rate.

The TV diagrams on figures 4.2(b)-(d) show the varying degrees of information and

correlation preservation for each Stokes parameter, which is seen to vary as a function

of the input polarisation angle θ, when the squeezing is asymmetric. The shapes of the

TVS1,2,3 curves are also determined to a small extent by the coherent DC amplitudes ratio

αV : αH .

This dependence can be justified by imagining the polarisation modulation of a bright,

DC carrier consisting of a large amplitude component along the horizontal direction Ŝ1 on

the Poincaré sphere, (αH is large). In the linearisation limit of the teleportation transfer

function, only the quadrature components of δŜ1, δŜ2, δŜ3 parallel to this DC orienta-

tion are teleported, as the other quantum fluctuations are relatively small. The relevant

quadrature amplitudes of the Stokes variances, (those that couple to αH in equations 3.8-

3.10), are then the only ones to be replicated. This can be also visualised as teleporting

only the sideband projections onto the large DC reference (similar to the αproj in figure

5.2).

The efficiency of each of the teleporters in transferring the horizontal, vertical, phase

and amplitude quadratures depends on the extent of squeezing in each of the four beams.

This non-symmetric teleportation efficacy means the TV evaluation results for each Stokes

parameter will vary. This emphasises the dependence of TV formalism on the experimental

setup.

For an arbitrary choice of input polarisation, the three TVS1,2,3 plots will look com-

pletely different, as figures 4.2(b)-(d) demonstrate. In this example of a non-symmetric

squeezing system the amount of information successfully teleported on each Stokes pa-

rameter is seen to vary with the DC polarisation. A demonstration of this for a particular

squeezing combination and αDC choice is shown. With θ = π, the most successful TV

evaluation occurs for the δŜ3 parameter (hence the circular polarised fluctuations compo-

nent) and least impressive for δŜ1 and δŜ2. By choosing an alternate DC polarisation at

θ = π
2 , the efficacy of the diagonal fluctuations component δŜ2 increases, but is accompa-

nied by a significant decrease in teleportation quality of δŜ3. Alternatively to θ, the DC

input polarisation could also be varied via the αDC parameter, however this doesn’t have

a big effect on the appearance of the TV diagrams.

These results suggest that in a non-symmetric teleporter, the extent of the polarisation

modulation teleported dependence on the input carrier choice could be used to the exper-

imenter’s advantage. Consequently, if the input polarisation is known, different regimes

of information transfer and correlations can be reached with various squeezing parameter

combinations. However the most desirable behaviour, independent of the input state when

carrier polarisation is unknown, occurs only when squeezing is symmetric.
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The transfer coefficients and conditional variances shown in this chapter give a good

indication of how the observables of interest are reproduced on the output, and how well

suited a particular experimental system is for the task (within the linearisation limit). This

will be stressed in the next chapter, when an obvious contradiction between information

transfer and fidelity is encountered.

4.4 Limitations of the scheme

Although the polarisation fluctuations (or classical modulation sidebands) are teleported

in this scheme, the input carrier’s polarisation state (or DC “stick”) is not, similar to the

quadrature case where the intensity of the carrier is never a parameter of interest. However

in the present setup the teleportation also requires the knowledge of the relative phase

angle between the two modes θ, which specifies the carrier’s polarisation state. Unless this

piece of information on the input is known and set to be identical at the receiving station,

the protocol outlined will not work. Furthermore, there may be a possibility of reducing

the number of quantum resources, which will be addressed in the next chapter.

4.5 Conclusion

In the above sections I have introduced the most trivial and resource demanding polarisa-

tion teleportation scheme, relying on the fact that the fluctuations can be decomposed into

two sets of horizontal and vertical quadratures. The linearised variances for the Stokes

operators, from chapter 3 were then used to evaluate the teleportation of a polarisation

modulation in a Stokes TV picture. Interesting results were also discussed, revealing

dependence of the signal reconstruction on DC carrier’s polarisation in the linearisation

limit.



Chapter 5

Polarisation teleportation and

QND

5.1 Overview of this chapter

In this chapter I will introduce a much simpler and less resource demanding experimental

setup, still fully capable of teleporting polarisation encoded information. Here, I will use

the fact that the average values of the Stokes parameters are classical entities which can be

determined without back-action on the quantum fluctuations, to employ an all destructive

QND, measurement technique.

Later I will analyse the new scheme along the same lines as chapter 4, evaluating

the amount of information that can be sent in terms of the transfer coefficient and the

conditional variance. Finally I will show that a modified version of the TV representation

is more helpful in describing the effectiveness of the setup.

5.2 Simpler experimental scheme-teleporter and QND

It was shown previously that to experimentally reproduce all of the polarisation param-

eters a set of four bright, squeezed beams and two EPR pairs is needed. This implies

double the complexity of the standard teleporter, and twice the entanglement resources.

However when looking at the four Stokes parameters, it is clear that since Ŝ0 commutes

with the rest of the Stokes parameters it can be measured classically and thus this oper-

ator, proportional to the classical intensity of the light beam, is redundant. This leaves

only three parameters with quantum uncertainty relations, and indicates there could be a

simpler method involved.

A closer inspection of the Stokes parameters defined in equations 3.5-3.7, reveals that

once the orientation of the DC input polarisation is known, the number of quadratures

involved in the description of the state can be reduced. In particular, if the polarisation

of the carrier light beam is made almost vertical, (ie along the negative direction of the

29
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Ŝ1 axis), all of the terms in equations 3.5-3.7 that scale with αH , which is now effectively

equal to zero, vanish. The expressions for the linearised Stokes operators then reduce to:

δ̂S
QND
1 = − αV δX

+
V (5.1)

δ̂S
QND

2 = αV (δX+
H cos θ − δX−

H sin θ ) (5.2)

δ̂S
QND

3 = αV (δX−
H cos θ + δX+

H sin θ ) (5.3)

The new teleportation scheme now becomes more transparent. The uncertainty rela-

tions from equation 3.4 are strongly affected by this carrier polarisation. Now both 〈Ŝ2〉
and 〈Ŝ3〉 are zero, so the only uncertainty remaining is that between Ŝ2 and Ŝ3. These

two quantities must then be teleported using some quantum resource, like entanglement.

The Ŝ1 parameter on the other hand can be simply detected and doesn’t require a second

entangled pair of bright beams for its reconstruction. In other words the equations 5.2,

5.3 are seen to completely decouple from 5.1. A standard, two quadrature teleportation is

required for the horizontal teleportation of the two conjugate fluctuations in δŜQND
2 and

δŜQND
3 . However, now the vertical amplitude fluctuations of δŜQND

1 can be reproduced by

single quadrature measurement, which is achieved using quantum non demolition or QND,

introduced in section 2.5.4. The problem of back-action noise during the QND detection

is avoided as the average 〈Ŝ1〉 of the Stokes parameter is measured, and this quantity is

classical.

The optical circuit for the simplified, QND-teleporter system is outlined on figure 5.1.

The first polarising beam splitter, (PBS), extracts all of the vertical light from the signal

beam, and hence reproduces the single quadrature fluctuations δŜQND
1 ∝ δX̂+

V , onto the

squeezed beam SQ3 . The standard teleportation protocol, using an EPR pair, transfers

the information of δŜQND
2,3 onto the output beam EPR1. Again the vertical and horizontal

modes are recombined via a second PBS, and the total output signal is rotated with a

variable wave plate, WP, to ensure the DC polarisation is still vertical. This last element

of the new teleportation scheme must be transferred classically to allow the number of

quantum resources to reduce.

The extent of squeezing on SQ3 beam enables an ideal reproduction of the single

amplitude quadrature fluctuation δX̂+
V in the QND scheme. (This is analogous to the way

the squeezing of SQ1 and SQ2 beams guarantees good teleportation). The use of squeezed

light in a QND scheme was first suggested by Bruckmeier et al [39] and implemented

experimentally by Shapiro [45]. The first implementation of the all destructive QND

setup considered here, was carried out by Buchler et al [3]. The complete polarisation

teleportation system now uses only three squeezed beams and one entangled pair.

5.3 TV analysis

The linearised variances for the Stokes parameters from equations 3.8-3.10 now simplify

to:

V QND
S1 = α2

V V +
V (5.4)

V QND
S2 = α2

V (cos θ)2 V +
H + α2

V (sin θ)2 V −H − 2α2
V sin θ cos θ 〈δX+

HδX
−
H 〉 (5.5)

V QND
S3 = α2

V (cos θ)2 V −H + α2
V (sin θ)2 V +

H + 2α2
V sin θ cos θ 〈δX+

HδX
−
H 〉 (5.6)
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Figure 5.1: QND-teleporter experimental setup consisting of an all destructive QND and a tele-

portation (see fig. 4.1) circuits. D±: amplitude/ phase homodyne detectors, Det: standard

amplitude detector, +/- : amplitude/ phase modulators, g±: amplitude/ phase modulator gains,

PBS: polarising beam splitter, WP: waveplate; HPF: high pass filter in the feedforward loop; LPF:

low pass filter in the feedback loop.
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^
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Figure 5.2: The physical meaning of the polarisation angle is shown. The choice of θRF changes

the projection (αproj) of the modulation sideband, measured relative to the always vertical (-Ŝ1)

DC carrier.

Variances V ±H/V are the sum of signal and quantum fluctuation variances, (V ±
mod +V ±vac).

The phase angle θ gives the relative phase between the two DC modes: the very large

vertical and the very small, (approximately zero) horizontal amplitude components. There

is now only one type of classical input correlation 〈δX+
HδX

−
H 〉 which can be of interest.

The Ŝ2 and Ŝ3, TV evaluation

The transfer coefficient and conditional variance for Ŝ2 and Ŝ3 are now exactly equivalent

to horizontal phase and amplitude fluctuation teleportation by a single teleporter, already

considered in TV formalism section 2.7. The behaviour at symmetric squeezing gives two

identical TV diagrams ( plotting TS2,S3 vs V 2,3
cv ), which agree with the quadrature TV

diagrams, ( T±q vs V ±cv ) for a given squeezing.

As with the TV analysis for the full double teleporter, a different behaviour is present

for asymmetric squeezing in the QND-teleportation setup, illustrated on figures 5.3(a)-

(b). The TV plots again depend on the relative phase θ of the two modes in the input

polarisation state. (Full expressions for TS2,S3 and V 2,3
cv are given in Appendix B.4).

In the QND-teleporter case this angle can be quite arbitrary, since there is no coherent

amplitude in the horizontal direction (αH → 0). The chosen, vertical polarisation of the

DC carrier seems to require that θ = 0 by looking at the Poincaré sphere orientation of any

vertically polarised field. However once the αH= 0 condition is met, the absolute phase

has no effect on the DC “stick” polarisation, as δŜQND
1 (the vertical Stokes component)

is now independent of θ and only proportional to αV as seen in equation 5.1. However

the relative phase does change the behaviour of the fluctuations or the sidebands, which is

what the TV plots show. This allows a measurement of quadratures using the carrier as

the LO, selecting the projection to be measured by manipulating the phase1. Subsequent

changes of θ will rotate the modulation sidebands of the bright carrier in the Poincaré

sphere, but wont really change their state of polarisation, as the θ parameter doesn’t fully

characterise the modulation polarisation as discussed in chapter 3. This can be visualised

on figure 5.2.

The TS2,S3 and V 2,3
cv values are seen to always reach a maximum (or a minimum) at

1This is similar to the squeezed vacuum mode situation, where the statistics vary as a function of
quadrature angle, although the angle itself has no absolute reference.
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Figure 5.3: The TVS2 and TVS3 for the asymmetric squeezing case, drawn for three different θ

values: (a) π; (b) π
2

; (c) π
4

. The classical limit (pale solid line) is again drawn as a reference. The

phase delayed behaviour between the two Stokes parameters is seen (see text); SQ1 = .2, SQ2 =

.7

θ = π (or π
2 ) for one of the two parameters, with the opposite being true for the remaining

parameter. This behaviour is independent of the actual size of squeezing variances. Hence

a phase delayed relationship can be observed, as the maximum curve of TVS3 diagram at

θi, matches the maximum of the TVS2 diagram at θi + π
2 . Unlike the case of section 4.3,

the two TV curves are of identical shape (at different θ values), because the αH : αV ratio

dependence which was the additional parameter freedom in chapter 4 is now removed.

An alternate evaluation of Ŝ1

Due to the fact that the physical system transferring the information about the δX̂+
V

quadrature is different to the teleporter, the resulting transfer function now depends on a

different range of parameters than the one for Ŝ2 and Ŝ3. This means the TV analysis of

this QND scheme must be kept separate to the teleportation scheme.

The conditional variance is found to be

V S1
cv = α2

V (1 + ηm (−1−G2 (ηd − 1)) + SQ3) (5.7)

Here, ηm and ηd are the modulator and detector efficiencies respectively, G the mod-

ulator gain, and SQ3 the variance of the amplitude squeezed QND beam.

When the efficiencies of the system approach unity, this equation becomes gain inde-

pendent and reduces to V S1
cv = α2

V SQ3. Hence the standard TV plot will fail to show any

dynamics of these parameters as a function of gain, G.

The transfer coefficient is now found to be:

TS1 =
G2 ηd ηm

1 + (G2 − 1) ηm + SQ3
(5.8)

which again reduces further at perfect efficiencies to TS1 = G2

G2+SQ3
. Noting that

both, TS1 and V S1
cv depend on squeezing parameter of the QND beam, (SQ3), a new

visualisation tool is proposed, which plots the two parameters as a function of G and SQ3.

Figure 5.4 demonstrates the dynamics of the TS1 parameter as a function of both, gain and

squeezing. The area above the plane shows the region of interests, where the information

transfer surpasses the classical limit (TS1 ≥ 1
2).

The “equipotentials” of this surface plot are shown on figure 5.5. The SQ3 axis is
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equal to the conditional variance axis, (αV is normalised to 1), however now the transfer

coefficient’s “equipotential” lines are seen to asymptotically approach the G axis.

There is a physical basis behind this behaviour of the all destructive QND. It is possible

to enhance the transfer of information of the system by increasing the combination of

squeezing and gain, hence improving the SNR. On the other hand, the conditional variance

can’t be improved as there is only one beam in the setup, and all the correlations must

reside in the extent of squeezing. This keeps the V QND
cv parameter constant for a particular

experimental system, and makes it impossible to characterise it on a meaningful TV

diagram.

Nevertheless, an analogy with the quadrature TV in section 2.7 can be made by defining

a region with V 1
cv < 1 and TS1 >

1
2 . This is unreachable by classical means of teleportation,

and corresponds to the so called cloning limit (per quadrature) which will be discussed

further in chapter 7.
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Figure 5.4: The 3-dimensional plot of TS1 as a function of G and SQ3. The plane shows the

maximum classical value, and the surface above is the non-classical teleportation region for a single

quadrature. The cross section at the plane is a parabolic.

Further discussion

The aim of teleportation is to be able to reproduce an unknown input state, regardless

of its polarisation, as was already pointed out in section 4.3. From this perspective, it is

desirable that TV diagrams for Ŝ2 and Ŝ3 are equal, hence symmetric squeezing is required

in the teleportation setup (SQ1 = SQ2 = SQ).

Furthermore, the agreement of results for both the teleporter and the QND systems

is needed. When λ± = ±1, (at unity teleporter gain), TS1 = TS2,S3 value occurs when

the QND gain is restricted to G = ±
√

SQ3
SQ . The second parameter equality, V 1

cv = V 2,3
cv ,

is met only when SQ3 = 2 SQ. Once this happens, G = ±1 is needed. Hence, at unity

gain for both systems and double squeezing in the EPR pair compared to that of the

third QND beam, the TV points of Ŝ1, Ŝ2 and Ŝ3, overlap. There is a fundamental
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Figure 5.6: When G = 1 and SQ3 = 2 SQ the unity gain points for TVS1, TVS2 and TVS3 are

seen to coincide for all squeezing parameter values (in steps of 0.2 for S1 and steps of 0.1 for S2,3.

reason why the teleportation setup requires double the squeezing resources of the QND

scheme for equal results. The teleportation protocol, as was previously discussed, admits

uncorrelated noise into the system at two instances, when measuring and reconstructing

the input. Hence two, so called “noise penalties” must be paid. On the other hand, in the

QND measurement, only the reconstruction of the signal adds excess vacuum noise. The

measurement itself avoids the back action noise by measuring the classical mean 〈Ŝ1〉 of the

Stokes parameter. The QND case needs to compensate for a smaller extent of incoherence

introduced hence it requires less squeezing. Figure 5.6 shows how the unity gain points at

various squeezing parameters for the three TVS1, TVS2, TVS3 diagrams coincide at these

conditions.
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5.4 Conclusion

In the above chapter an alternative way of teleporting the polarisation information was

proposed. It relies on the fact that something about the input signal is known, namely

the DC polarisation orientation is set to vertical, hence less parameters are required to

describe the remaining information in the linearised limit. This way the resources used

can be reduced to only a single teleporter and an all destructive QND scheme.



Chapter 6

Biased entanglement scheme

6.1 Overview of this chapter

In the following chapter I will introduce a more generalised scheme for teleportation of a

single quadrature. This simplifies down to the all destructive QND measurement discussed

in the previous chapter, yet allows a much better fidelity.

6.2 Motivation for improvement

It was shown that in the limit of infinite squeezing, it is possible to obtain a perfect repro-

duction of the signal in the QND process, hence teleport all of the polarisation quantum

information possible. In the case of a signal encoded on amplitude modulation, which is

the example considered previously, the output beam onto which the signal is to be im-

printed needs to be amplitude squeezed, (SQ3 parameter < 1, fig 5.1), to reduce any noise

in the signal quadrature. The phase quadrature, which then becomes antisqueezed and

hence very noisy, ( 1
SQ3 → large), is not relevant as it doesn’t take part in the measurement.

It carries no useful information.

This argument works well when information transfer is considered, and it is illustrated

in the analysis of the previous chapter. However if the fidelity of this particular scheme is

to be evaluated, it is found to be vanishingly small. This can be understood by noting that

fidelity, as defined in section 2.6, measures the similarity of the complete input and output

quantum states. It takes account of the quality of the reproduction of both amplitude

and phase quadratures, one of which is now very noisy. Another way to express this is

that when applied to single quadrature, TV evaluation preserves the classical information

carried by the quantum state. However fidelity, even in this special case, still preserves

the complete quantum state.

By fidelity equation 2.3, the larger the amplitude squeezing on the QND beam, the

smaller the fidelity. In fact, if only measurements of 〈Ŝ1〉, 〈Ŝ2〉 and 〈Ŝ3〉 are possible in the

37
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Figure 6.1: Biased entanglement and teleporter experimental setup. See text for further clarifi-

cation.

teleportation scheme, then the maximum fidelity of the replicated quantum state is F =
√

2
3 , attained when there is no SQ3 squeezing at all. The plot of best QND system fidelity

as a function of the teleporter inputs squeezing, (SQ1 and SQ2), is shown to exceed the

results of the full teleporter only below 80 % squeezing. (Figures 6.1 to 6.7, dotted line).

The aim of the following chapter is to keep to just one squeezed beam in the vertical

mode, but now allow arbitrary measurements, not restricted to the Stokes parameters.

The existing tradeoffs between information transfer and fidelity become apparent in this

approach and the whole range of system behaviour can be examined using the scheme

proposed.

6.3 Biased entanglement scheme

It is possible to design a different transfer technique, which uses non locality in the form of

entanglement, to beat the above direct measurement fidelity limit. Such an experimental

set up will from now on be called biased entanglement, BE and is shown on figure 6.1.

It is a modification of the standard teleporter which tries to limit the resources from two

bright, squeezed beams, to only one, bright, squeezed beam entangled with a vacuum port,

while still achieving high fidelity. However fidelity is never expected to reach unity, as for

this, entanglement of two perfectly squeezed beams is required and, as will be shown, the

limiting fidelity of the BE scheme is indeed less than 1.

When the first beam splitter is set to all transmitting, ε1 = 1, and the second is set
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to all reflective, ε2 = 0, the all destructive QND scheme from the previous chapter is

reproduced, with no entanglement present, only a single squeezed, bright beam and direct

detection of the signal (see figure 6.1). Full expressions for transfer functions of this system

are given in Appendix B.5. In order to beat the F=
√

2
3 limit various parameters can be

adjusted according to the value of squeezing injected, V ±
sq . The beam splitter transmission

coefficients, ε1 and ε2, as well as the gains, are changed to optimise equation 2.3. The

amplitude and phase modulators gains, g+ and g−, are optimised, and depend on ε1, ε2

and squeezing, V ±sq (For a more detailed analysis see Appendix B.6). Depending on the

sign of g+, there are three major cases in which the fidelity surpasses the direct detection

limit. These are now discussed.

6.3.1 Case-1 : V −
sq squeezing and g+ positive

When the amplitude modulator gain is positive, only the squeezing of the phase quadrature

along with appropriate ε1 and ε2 settings will yield F >
√

2
3 . At extreme squeezing,

ε2 → ε1 → small, the output quadrature variances tend to:

V +
out → V +

sig + 1 V −out → V −noise

4
+

1

4
=

1

2
(6.1)

Here, the vertical mode is made up of the signal, (amplitude) quadrature variance, V +
sig

and the “shot noise” quadrature, V −
noise. This limits the fidelity to:

F =
2

√

(1 + 0.5)(1 + 2)
=

2
√

2

3
(6.2)

Physically at the extremes of squeezing, almost all of the signal is directed to the am-

plitude detector, (D+), while most of the phase quadrature squeezing goes directly to the

output. This ensures that while the amplitude quadrature variance pays the measurement

penalty by increasing the first equation of 6.1, the phase quadrature variance is lowered

to half the original shot noise level.

The choice of the amplitude modulator gain sign has an effect of either correlating or

anticorrelating the noise terms, which can be seen by looking at the two final terms of the

V +
out variance:

V +
out = 4 (1− ε2) g2

+ V +
sig +

[

V +
v (

√

(1 − ε1) + 2 g+
√
ε1 ε2 )2

]

+
{

V +
sq (2 g+

√

ε2 (1− ε1) −
√
ε1 )2

}

(6.3)

The positive unity value of the amplitude modulator gain, g+, implies correlations of

the vacuum noise terms (square brackets) so that their addition takes place, while anti-

correlating the amplitude squeezing V +
sq contribution (curly brackets), which can be can-

celled by appropriate choice of ε1 and ε2. Here V +
sig is the signal, V +

v the vacuum noise and

V +
sq the squeezed beam variance contributions. Only compensation for the vacuum noise,

like squeezing, will enhance the output V +
out, as the result is now independent of V +

sq .

Since information is encoded only on the amplitude, the maximum transfer coefficient

is the information cloning limit at unity gain, T + = 1
2 [54], to be discussed further in

chapter 7.

The complete teleportation setup used to send polarisation encoded signals in the



40 Biased entanglement scheme

vertical DC input case will also include a full teleporter for the horizontal phase and

the amplitude quadrature information, hence the final fidelity of the teleported state will

be the product of a standard, two quadrature teleporter result, with the optimal BE

value given above. Figure 6.2, (solid line), shows the plot of maximum fidelity for such

complete, polarisation teleportation system, as a function of V −
sq squeezing. At each value

of squeezing, the fidelity was numerically optimised for full the rage of parameters.

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
id
e
lit
y

Variance of the squeezed quadrature  ( Vsq
- )

~90%

Figure 6.2: The optimal fidelity of a biased entanglement scheme, in case-1, solid line. The plot

of a full QND-teleporter system fidelity is a dotted line, while the double teleporter setup is shown

as a dashed line. The case-1, shows a considerable improvement to a QND system at extreme

squeezing, while being more favourable than a full, double teleporter up until 90 % squeezing.

6.3.2 Case-2 : V −
sq squeezing and g+ negative

With phase squeezing, (V −sq < 1) at the negative g+ gain, the maximum fidelity always

occurs when ε2 = 0, and ε1 takes all values between 0 and 1 and is a function of V −
sq

parameter. The output quadrature variances don’t approach a specific limit.

V +
out = (

1

V −sq
− 1) ε1 + 1 + V +

sig V −out =
V −sq

V −sq (1 − ε1) + ε1
(6.4)

The maximum fidelity, which can be obtained in all these variance combinations, is F

≈ 0.828, barely beating the, QND limit of 0.816.

When V −sq is small, all the signal is directed to D+, while the phase squeezing is

delivered to D−, (ε1 → 0). The latter is diverted to the output beam, (ε1 → 1) when V −
sq

fails to be extreme. The balancing of the transmittance of ε1 with the phase squeezing is

crucial in keeping fidelity at this maximum.

In contrast to case-1, the negative gain, g+ has an effect of anti-correlating the vacuum

noise and correlating the amplitude, V +
sq contribution to:

V +
ν (

√
1− ε1 − 2 g+

√
ε1 ε2)2 and V +

sq (2 g+

√

ε2 (1− ε1) +
√
ε1)2 (6.5)

Then, as ε2 = 0 in this case , both V +
sq and V +

ν limit the output to varying extent,
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depending on ε1 value.

→ V +
ν (

√
1− ε1)2 and → V +

sq (
√
ε1)2 (6.6)

The transfer coefficient for such an operation depends on the extent of phase squeezing.

It can only range from 1
2 at ε1 = 0, to 0 at V −sq = 0, a purely classical result.

Figure 6.3 shows the plot of maximum fidelity for a complete, biased entanglement,

polarisation teleportation system, as a function of V −
sq squeezing and operating in case-2.
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Figure 6.3: The optimal fidelity of biased entanglement scheme, in case-2, solid line. The plot

of a full QND-teleporter system fidelity is dotted line, while the double teleporter setup is shown

as dashed line. This case shows an almost constant and minute fidelity improvement to a QND

system at all squeezing values, while, surpassing a full teleporter up until 80 % squeezing.

6.3.3 Case-3 : V +
sq squeezing and g+ negative

With the amplitude modulator gain set to negative, the amplitude of the injected beam

can also be squeezed. Here, as the squeezing parameter approaches zero, ε2 → 1 and

ε1 → 0. The output variances become equal, (for unity input signal)

V +
out → V +

sig +
1

4
V −out → 5

4
(6.7)

The fidelity limit grows to :

F =
2

√

(1 + 5
4)2

=
8

9
(6.8)

Physically, what is occurring is that most of the signal is not detected, but is instead

lost to D− channel, and the little information that ends up in D+, is compensated for by

g+ gain, which is approaching infinity. So although a reasonable improvement in fidelity

is observed, the infinite squeezing along with infinite gain make this a rather unphysical

option.

Here, the correlation / anti-correlation of noise terms, due to the negative gain g+,

with the ε1 → 0 and ε2 → 1 has a different effect. The output variance is now limited by
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a unit of vacuum noise and the extent of V +
sq squeezing. The two terms of expression 6.5

reduce to:

→ V +
ν (1 − 0)2 and → V +

sq (∞ + 0)2 (6.9)

The information transfer coefficient for the extreme case of case-3 is a best result of

T+
out = 4

5 .

Figure 6.4 is again the plot of maximum fidelity for the complete BE polarisation

teleportation system in case-3 as a function of V +
sq squeezing, compared to the other two

schemes discussed in previous chapters.
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Figure 6.4: The optimal fidelity of biased entanglement scheme, in case-3, solid line. The plot of

a full QND-teleporter system fidelity is a dotted line, while the double teleporter setup is shown

as a dashed line. The case-3 has a modest improvement to a QND system after 50 % squeezing,

while again, beating a full teleporter up until 80 % squeezing.

6.4 Further improvements with vacuum squeezing

The three cases analysed in the previous section are not the final limits on how high the

fidelity of the recreated state can become. Naturally, as the asymmetric teleportation

scheme, (VSQ1 6= VSQ2), approaches the full teleporter utilising two squeezed beams, the

fidelity can in principle become unity. This is equivalent to optimising a full, double

teleporter for the vertical DC input, to be discussed later.

The entanglement introduced in the new, BE scheme, called biased entanglement [56],

differs from the maximally correlated EPR case, primarily because one of the beams, (V ±
v

vacuum), is not squeezed. Once the vacuum fluctuations variance is reduced below one,

the entanglement of the two beams created after beam splitter ε1, (figure 6.1), enables

perfect teleportation, hence a fidelity of one.

Below the three cases are analysed again, with amplitude or phase vacuum noise squeez-

ing.
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6.4.1 Case-1 with V +
v squeezed

Once vacuum noise squeezing variance, V +
v is introduced into the optimum fidelity analysis,

the output variances for the two quadratures become:

V +
out → V +

sig + V +
v V −out → 1

1 + V +
v

(6.10)

This shows that, by amplitude squeezing the noise, perfect state transfer can occur.

The fidelity limit is now unity as expected, F = 2√
(1 +1)(1 +1)

= 1. The information

transfer coefficient in this case also approaches one as T +
MAX = 1

1 +V +
v

. In the limit con-

sidered, this system reduces to a symmetric teleporter. (See “Complete cross comparison”

section).

6.4.2 Case-2 with no vacuum squeezing

Fidelity is not improved in this case by any further vacuum squeezing, being optimum at

V ±v = 1. This makes sense, as most of the squeezing compensation for the noise comes

from the balance of V −sq and ε1 parameters.

The information transfer coefficient can again take a range of values, but this time

the upper limit is determined by vacuum squeezing, T +
MAX = 1

1 +V +
v

. To keep fidelity

optimum, the squeezing must remain one, but if V +
v → 0, the information transfer can

grow, at a cost to fidelity.

6.4.3 Case-3 with V −
v squeezed

Finally, the variances of the outputs in this case are now:

V +
out → V +

sig +
V +

v

4
V −out → 1

V +
v

+
1

4
(6.11)

Again, a compromise must be made, while squeezing one vacuum quadrature, not to

increase the other in the process, because of the V +
v dependence. The optimum fidelity is

found when the noise phase quadrature, V −
v is squeezed to ≈ 0.395.

The value of the maximum fidelity is then not unity, but F = 4
9(
√

10−1) ≈ 0.961, which,

as I will show later, is an equivalent of a cloning limit for single quadrature detection.

The transfer coefficient for this system is T+
out = 1

1 + 1

4 V
−
v

It is a monotonically decreasing

function, which has its maximum value, T+
out = 1, where F=0, at perfect vacuum amplitude

squeezing. It decreases to T+
out ≈ 0.6126, at the optimum fidelity. Information transfer

can once again be seen to improve only at a cost to the fidelity.

Complete cross comparison

It should be pointed out that the curve of fidelity as a function of squeezing for a full, four

squeezer teleporter in the figures 6.2-6.4, (dashed line), could also be optimised for the

amplitude coded signal. This can be achieved in the similar manner as was done in this

chapter for BE teleportation scheme, and is in fact equivalent to the results of section 6.4.

This optimisation involves similar equations to the ones already introduced, only this

time both inputs are squeezed. A more in depth analysis is presented in Appendix B.7. If

the squeezing of the two beams is assumed symmetric and the beamsplitter transmissions
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adjusted at each squeezing parameter, then a much better fidelity curve is obtained. Two

cases can also be seen to emerge, limits of which are analysed in sections 6.4.1-6.4.3.

However only the biggest improvement fidelity curve is considered here. This, along with

the non optimised four squeezer case and the BE teleporter curve, is shown on figure 6.5.

The BE and optimised full teleporter schemes are seen to be equivalent up to 0.5, ( 3
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Figure 6.5: The optimised four squeezer teleporter (thick, dotted-dashed line), compared with

the optimised three squeezer case, the BE-teleporter scheme (solid line). The non optimised fi-

delity curve for the full teleporter is also shown (thin, dashed line). The two optimised systems

show comparable results at lower squeezing parameters, even though the full teleporter is more

demanding in resources.

dB) squeezing, after which the latter increased, as expected, up to ideal fidelity at perfect

squeezing.

The advantage of using the BE-teleporter setup is seen, as the scheme yields compa-

rable results, while using less resources than the four squeezed beams teleporter, while

acquiring lower squeezing parameters, within experimental reach.

6.5 Conclusion

In this chapter I have shown that if the preservation of the total quantum state, and

hence a good fidelity, is the objective of the polarisation teleportation, then an alternative

experimental design is required to the one proposed in chapter 5.

This new setup uses non local operations, namely entanglement, to surpass the oth-

erwise present FQND=
√

2
3 limit. The design uses less resources than a full teleporter,

containing only one squeezed, bright beam. It surpasses it in fidelity until V −
sq reduces to

≈ 0.1 (≈ 10 dB), a squeezing value which to date has not been achieved experimentally.

Additionally, by introducing vacuum fluctuations squeezing, the fidelity limit can be

increased further in special circumstances, as the regime of full teleporter, with two en-

tangled, bright beams is entered.
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It is clear from the above analysis that success of information transfer is not necessarily

linked to an improvement in fidelity, as poor signal, input-output overlap is compensated

for by a better phase noise overlap. A clear decision on what is most important to a

particular quantum protocol needs to be made before deciding which tools are to be used

when evaluating it. In fact for perfect information transfer the scheme of chapter 5, with

no second entanglement resource, is a sufficient solution and the BE teleporter setup

introduced above becomes an overkill.
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Chapter 7

The alternative cloning limit

7.1 Overview of this chapter

In this chapter I will introduce an idea analogous to that of the quantum cloning of

quadrature amplitudes.

First, the cloning analysis for the well known quadrature cloner will be outlined, where

two quadratures of a state are copied and measured. This includes a discussion of infor-

mation cloning limit. Following is the introduction of a special case of cloning, where

information resides on a single conjugate variable hence only one quadrature of the output

is measured.

An interesting fidelity limit, of F= 4
9(
√

10− 1), will be seen to reappear, from investi-

gation in chapter 6.

7.2 The standard cloning limit

7.2.1 The fidelity cloning limit

In contrast to its counterpart in the single particle regime [16, 57], cloning of continuous

variables [29] has only been investigated over the last few years. The linearity of quantum

mechanics demands that copies of conjugate observables of a state can’t be ideal, as

minimum noise has to be introduced in the cloning process, hence giving rise to an absolute

bound on the fidelity.

The Gaussian cloning machines are of greatest interest as they apply to the amplitude

and phase quadrature description, and experimentally realisable coherent states. They

are so called as they yield copies that are Gaussian distributions centred on the original

value.

47
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The question of optimal quantum cloning addresses a problem of to what extent can

the copies resemble the original, or what is the optimum tradeoff between the two variable

errors brought about when cloning. It was shown by Rottenberg et al [30] that the clones

obey Heisenberg like uncertainty relation, where the product of the first copy’s amplitude

variance with second copy’s phase variance remains bounded by ( h̄
2 )2.

The simplest demonstration of such a Gaussian cloner was proposed by Iblisdir et al

[44] and is now discussed.

√G a
in
 +  √(G - 1) ν

1

=

CLONE 1

CLONE 2

AMP
a
in

ν
2

50% BS

vacuum port 1

vacuum port 2

Figure 7.1: The optimum quantum Gaussian cloning machine, for complete two quadrature

copies.

Figure 7.1 shows a simple system, containing a phase insensitive amplifier, AMP, fol-

lowed by a classical beam splitter, BS. The input, field, âin, is analysed by considering the

amplifier’s transfer function, as was done for other protocols in section 2.5. An operator

âin, is mixed with the quantum noise field, ν̂†1, via the gain coefficient, G, as shown. The

beam splitter then divides the amplified beam into two outputs, chosen to be equal by

setting ε = 0.5, and adds further uncorrelated noise, ν̂2. To determine what is the best

possible fidelity of each copy, the output quadrature variances

V ±CLONE1 = V ±CLONE2 = V ±a
G

2
+ V ±ν1

(G− 1)

2
+

V ±ν2

2
(7.1)

are substituted into fidelity equation 2.3. To set the maximum possible fidelity in such a

process, (hence overall unity gain), a value of G = 2 is required, which gives F= 2
3 .

This consequence of the “no cloning theorem”, ensures that the two separate measure-

ments of the clones will not yield better knowledge about the input than direct measure-

ment of the state itself. F = 2
3 can be thought of, as on average, the number of times one

gets the correct “answer” about the original state, when taking a measurement of a clone.

The proof that this cloning limit is the upper bound1 and further discussion of the

limit’s importance are given in references [36, 44].

The signal to noise ratios of each clone can also be calculated.

SNR+
out =

2 SNR+
in

(2 + V +
ν2 + V +

ν1)
SNR−out =

2 SNR−in
(2 + 1

V −
ν2

+ 1
V −

ν1

)
(7.2)

These, at the agreed, shot noise level of vacuum inputs, (Vν = 1), are equal and given by

SNR±out = 1
2SNR

±
in. Hence the best clone will have its SNR halved in the process, so the

1for a coherent state |α〉
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standard, Gaussian cloning system is limited to a purely classical result.

7.2.2 The information and correlation cloning limits

An equivalent argument exists in the TV formalism, described by the transfer coefficient

and conditional variance in sections 2.7, 5.3 and 6.3. The idea is illustrated in figure 7.2.

In a protocol such as teleportation it is also possible to clone the signal but at a price

 Input

signal

+

-

port 1 port 2

Reciever

Sender

information

     leak
correlations

       leak 

Output

 signal

EPR
1 E

P
R
2

BS

EPR

classical channels

Figure 7.2: The teleportation setup with two taps at ports 1 and 2. Quantum correlation loss

occurs at port 1, and information loss at port 2. The cloning limits for the two TV parameters are

TLIM ≤ 1

2
and V LIM

cv ≥ 1, per quadrature.

of the information transfer or conditional variance. In an ideal teleportation protocol,

the input signal is mixed with EPR1 beam, and all information is masked completely by

the large noise statistics of the entangled beam. There is no detectable information in

the classical channel, and with ideal squeezing the conditional variance reduces to zero

while the information transfer can reach unity for each quadrature. This marks an ideal

teleportation as the second, EPR2 beam cancels all of the noise at the receiving station.

If some of the EPR1 beam is tapped-off at port 1, partial quantum correlations can

be used at the classical channel (somewhere other than the receiving station), to extract

partial information about the input. Therefore cloning of the signal takes place. However

the noise statistics of EPR1 are subsequently interfered with and reduced. When the signal

is mixed with this modified EPR1 beam at BS, it is no longer completely masked by the

EPR noise, and the correlations between EPR1 and EPR2 are degraded. Some variation

of the input signal can now be detected in the classical channel due to the loss of some

entanglement at port 1, so it is necessary that the noise penalty increases. There is now

a lower bound to the uncertainty of input reproduction and the value of the correlation

cloning limit is V LIM
cv = 1 (per single quadrature). Since the two TV parameters are

not independent of one another, the total transfer coefficient is also restricted to the well

known (unity gain) cloning limit of T ≤ 2
3 .

Alternatively, some of the EPR2 beam can also be tapped-off at port 2 and subse-

quently used in order to deduce some of the signal in the classical channel. This is once

again equivalent to cloning, however because the EPR2 beam has now been partially de-

tected, the complete cancellation of the EPR noise at the receiving station can’t take
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Figure 7.3: The two cloning regimes of the TV diagram, depending on the tap-off port. The

correlation cloning regime (dashed box), T ≤ 2

3
and Vcv ≥ 1. The information cloning regime

(solid box), T ≤ 1

2
and Vcv ≥ 1

2
, per quadrature. Examples of TV curves are given at three

squeezing values: VSQ = 0.5, 0.1, 0.001.

place, so the information transfer is reduced. The information transfer cloning limit is

TLIM = 1
2 (per single quadrature). The conditional variance in this case is also restricted

and increases from its ideal, zero value to Vcv ≥ 1
2 . Both of these TV cloning regimes are

shown on figure 7.3.

7.3 The single quadrature cloning limit

Optimum cloning is thought of as a restriction placed by the Heisenberg’s uncertainty

principle between two conjugate parameters being copied [30]. For a case of information

on a single quadrature, where only one of the conjugate observables is being measured

and copied it could be easy to make a misleading conclusion that there will not be such

a cloning limit. However the quantum mechanics still places a restriction on the fidelity

of such clones. This makes it impossible for a set of clone-measurements to determine the

original, input distribution with greater precision, (ie. smaller variance).

In the process of investigating the biased entanglement scheme in chapter 6, it became

apparent that for the special case of teleportation, of an input state carrying information

on one quadrature only, a different cloning process would be required. As a result of only

one quadrature being measured, all efforts of error suppression are biasing one variable

only. Therefore a new cloning limit, with a much higher, harder to beat fidelity emerges

in such a scenario and is now discussed.

The analog of a simple, single quadrature Gaussian “cloner” is shown on figure 7.4. It

squeezed vacuum port

√H ain + √(H - 1) ain
=

CLONE1

CLONE2

OPO
ain

νSQZ

50% BS

Figure 7.4: The single quadrature quantum cloner. H is the OPO gain.
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consists of a phase sensitive amplifier, or a nonlinear device called an optical parametric

oscillator, (OPO), [6, 13, 23, 24, 25]. It is followed by a phase sensitive beam splitter, BS,

with squeezed vacuum noise, injected in the dark port, ν̂SQZ . The transfer function of an

OPO shows that on output, the input field, âin, is correlated with its conjugate, â†in, via

the OPO gain constant, H, as shown.

Again, to ensure two equal copies, ε = 0.5. After passing through the beam splitter,

the variances of the output quadratures are:

V ±CLONE1 = V ±CLONE2 =
V ±a
2

(
√
H − 1 ±

√
H)2 +

V ±ν
2

(7.3)

Setting the gain to H = 9
8 is needed for maximum fidelity, (overall unity gain). The

minimum uncertainty state of input noise, where V +
ν = 1

V −ν
, is also assumed. This gives

a limiting fidelity of:

F → 2
√

(5
4 + 1

2V +
ν

)(2 + V +
ν

2 )

(7.4)

The function 7.4 reaches a maximum when vacuum phase quadrature squeezing becomes

V −ν =
√

5
8 , (so V +

ν =
√

8
5). Maximum fidelity of such a ”clone” is then 4

9(
√

10 − 1). This

is precisely the maximum fidelity value which could be obtained with vacuum squeezing

in the BE-teleporter scheme, when g+ was negative and V +
sq was perfectly squeezed. It

suggests that the regime 3 of sections 6.3.3 and 6.4.3, reduces to a cloner in this limit of

parameter values, and points to the reason why, unlike a teleporter, it is never able to

achieve a perfect reproduction of the input. More discussion of the cloning limits is given

in section 7.5.

An equivalent operation of to injecting squeezed vacuum into the unused port is to

instead insert two independent OPO’s in each output arm of the cloner. This is shown on

figure 7.5.

vacuum port

√H a
in
 +  √(H - 1) a

in

=

CLONE 1

CLONE 2

H1
a
in

ν

50% BS

H2

H3

Figure 7.5: Equivalent single quadrature quantum cloner design. H1, H2 and H3 are the gains

of the three OPOs.

The first OPO gain, H1, is then unrestricted, as the later, H2, (H3) gain in each

arm will be chosen in compensation, to give the best fidelity possible. Squeezing the

vacuum port ν̂, doesn’t improve the result, which still remains at the previous limit of F=
4
9(
√

10− 1).

The SNR+ of the individual amplitude quadrature clones is found to be:

SNR+
out =

2 SNR+
in

(2 + V +
ν )

(7.5)
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With optimised fidelity at V +
ν =

√

5
8 , the above expression reduces to SNR+

out =

5 SNR+
in

5 +
√

10
≈ 0.6125 SNR+

in. This is a greater value than the single quadrature average

SNR in the previous case, so it lies outside the classical regime.

The SNR of the summed quadrature of two cloned amplitude quadratures, X+
SUM =

X+
CLONE1 +X+

CLONE2, is always independent of the vacuum squeezing parameter and gives

SNR+
out = 1. The noise outputs of the phase and amplitude quadratures are very close

to the minimum uncertainty product. (The perfect fulfilment of the V +V − = 1 condition

requires unity fidelity which is forbidden by the no cloning theorem.) The implications of

these results are discussed in the next section.

7.4 Is this the optimum “cloner”?

In the standard cloning limit, the value of F= 2
3 was shown to be the best clone fidelity

possible using the fundamental commutation relations of the conjugate observables [44].

In the single quadrature case, no such analogy can be made, and hence the question of

whether the above scheme is an optimum one remains open. However there are arguments

suggesting this indeed is the case.

Firstly, the new approach is analogous to the standard “cloner” set-up, and it is hard

to imagine how the phase sensitive amplification and phase sensitive beam splitter com-

bination could be improved upon.

Secondly, the sum of signal to noise ratios, SNR+
out, of the two clones gives unity, and

the output noise is almost a minimum uncertainty state, indicating that the system as a

whole doesn’t introduce any external noise, which could somehow be cancelled.

However, although these are promising arguments, they don’t constitute a proof as

various fidelities, (and hence various combinations of V ±
out values), can yield the same

SNR+. This can be illustrated by noticing that the signal resides on amplitude quadrature

only, hence SNR+ is fixed by the size of the cloner’s input V +
a . However fidelity also

depends on the extent of the noise variance on the V −
a quadrature, and if this value

happens to be different to the assumed shot noise level of unity, fidelity will change, while

the SNR+ remains the same.

7.5 Equivalent information and correlation cloning limits ?

The cloning limit fidelity of F= 4
9(
√

10−1) can not be obtained in any of the three regimes

of squeezing, discussed in section 6.3, unless the entanglement is made less asymmetric by

introducing vacuum noise squeezing, (section 6.4).

In the case of ideal V +
sq squeezing and negative gain, the single quadrature cloning limit

is only just reached when the vacuum port becomes phase squeezed at V −
optimum ≈ 0.395, as

mentioned in section 6.4.3. At these parameter values, yielding optimum cloning fidelity,

the transfer coefficient and conditional variance are found numerically to be: T +
lim ≈ 0.6126

and Vcv
+
lim ≈ 0.6325.

The other case of ideal V −sq squeezing and positive gain, section 6.4.1, can reach a fidelity

of 4
9(
√

10 − 1) with a minimum threshold amplitude vacuum squeezing of V +
threshold ≈

0.7644. The resulting transfer coefficient and conditional variance information limits are

T+
lim ≈ 0.5668 and Vcv

+
lim ≈ 0.7644.

The limits of these two cases are not equal as the systems considered, case-1 and case-3

are physically different, the first reducing to a full teleporter while the latter to a cloner.
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Teleporter 2 teleporters QND-teleporter BE-teleporter

Fidelity 1
2 → 1

4 (classical) - 4
9 (
√

10− 1) (single quadrature cloning)

limits 2
3 → 4

9 (cloning) - 2
√

2
3 (ideal, no Vν squeezing)

1 → 1 (ideal)

√

2
3 (ideal) 1 (ideal, with Vν squeezing)

Regime 1 Regime 3

T
cloning
q T+

q = 1
2 T+

V = 1
2 T+

V =0.567 T+
V =0.613

(per quadrature) T−q = 1
2 T±H = 1

2 T±H = 1
2 T±H = 1

2

V
cloning

cv V +
cv = 1 V +

V cv =1 V +
V cv =0.764 V +

V cv =0.633

(per quadrature) V ±Hcv = 1 V ±Hcv =1 V ±Hcv =1 V ±Hcv =1

Table 7.1: This is a table summarising results for the three, polarisation teleportation schemes

in the text. Where cloning fidelity limits exist, T+
q and V +

cv are calculated for the set of relevant

parameters.

Both of these are first optimised to the best possible fidelity, which doesn’t regard the

T+
lim and Vcv

+
lim from the two systems on equal footing. The results in both cases are

more stringent than the requirements of the no cloning theorem for both quadratures, as

discussed in section 7.2.2.

By comparing the schemes discussed in previous chapters, the results of the cloning

limits are summarised in table 7.1. These are the two-quadrature teleporter, (section

2.5.3), the double polarisation teleporter, (section 4.3), the QND-teleporter, (section 5.3),

and the BE-teleporter setup, (sections 6.3 and 6.4). The table lists various fidelity limits

and the T+
lim and Vcv

+
lim for the appropriate parameters at the no cloning limit boundaries.

7.6 Conclusion

I have demonstrated the existence of another cloning limit and the found, corresponding

information and correlation cloning limits, for the special case of single quadrature input.

I also argued that although the fidelity limit, F= 4
9(
√

10 − 1), is not necessarily the

highest possible, there is a good indication that it is indeed, the absolute upper bound for

cloning a single quadrature measured state.
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Chapter 8

Future prospects

The field of experimental quantum optics in the continuous-variable regime has made

many significant advances in recent years. The development of its technology, readily al-

lowing production of optical entanglement from a multitude of different optical systems,

has resulted in the demonstration of many quantum communication protocols, includ-

ing the discussed quantum teleportation as well as quantum cryptography, entanglement

swapping and quantum secret sharing.

The quantum Stokes parameters offer a useful tool for the description of the polarisa-

tion of a light beam. The novel approach to quantum information processing that exploits

quantum continuous variables has stimulated interest in these non classical polarisation

states.

The formalism of quantum Stokes operators was recently used to describe the mapping

of the polarisation state of a light beam on to the spin variables of atoms in excited states,

[2, 22]. The correspondence between the algebras of the Stokes operators and the spin

operators enables an efficient transfer of quantum information from a freely propagating

optical carrier to a matter system. These developments show promise in designing a

quantum teleportation scheme of atomic states, a first step in the much anticipated matter

teleportation.

A successful generation of a light-atom interspecies entanglement would allow a de-

velopment of technology to transfer, store, exchange, and read-out quantum information

between photons and atoms. While photonic systems are ideal for information transmis-

sion, atomic systems are ideal as a storage medium. The ability to map the quantum state

of atoms using light and vice versa is hence an important step towards the realisation of

a quantum communication network.

There have so far been several proposals on interspecies entanglement. Examples of

these include: atomic entanglement via cavity QED, ions or atoms in traps and lattices and

the continuous variable light and atomic spin ensemble entanglement. In atomic ensemble

experiments, the quantum information is stored in the form of spin-states that can be
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interrogated at specific Larmor frequencies in a magnetic field. In the near future such

experiments will investigate the possibility of generating a novel macroscopic quantum

state, such as the Schrödinger cat state and macroscopical entanglement.

The shared EPR entanglement between the sender and the receiver allows some further

interesting applications to emerge.

In a non polarised beam, if the sender and receiver randomly decide to make a set

of measurements of either phase or amplitude, each time they simultaneously choose the

same quadrature their measurement results will agree, as their beams are entangled. This

string of results can be subsequently used as a key to encrypt information and any message

sent between the two parties can be made absolutely unbreakable as there is no way for

an external agent to deduce the quantum key. The message is encoded in the correlation

between the transmitted string and the key. The sring of qubits itself, carries no infor-

mation where the key is unknown to the eavesdropper. This protocol is called quantum

cryptography [41].

The proposal to apply the bright polarisation-entangled beams to a continuous-variable

quantum cryptography protocol, [31, 41], will avoid using the experimentally costly local

oscillator techniques. The advantages of using continuous-variable polarisation, such as

the intense sources of EPR entanglement and efficient direct detection, will open way to

a secure quantum communication with bright light.

A possibility of creating a quantum channel able to convey information to several

receivers is also an attractive prospect. A multiuser quantum channel would allow simul-

taneous distribution of “cloned”, (and hence only partial) pieces of information to several

remote receivers, and is termed telecloning [38].

To teleport a quantum state precisely from one sender to many receivers one at the

time was first proposed by using multiparticle entanglement state, [37]. Another method

involves building a quantum device using continuous variable switch teleportation, first

suggested by [18]. Such scheme relies on an EPR entanglement produced by mixing a pair

of two-mode (or polarisation) squeezed beams, shared by the sender and receivers. By

changing the squeezed component of one of the two polarised beams between amplitude

and phase, or by adjusting the relative phase angle θ between the horizontal and vertical

modes, the original input can be conditionally teleported to either of the two output

stations, alternatively, [59].

Overall, the field of quantum information is just emerging, with experimental solutions

to the proposed protocols being developed at a rapid speed all around the world. At the

frontier of the field is the continuous wave quantum optics regime, and especially the

study of non classical polarisation states of light. The promising results outlined above,

so far predict a bright future for quantum computing, quantum teleportation, quantum

cryptography and many other non classical schemes which are more practical and easier

to manipulate when applied to many particle systems.

This thesis is one of the first steps taken towards characterisation and analysis of the

experimental aspects of this area and in particular in the context of the teleportation

protocols which lie at the heart of quantum information processing.

I am personally looking forward with anticipation towards the accumulation of knowl-

edge and rapid progress in the not so distant future of this field. It is my true belief that

a completely new level of logic and problem solving is on the verge of appearing in our

lives, along side the quantum information revolution.



Appendix A

Matlab Programs

Below are the two Matlab programs which were used to generate the Stokes TV diagrams,

for double teleporter and QND-teleporter setups.

A.1 The double teleporter

% Plot of 4 squeezer teleportation as function of gains

% However here the Stoke parameters are characterised, not

quadratures!

clear;

VHpin=5; ’Signal + Noise quadrature inputs’;

VHmin=5;

VVpin=5;

VVmin=5;

NHpin=1; ’this is the vacuum noise on the SIGNAL, not the squeezed

beam!’;

NHmin=1;

NVpin=1;

NVmin=1;

’************** VERTICAL DC carrier polarisation info !

****************’;

Ah=1/sqrt(3); % DC coherent amplitudes, normalized to one

Av=sqrt(1-Ah^2);

TH=pi/4; % THETA, the phase angle between the two!

SQ1=.3; % Squeezing variances for the four beams

SQ2=.6;

SQ3=.2;

SQ4=.5;

V1m=1/SQ1; % These are the Vertical teleporter squeezed

beams,

V1p=SQ1; % minimum uncertainty states

V2m=1/SQ2;

V2p=SQ2;

V3m=1/SQ3; % These are the Horizontal teleporter squeezed

beams,

V3p=SQ3; % minimum uncertainty states

V4m=1/SQ4;

V4p=SQ4;
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% These are all the possible correlations due to the modulation

BEFORE, between 1 or -1

X1vCX1hIN=0;

X2vCX2hIN=0;

X1vCX2hIN=0;

X2vCX1hIN=0;

X1vCX2vIN=0;

X1hCX2hIN=0;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

’((((((((((((((((TELEPORT as funct of gain h))))))))))))))))’;

Nc=1;’transmission efficiencies, assumed ideal’;

Nd=1;

Ne=1;’detection efficiency’;

hm = -1*linspace(0,2,600);’gain arrays, always opposite sign’;

hp = 1*linspace(0,2,600);

Shm = hm.*hm; ’this is gain squared array, to make

calculations easier’;

Shp = hp.*hp;

’below is calculated from Vout with Vin = Nin, ie the noise only’;

NHmout=0.5*(sqrt(Nd)+hm*sqrt(Ne*Nc)).*(sqrt(Nd)+hm*sqrt(Ne*Nc))*V4m +

...

0.5*(sqrt(Nd)-hm*sqrt(Ne*Nc)).*(sqrt(Nd)-hm*sqrt(Ne*Nc))*V3p +

Shm*Ne*NHmin+...

(1-Nd)+Shm*(1-Nc*Ne);

NHpout=0.5*(sqrt(Nd)+hp*sqrt(Ne*Nc)).*(sqrt(Nd)+hp*sqrt(Ne*Nc))*V4p +

...

0.5*(sqrt(Nd)-hp*sqrt(Ne*Nc)).*(sqrt(Nd)-hp*sqrt(Ne*Nc))*V3m +

Shp*Ne*NHpin+...

(1-Nd)+Shp*(1-Nc*Ne);

NVmout=0.5*(sqrt(Nd)+hm*sqrt(Ne*Nc)).*(sqrt(Nd)+hm*sqrt(Ne*Nc))*V2m +

...

0.5*(sqrt(Nd)-hm*sqrt(Ne*Nc)).*(sqrt(Nd)-hm*sqrt(Ne*Nc))*V1p +

Shm*Ne*NVmin+...

(1-Nd)+Shm*(1-Nc*Ne);

NVpout=0.5*(sqrt(Nd)+hp*sqrt(Ne*Nc)).*(sqrt(Nd)+hp*sqrt(Ne*Nc))*V2p +

...

0.5*(sqrt(Nd)-hp*sqrt(Ne*Nc)).*(sqrt(Nd)-hp*sqrt(Ne*Nc))*V1m +

Shp*Ne*NVpin+...

(1-Nd)+Shp*(1-Nc*Ne);
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’the TRANSFER function for the quadratures in the two teleporters’;

’the atteniuations, etc are assumed to have equall values...’;

VHmout=0.5*(sqrt(Nd)+hm*sqrt(Ne*Nc)).*(sqrt(Nd)+hm*sqrt(Ne*Nc))*V4m +

0.5*(sqrt(Nd)...

-hm*sqrt(Ne*Nc)).*(sqrt(Nd)-hm*sqrt(Ne*Nc))*V3p +

Shm*Ne*VHmin+(1-Nd)+Shm*(1-Nc*Ne);

VHpout=0.5*(sqrt(Nd)+hp*sqrt(Ne*Nc)).*(sqrt(Nd)+hp*sqrt(Ne*Nc))*V4p +

0.5*(sqrt(Nd)...

-hp*sqrt(Ne*Nc)).*(sqrt(Nd)-hp*sqrt(Ne*Nc))*V3m +

Shp*Ne*VHpin+(1-Nd)+Shp*(1-Nc*Ne);

VVmout=0.5*(sqrt(Nd)+hm*sqrt(Ne*Nc)).*(sqrt(Nd)+hm*sqrt(Ne*Nc))*V2m +

0.5*(sqrt(Nd)...

-hm*sqrt(Ne*Nc)).*(sqrt(Nd)-hm*sqrt(Ne*Nc))*V1p +

Shm*Ne*VVmin+(1-Nd)+Shm*(1-Nc*Ne);

VVpout=0.5*(sqrt(Nd)+hp*sqrt(Ne*Nc)).*(sqrt(Nd)+hp*sqrt(Ne*Nc))*V2p +

0.5*(sqrt(Nd)...

-hp*sqrt(Ne*Nc)).*(sqrt(Nd)-hp*sqrt(Ne*Nc))*V1m +

Shp*Ne*VVpin+(1-Nd)+Shp*(1-Nc*Ne);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

’Defining the INPUT Stoke variances’;

VS1in = Ah^2*VHpin + Av^2*VVpin - 2*Ah*Av*(X1vCX1hIN); ’These include

correlations’;

VS2in = Ah^2*(cos(TH))^2*VVpin+Av^2*(cos(TH))^2*VHpin+Ah^2*(sin(TH))^2*...

VVmin+Av^2*(sin(TH))^2*VHmin+2*Ah*Av*sin(TH)*cos(TH)*(X2vCX1hIN)-...

2*Ah*Av*sin(TH)*cos(TH)*(X1vCX2hIN)+2*Ah*Av*cos(TH)*cos(TH)*...

(X1vCX1hIN)-2*Ah*Av*sin(TH)*sin(TH)*(X2vCX2hIN)+2*Ah^2*sin(TH)*...

cos(TH)*(X1vCX2vIN)-2*Av^2*sin(TH)*cos(TH)*(X1hCX2hIN);

VS3in = Ah^2*(cos(TH))^2*VVmin+Av^2*(cos(TH))^2*VHmin+Ah^2*(sin(TH))^2*...

VVpin+Av^2*(sin(TH))^2*VHpin+2*Ah*Av*sin(TH)*cos(TH)*(X1vCX2hIN)-...

2*Ah*Av*sin(TH)*cos(TH)*(X2vCX1hIN)-2*Ah*Av*cos(TH)*cos(TH)*...

(X2vCX2hIN)+2*Ah*Av*sin(TH)*sin(TH)*(X1vCX1hIN)+2*Av^2*sin(TH)*...

cos(TH)*(X1hCX2hIN)-2*Ah^2*sin(TH)*cos(TH)*(X1vCX2vIN);

%INPUT Stokes parameters Noise

NS1in = Ah^2*NHpin + Av^2*NVpin; ’no correlations for

noise!’;

NS2in =

Ah^2*(cos(TH))^2*NVpin+Av^2*(cos(TH))^2*NHpin+Ah^2*(sin(TH))^2*NVmin+...
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Av^2*(sin(TH))^2*NHmin;

NS3in =

Ah^2*(cos(TH))^2*NVmin+Av^2*(cos(TH))^2*NHmin+Ah^2*(sin(TH))^2*NVpin+...

Av^2*(sin(TH))^2*NHpin;

X1vCX1hOUT = X1vCX1hIN* hp.*hp *Ne; % output correlations, if any

X2vCX2hOUT = X2vCX2hIN* hm.*hm *Ne;

X1vCX2hOUT = X1vCX2hIN* abs(hp.*hm) *Ne;

X2vCX1hOUT = X2vCX1hIN* abs(hp.*hm) *Ne;

X1vCX2vOUT = X1vCX2vIN* abs(hp.*hm) *Ne;

X1hCX2hOUT = X1hCX2hIN* abs(hp.*hm) *Ne;

’these are the Stoke OUTPUTS after the TELEPORTERS, ie 4 squeezers!’;

VS1out = Ah^2*VHpout + Av^2*VVpout - 2*Ah*Av*(X1vCX1hOUT);

VS2out = Ah^2*(cos(TH))^2*VVpout+Av^2*(cos(TH))^2*VHpout+Ah^2*(sin(TH))^2*...

VVmout+Av^2*(sin(TH))^2*VHmout+2*Ah*Av*sin(TH)*cos(TH)*...

(X2vCX1hOUT)-2*Ah*Av*sin(TH)*cos(TH)*(X1vCX2hOUT)+2*Ah*Av*...

cos(TH)*cos(TH)*(X1vCX1hOUT)-2*Ah*Av*sin(TH)*sin(TH)*(X2vCX2hOUT)...

+2*Ah^2*sin(TH)*cos(TH)*(X1vCX2vOUT)-2*Av^2*sin(TH)*cos(TH)*...

(X1hCX2hOUT);

VS3out = Ah^2*(cos(TH))^2*VVmout+Av^2*(cos(TH))^2*VHmout+Ah^2*(sin(TH))^2*...

VVpout+Av^2*(sin(TH))^2*VHpout+2*Ah*Av*sin(TH)*cos(TH)*...

(X1vCX2hOUT)-2*Ah*Av*sin(TH)*cos(TH)*(X2vCX1hOUT)-2*Ah*Av*...

cos(TH)*cos(TH)*(X2vCX2hOUT)+2*Ah*Av*sin(TH)*sin(TH)*(X1vCX1hOUT)...

+2*Av^2*sin(TH)*cos(TH)*(X1hCX2hOUT)-2*Ah^2*sin(TH)*cos(TH)*...

(X1vCX2vOUT);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Stokes Noise on OUTPUT

NS1out = Ah^2*NHpout + Av^2*NVpout;

NS2out = Ah^2*(cos(TH))^2*NVpout+Av^2*(cos(TH))^2*NHpout+Ah^2*(sin(TH))^2...

*NVmout+Av^2*(sin(TH))^2*NHmout;

NS3out = Ah^2*(cos(TH))^2*NVmout+Av^2*(cos(TH))^2*NHmout+Ah^2*(sin(TH))^2...

*NVpout+Av^2*(sin(TH))^2*NHpout;

’Now find three transfer coefficients’;

TS1=(VS1out./NS1out-1)./(VS1in/NS1in-1);
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TS2=(VS2out./NS2out-1)./(VS2in/NS2in-1);

TS3=(VS3out./NS3out-1)./(VS3in/NS3in-1);

% below are the correlations of the input-output Stokes calculated in

Mathematica

% These are used to fing conditional variance of each parameter

CORsqr1 = hp.^2*Ne*(Ah^2*VHpin + Av^2*VVpin - 2*Ah*Av* X1vCX1hIN )^2;

CORsqr2 = (1/4)*Ne*(-Av^2*hm*VHmin + Av^2*hp*VHpin - Ah^2*hm*VVmin +...

Ah^2*hp*VVpin + 2*Ah*Av*hp* X1vCX1hIN + 2*Ah*Av*hm* X2vCX2hIN +...

(Av^2*(hm*VHmin+hp*VHpin) + Ah^2*(hm*VVmin+hp*VVpin) +...

2*Ah*Av*(hp*X1vCX1hIN - hm*X2vCX2hIN))*cos(2*TH) + (hm -...

hp)*(Av^2*X1hCX2hIN + Ah*Av*(X1vCX2hIN - X2vCX1hIN) - Ah^2 *...

X1vCX2vIN)*sin(2*TH)).^2;

CORsqr3 = (1/4)*Ne*(Av^2*hm*VHmin - Av^2*hp*VHpin + Ah^2*hm*VVmin -...

Ah^2*hp*VVpin - 2*Ah*Av*hp* X1vCX1hIN - 2*Ah*Av*hm* X2vCX2hIN +...

(Av^2*(hm*VHmin+hp*VHpin) + Ah^2*(hm*VVmin+hp*VVpin) +...

2*Ah*Av*(hp*X1vCX1hIN - hm*X2vCX2hIN))*cos(2*TH) + (hm -...

hp)*(Av^2*X1hCX2hIN + Ah*Av*(X1vCX2hIN - X2vCX1hIN) - Ah^2 *...

X1vCX2vIN)*sin(2*TH)).^2;

% conditional variances

B1=CORsqr1./VS1in;

B2=CORsqr2./VS2in;

B3=CORsqr3./VS3in;

CV1 = (VS1out-B1);

CV2 = (VS2out-B2);

CV3 = (VS3out-B3);

% This is the alternative method of finding conditional variance.

% It is a function of the above transfer coefficients and both

evatuations

% prove to be equal

C1=(1-TS1).*NS1out; ’This is still true for most symmetric cases,

correlations or none!’;

C2=(1-TS2).*NS2out;

C3=(1-TS3).*NS3out;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

’(((((((((((((((((((((((((((( PLOT))))))))))))))))))))))))))))’;

m1 = 1+0*linspace(0,3,300);

n1 = linspace(0,3,300);

plot(n1,m1,’k.’); % here the horizontal axis is plotted

m2 = linspace(0,10,500);

n2 = .5+0*linspace(0,3,500);
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hold on;

plot(n2,m2,’k.’); % here the vertical axis is plotted

AXIS([0 1 0 2])

plot(TS3, CV3, ’r-’); % here a chosen pair of parameters T and CV

for either

YLABEL(’CV’); % of the 3 Stokes is plotted.

XLABEL(’T’);

zoom on;
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A.2 The QND-teleporter program

% Plot of teleportation and QND schemes as function of gains

% Stoke parameters are characterised, (not quadratures!)

clear;

VHpin=10; ’Signal + Noise quadrature inputs’;

VHmin=10;

VVpin=10;

NHpin=1; ’this is the vacuum noise on the SIGNAL, not the squeezed

beam!’;

NHmin=1;

NVpin=1;

’************** VERTICAL DC carrier polarisation info ! ’;

Av=1; % amplitude normalised to one

TH= pi/1; % THETA, the phase angle between the two!

SQ2=.4; % Squeezing variances for the three beams

SQ3=.2;

SQ4=.7;

V2p=SQ2; % This is SQ3, QND beam in the text

V3p=SQ3; % These are the teleporter squeezed beams,

V3m=1/SQ3; % minimum uncertainty states

V4p=SQ4;

V4m=1/SQ4;

’These are the correlations due to the modulation, either 1 or -1 !!’;

X1hCX2hIN=0;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

’((((((((((((((((TELEPORT as funct of gain h))))))))))))))))’;

Nc=1;’transmission efficiencies, assumed ideal’;

Nd=Nc;

Ne=Nc;’detection efficiency’;

hm = -1*linspace(0,2.2,300);’gain arrays, always opposite sign’;

hp = linspace(0,2.2,300);’’

’below is calculated from Vout with Vin = Nin, ie the noise only’;

NHmout=0.5*(sqrt(Nd)+hm*sqrt(Ne*Nc)).*(sqrt(Nd)+hm*sqrt(Ne*Nc))*V4m +...

0.5*(sqrt(Nd)-hm*sqrt(Ne*Nc)).*(sqrt(Nd)-hm*sqrt(Ne*Nc))*V3p + ...

Ne*NHmin+(1-Nd)+(1-Nc*Ne);
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NHpout=0.5*(sqrt(Nd)+hp*sqrt(Ne*Nc)).*(sqrt(Nd)+hp*sqrt(Ne*Nc))*V4p +...

0.5*(sqrt(Nd)-hp*sqrt(Ne*Nc)).*(sqrt(Nd)-hp*sqrt(Ne*Nc))*V3m + ...

Ne*NHpin+(1-Nd)+(1-Nc*Ne);

’the TRANSFER function for the quadratures in the two teleporters’;

’the attenuations, etc are assumed to have equal values’;

VHmout=0.5*(sqrt(Nd)+hm*sqrt(Ne*Nc)).*(sqrt(Nd)+hm*sqrt(Ne*Nc))*V4m +...

0.5*(sqrt(Nd)-hm*sqrt(Ne*Nc)).*(sqrt(Nd)-hm*sqrt(Ne*Nc))*V3p + ...

Ne*VHmin+(1-Nd)+(1-Nc*Ne);

VHpout=0.5*(sqrt(Nd)+hp*sqrt(Ne*Nc)).*(sqrt(Nd)+hp*sqrt(Ne*Nc))*V4p +...

0.5*(sqrt(Nd)-hp*sqrt(Ne*Nc)).*(sqrt(Nd)-hp*sqrt(Ne*Nc))*V3m + ...

Ne*VHpin+(1-Nd)+(1-Nc*Ne);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

’((((((((((((((((QND as funct of gain h))))))))))))))))’;

Vdet=1; ’detection loss noise’;

Vmodm=1; ’modulator noise’;

nm=Nc; ’electronic transfer efficiency’;

nd=Nc; ’signal detection efficiency’;

G=linspace(0,2.5, 600);’the in loop gain of QND’;

’transfer of the signal’;

VVpout = nm*((nd*(VVpin) + (1-nd)*Vdet)*G.^2) + V2p + (1-nm)*Vmodm;

NVpout = nm*((nd*(NVpin) + (1-nd)*Vdet)*G.^2) + V2p + (1-nm)*Vmodm;

’Conditional variance’;

Vqq = VVpout - nm*nd*G.^2*(VVpin);

’Transfer coefficient for signal’;

Tss=nd*nm*G.^2*NVpin./(nm*((1-nd)*G.^2*Vdet + V2p + nd*G.^2*NVpin) +

(1-nm)*Vmodm);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

X1hCX2hOUT = X1hCX2hIN* abs(hm.*hp) *Ne; % output correlations, if any

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

’((((((((((((((((Defining the Stoke variances))))))))))))))))’;

’these are the Stoke INPUTS before the TELEPORTER’;

VS1in = Av^2*VVpin; ’These include correlations’;
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VS2in = Av^2*(cos(TH))^2*VHpin+Av^2*(sin(TH))^2*VHmin-

2*Av^2*sin(TH)*cos(TH)*...

(X1hCX2hIN);

VS3in = Av^2*(cos(TH))^2*VHmin+Av^2*(sin(TH))^2*VHpin+

2*Av^2*sin(TH)*cos(TH)*...

(X1hCX2hIN);

NS1in = Av^2*NVpin; ’no correlations for noise!’;

NS2in = Av^2*(cos(TH))^2*NHpin + Av^2*(sin(TH))^2*NHmin;

NS3in = Av^2*(cos(TH))^2*NHmin + Av^2*(sin(TH))^2*NHpin;

’these are the Stoke OUTPUTS after the TELEPORTER, ie 3 squeezers!’;

VS1out = Av^2*VVpout;

VS2out = Av^2*(cos(TH))^2*VHpout + Av^2*(sin(TH))^2*VHmout -

2*Av^2*sin(TH)...

*cos(TH)*(X1hCX2hOUT);

VS3out = Av^2*(cos(TH))^2*VHmout + Av^2*(sin(TH))^2*VHpout +

2*Av^2*sin(TH)...

*cos(TH)*(X1hCX2hOUT);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Stokes

Noise on OUTPUT

NS1out = Av^2*NVpout;

NS2out = Av^2*(cos(TH))^2*NHpout+Av^2*(sin(TH))^2*NHmout;

NS3out = Av^2*(cos(TH))^2*NHmout+Av^2*(sin(TH))^2*NHpout;

’Now find three Stokes transfer coefficients’;

TS1=(VS1out./NS1out-1)./(VS1in/NS1in-1);

TS2=(VS2out./NS2out-1)./(VS2in/NS2in-1);

TS3=(VS3out./NS3out-1)./(VS3in/NS3in-1);

% below are the correlations of the input-output Stokes calculated in

Mathematica

% These are used to fing conditional variance of each parameter

CORv1 = nm*nd*(G.^2)*VVpin^2;

CORv2 = (Ne/4)*(-(Av^2)*hm*VHmin + (Av^2)*hp*VHpin + (Av^2)*(hm*VHmin...

+ hp*VHpin)*cos(2*TH) + (Av^2)*(hm - hp)* X1hCX2hIN *sin(2*TH)).^2;

CORv3 = (Ne/4)*((Av^2)*hm*VHmin - (Av^2)*hp*VHpin + (Av^2)*(hm*VHmin...

+ hp*VHpin)*cos(2*TH) + (Av^2)*(hm - hp)* X1hCX2hIN *sin(2*TH)).^2;

% conditional variances

CV1 = (VS1out-CORv1./VS1in);

CV2 = (VS2out-CORv2./VS2in);
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CV3 = (VS3out-CORv3./VS3in);

% This is the alternative method of finding conditional variance.

% It is a function of the above transfer coefficients and both

evatuations

% prove to be equal

C1 = (1-TS1).*NS1out;

C2 = (1-TS2).*NS2out;

C3 = (1-TS3).*NS3out;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

’(((((((((((((((((((((((((((( PLOT))))))))))))))))))))))))))))’;

m1 = 1+0*linspace(0,3,300);

n1 = linspace(0,3,300);

plot(n1,m1,’k.’); % here the horizontal axis is plotted

m2 = linspace(0,10,500);

n2 = .5+0*linspace(0,3,500);

hold on;

plot(n2,m2,’k.’); % here the vertical axis is plotted

AXIS([0 1 0 2])

plot(TS3, CV3, ’r-’); % here a chosen pair of parameters T and CV

for either

YLABEL(’CV’); % of the 3 Stokes is plotted.

XLABEL(’T’);

zoom on;

% NOTE: The T1 and CV1 are better visualised on the scheme

% outlined in Chapter 5.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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A.3 Fidelity optimisation code

Below is the code for generating maximum fidelity values by optimising the parameters in

the biased entanglement scheme. It demonstrates the approach for a given range of regime

1, which was repeated for the entire parameter spectrum. It is followed by the retieving

and plotting code.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Program for finding the optimum fidelity for a given squeezing parameter

% Positive g+ case

% Phase squeezing (regime 1)

clear

VamVec = 0.1:.006:.3; % Range of squeezing

V3 = VamVec; % vector to be saved to file

% Due to the limited computational time and memory I had to conduct the

% calculation in various ranges of parameters. The optimum fidelity regions

% for each squeezing parameter were first estimated using contour plots in

% Mathematica.

N = 0.2:.0025:.45; % BS1 - epsilon1 chosen optimum range

E = 0.11:.0009:.2; % BS2 - epsilon2 chosen optimum range

% Looping over all the V squeezing, E and N values

for i = 1:length(VamVec)

Vap = 1/VamVec(i);

for j = 1:length(E)

e = E(j);

for k = 1:length(N)

n = N(k);

FidelityPosGain1(j,k) = (2*((-1+e).*(-1+(-1+Vap)*e.*(n-1)...

+n-Vap*n)).^(1/2))./((((-2 + 2*(Vap-1)*e.*(n-1) + n - ...

Vap*n).*(-3 + n - Vap*n - 2*(1-Vap)*((e-1).*(n-1).*e.*n).^(1/2)...

+ (3-2*n+Vap*(2*n-1)).*e))).^(1/2));

end

end

FNMaxR(i) = max(max(FidelityPosGain1));

% here maximum fidelity value is found in the matrix

[x,y]=find(FNMaxR(i)==FidelityPosGain1);

% the corresponding BS transmittivities are found and put into a matrix
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eANDn(i,1) = E(x(1)); % first column = E values

eANDn(i,2) = N(y(1)); % second column = N values

end

FNMaxR3 = FNMaxR;

eANDn3 = eANDn;

save Data3 FNMaxR3 V3 eANDn3 % the results of optimisation are saved

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% The program for retrieving and plotting the optimal fidelity data

clear;

load Data3 V3 FNMaxRneg3; % retrieve data from the files

FNM = FNMaxRneg6; % the optimal fidelity values

Vsq = V6; % the corresponding variances of the squeezed beam

SQv=1; % vacuum squeezing parameter

’((((((((((((((((TELEPORT as funct of gain h))))))))))))))))’;

SQa=Vsq; ’the squeezing parameter, smaller, the better!’;

SQb=SQa;

Vam=SQa;

Vap=1./SQa;

Vbm=SQb;

Vbp=1./SQb;

Vinm=1;

Vinp=1; ’noise + signal’;

Vvm=SQv; ’quantum noise, can be squeezed!!’;

Vvp=1/SQv;

N=0.5; ’beam splitter ratio’;

Nc=1; ’transmission efficiencies’;

Nd=1;
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Ne=1; ’detection efficiency’;

hm = 1; % fixed unity gains;

hp = -1;

%the TRANSFER function of the Biased Entanglement teleporter

Voutm=0.5*(sqrt(Nd)+hm*sqrt(Ne*Nc))*(sqrt(Nd)+hm*sqrt(Ne*Nc))*Vam + ...

0.5*(sqrt(Nd) - hm*sqrt(Ne*Nc))*(sqrt(Nd)-hm*sqrt(Ne*Nc))*Vbp + Ne*Vinm...

+ (1-Nd) + (1-Nc*Ne);

Voutp=0.5*(sqrt(Nd)+hp*sqrt(Ne*Nc))*(sqrt(Nd)+hp*sqrt(Ne*Nc))*Vap + ...

0.5*(sqrt(Nd) - hp*sqrt(Ne*Nc))*(sqrt(Nd)-hp*sqrt(Ne*Nc))*Vbm + Ne*Vinp

+ (1-Nd) + (1-Nc*Ne);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

’(((((((((((((((((((((((((((( FIDELITY))))))))))))))))))))))))))))’;

FID = (2./((Voutm + 1).*(1 + Voutp)).^(1/2));

% single teleporter fidelity for the Horizontal fluctuations.

TotFID = FID.* FNM;

% 3-sqz OPTIMISED system, the above fidelity times the optimal Vertical value

’(((((((((((((((((((((((((((( PLOT))))))))))))))))))))))))))))’;

plot(Vsq, TotFID, ’r-’); % optimised system - 3sqz

hold on;

plot(Vsq, FID*sqrt(2/3), ’b-’); % system with perfect QND, 2sqz

plot(Vsq, FID.^2, ’g-’); % 4sqz, NON optimal system

zoom on;

axis([0,1,0.2,1])

YLABEL(’Fidelity’);

XLABEL(’Variance of the squeezed quadrature’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This procedure was repeated for the entire Vsqueezed range,

% and the three regimes
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Appendix B

The supplement of full

mathematical expressions

In this appendix, full mathematical expressions derived on Mathematica, which did not

fit in the thesis text, will be listed.
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B.1 (a) ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **
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variances, the full expressions (eq 2.1)

B.1 (b) Reference to section 2.5.3

Full expressions contain the transmission Hhc, hd L and detection HheL efficiency terms.
The vacuum inputs are already assumed to be Vv

≤ = 1.
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** ** ** ** ** ** ** ** ** ** ** ** **

These are the Stokes cross-correlation  expressions:»< in out>»2

the input variances VHpin = V+Hnotation

and input quadratures XHpin = X+Hnotation

Ne  =  all detection and transmission efficiencies, assumed symmetric for both 

       teleporters 

The cross correlated classical terms notation: XHpinXVpin = < X+H  X  >+
V

»< S1in  S1out > »2 = l+
2 Ne IaH

2
VHpin +aV

2
VVpin - 2aH aV  XHpinXVpinM

2

»< S2in  S2out > »2 =
1
ÅÅÅÅ
4
Ne I-aV

2
l- VHmin +aV

2
l+ VHpin -aH

2
l- VVmin +aH

2
l+ VVpin +

2aH aV l- XHminXVmin + 2aH aV l+ XHpinXVpin +

IaV
2 H l- VHmin + l+ VHpinL + aH

2

H l- VVmin + l+ VVpinL +

aH aV H-2 l- XHminXVmin + 2 l+ XHpinXVpinLMCos@2 qD +

H l- - l+LIaV
2
XHminXHpin +aH aV HXHminXVpin - XHpinXVminL -aH

2
XVminXVpinM Sin@2 qDM

2

»< S3in  S3out > »2 =
1
ÅÅÅÅ
4
Ne IaV

2
l- VHmin -aV

2
l+ VHpin +aH

2
l- VVmin -aH

2
l+ VVpin -

2aH aV l- XHminXVmin - 2aH aV l+ XHpinXVpin +

IaV
2 H l- VHmin + l+ VHpinL +aH

2

H l- VVmin + l+ VVpinL +

aH aV H-2 l- XHminXVmin + 2 l+ XHpinXVpinLMCos@2 qD +

H l- - l+L IaV
2
XHminXHpin +aH aV HXHminXVpin - XHpinXVminL -aH

2
XVminXVpinMSin@2 qDM

2

These are the Stokes CONDITIONAL VARIANCES for the double teleporter scheme

when the four squeezing parameters and non symmetric.
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1 - 2 I-1 +aH
2M SQ2 + 2aH

2
SQ4

TS2 =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

I1 + 2aH
2 HSQ2 - SQ4L + 2 SQ4M Cos@qD2 + I1 + 2aH

2 HSQ1 - SQ3L + 2 SQ3M Sin@qD2

TS3 =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

I1 + 2aH
2 HSQ1 - SQ3L + 2 SQ3M Cos@qD2 + I1 + 2aH

2 HSQ2 - SQ4L + 2 SQ4M Sin@qD2

** ** ** ** ** ** ** ** ** ** ** ** **B.3 (a) Reference to section 4.3

** ** ** ** ** ** ** ** ** ** **

These are the Stokes TRANSFER COEFFICIENTS for the double teleporter scheme

when the four squeezing parameters and non symmetric.

      

       
     

All efficiencies are assumed ideal for both teleporters

Unity gain is assumed for compact, analytical solution
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These are the Stokes TRANS
���������������
	���	
����������������������	
��	������������
�
	��
������� �
!�"

S1 and S3, in the QND-teleporter scheme.

�$#�#�%
����&�'�&(%���'�&�%�)���"�%���)�)�*�+
%��,&���%���#.-

Vcv
S2

= -
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 SQ3 SQ4

 

HH1 + SQ3 SQ4 + 2 l+ H-1 + SQ3 SQ4L + l+
2 H1 + SQ3 SQ4LL H-SQ3 - SQ4 + HSQ3 - SQ4L Cos@2 qDLL

T
S2

= H2 l+
2 SQ3 SQ4Lê

HSQ4 H1 + SQ3 SQ4 + 2 l+ H-1 + SQ3 SQ4L + l+
2 H1 + SQ3 H2 + SQ4LLL Cos@qD2 +

SQ3 H1 + SQ3 SQ4 + 2 l+ H-1 + SQ3 SQ4L + l+
2 H1 + H2 + SQ3L SQ4LL Sin@qD2L

** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

Vcv
S3

=
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 SQ3 SQ4

 

HH1 + SQ3 SQ4 + 2 l+ H-1 + SQ3 SQ4L + l+
2 H1 + SQ3 SQ4LL HSQ3 + SQ4 + HSQ3 - SQ4L Cos@2 qDLL

T
S3

= H2 l+
2 SQ3 SQ4Lê

HSQ3 H1 + SQ3 SQ4 + 2 l+ H-1 + SQ3 SQ4L + l+
2 H1 + H2 + SQ3L SQ4LL Cos@qD2 +

SQ4 H1 + SQ3 SQ4 + 2 l+ H-1 + SQ3 SQ4L + l+
2 H1 + SQ3 H2 + SQ4LLL Sin@qD2L

The  T
S2

and T
S3

as well as Vcv
S2 and Vcv

S3 are seen to depend

on polarisation angle q  with a  π rad  difference which makes

their behaviour "out of phase". This can be seen in section 5.3  

Xout
+

= 2  
è!!!!!!!!!!!!!
1 - e2  g+  Xsig

+
+

Xv
+ Iè!!!!!!!!!!!!!

1 - e1 + 2
è!!!!!!

e2 g+
è!!!!!!

e1 M + Xsq
+

 I2è!!!!!!
e2 g+

è!!!!!!!!!!!!!
1 - e1 -

è!!!!!!
e1 M

Xout
-

=

-2
è!!!!!!

e2 g- Xnoise
-

+ Xv
-

 I è!!!!!!!!!!!!!
1 - e1 + 2

è!!!!!!!!!!!!!
1 - e2 g-

è!!!!!!
e1 M + Xsq

-
 I2è!!!!!!!!!!!!!

1 - e2 g-
è!!!!!!!!!!!!!
1 - e1 -

è!!!!!!
e1 M

Vout
+

=

4 H1 - e2L g+ 2
 Vsig

+
+ Vv

+ Iè!!!!!!!!!!!!!
1 - e1 + 2

è!!!!!!
e2 g+

è!!!!!!
e1 M

2

+ Vsq
+

 I2è!!!!!!
e2 g+

è!!!!!!!!!!!!!
1 - e1 -

è!!!!!!
e1 M

2

Vout
-

=

4 e2 g-
2

 Vnoise
-

+ Vv
- Iè!!!!!!!!!!!!!

1 - e1 + 2
è!!!!!!!!!!!!!
1 - e2 g-

è!!!!!!
e1 M

2

+ Vsq
-

 I2è!!!!!!!!!!!!!
1 - e2 g-

è!!!!!!!!!!!!!
1 - e1 -

è!!!!!!
e1 M

2

** ** ** ** ** ** ** ** ** ** ** ** **B.4 (a) Reference to section 5.3

B.4 (b) 

** ** ** ** ** ** ** ** ** ** ** ** **B.5  Reference to section 6.3

These are the output quadrature and variance expressions for the BE-teleporter scheme.
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FIDELITY = 2 ë
I,I-II1 + Vv

+
+ Vsq

+
e1 - Vv

+
e1 + e2 I-1 - Vv

+
+ Vsq

+ I1 + Vv
+

- 2 e1M + 2 Vv
+

e1MM
I2 e2

3ê2 IVsq+ - Vv
+ M è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

-H-1 + e1L e1 + 2
è!!!!!!

e2 I-Vsq+ + Vv
+ M è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

-H-1 + e1L e1 +

è!!!!!!!!!!!!!
1 - e2 I2 + Vv

+
+ Vsq

+
e1 - Vv

+
e1M +

è!!!!!!!!!!!!!
1 - e2 e2 I-2 + Vsq

+
- 2 Vsq

+
e1 + Vv

+ H-1 + 2 e1LMMM ë
IH1 - e2L3ê2 IH-1 + e2L Vsq+ e1 + Vv

+ I-1 + e1 - e2 I-1 + Vsq
+

+ e1MMMMMM

The fidelity expressions which were optimised in chapter 6.

Firstly:

the amplitude modulator gain was fixed to the UNITY gain condition for optimum fidelity,

The fidelity then becomes:

g+=
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 
è!!!!!!!!!!!!
1-e2

 The noise terms are all assumed to be minimum uncertainty states ( shot noise )

FIDELITY =
i
kjj4

"#################################H-1 + e2L Vsq+ y
{zz ì

I,II-5 + 4 e2 - 2
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

-H-1 + e2L e2 + I-1 + 2
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

-H-1 + e2L e2 M Vsq+ M
I1 + 4

è!!!!!!!!!!!!!
1 - e2 g- I-1 + Vsq

+ M + 3 Vsq
+

+ 4 g-
2 I1 + e2 I-1 + Vsq

+ M + Vsq
+ MMMM

g-=
-
è!!!!!!!!!!!!
1-e2 Vsq

+ è!!!!!!!!!!!!
1-e1

è!!!!!!!
e1 +

è!!!!!!!!!!!!
1-e2 Vv

+ è!!!!!!!!!!!!
1-e1

è!!!!!!!
e1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 e2 Vsq

+ Vv
+ + 2 H1-e2L Vv

+ H1-e1L + 2 H1-e2L Vsq
+ e1

** ** ** ** ** ** ** ** ** ** ** ** **B.6  R ������������	
����

section 6.3

(4 variables =    ,    ,    ,     )e2e1 Vsq
+  g-

Secondly:

the phase modulator gain was fixed to the value optimising fidelity,

The fidelity then becomes:

(3 variables =    ,    ,     )e2e1 Vsq
+

For BE scheme, 3 squeezed beams fidelity optimisation vacuum Vv
+ was assumed to be 1

F ������������������������������ ����������"! 4 squeezed beams fidelity optimisation the Vv
+ term was squeezed/ antisqueezed.
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this is the optimisation of the full teleporter for the amplitude coded signal

1,2 = SQUEEZED BEAM FIELDs, h = BS1, e = BS2 

b = SIGNAL field, but we know it is only REAL

everything up to this point is the same as in BE-teleporter optimisation

xoutp = 2

è!!!!!!!!!!!
1 - e Xbp + Xvp Iè!!!!!!!!!!!

1 - h + 2

è!!!!
e g

è!!!!
h M + Xap I2è!!!!

e g

è!!!!!!!!!!!
1 - h -

è!!!!
h M;

xoutm = -2
è!!!!
e g Xbm + Xvm Iè!!!!!!!!!!!

1 - h + 2
è!!!!!!!!!!!
1 - e g

è!!!!
h M + Xam I2è!!!!!!!!!!!

1 - e g
è!!!!!!!!!!!
1 - h -

è!!!!
h M;

now Xvpê Xvm become the other squeezed BRIGHT beam

Xoutp = 2
è!!!!!!!!!!!
1 - e gp Xbp + X1p Iè!!!!!!!!!!!

1 - h + 2
è!!!!
e gp

è!!!!
h M + X2p I2è!!!!

e gp
è!!!!!!!!!!!
1 - h -

è!!!!
h M;

Xoutm = -2
è!!!!
e gm Xbm + X1m Iè!!!!!!!!!!!

1 - h + 2
è!!!!!!!!!!!
1 - e gm

è!!!!
h M + X2m I2è!!!!!!!!!!!

1 - e gm
è!!!!!!!!!!!
1 - h -

è!!!!
h M;

Voutp = 4 H1 - eL 2  Vbp + V1p Iè!!!!!!!!!!!
1 - h + 2

è!!!!
e g

è!!!!
h M2 + V2p I2è!!!!

e g
è!!!!!!!!!!!
1 - h -

è!!!!
h M2;

Voutm = 4 e g 2  Vbm + V1m Iè!!!!!!!!!!!
1 - h + 2

è!!!!!!!!!!!
1 - e g

è!!!!
h M2

+ V2m I2è!!!!!!!!!!!
1 - e g

è!!!!!!!!!!!
1 - h -

è!!!!
h M2;

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Vinp = Vbp;

Vinm = 1; shot noise only in this quadrature

V1m = 1 ê V1p; minimum uncertainty states

V2m = 1 ê V2p;
=

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 
è!!!!!!!!!!!
1 - e

; Gain for positive quadrature

99 Ø

è!!!!!!!!!!!
1 - e V1p

è!!!!!!!!!!!
1 - h

è!!!!
h -

è!!!!!!!!!!!
1 - e V2p

è!!!!!!!!!!!
1 - h

è!!!!
h

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 e V1p V2p Vbm + 2 H1 - eL V1p H1 - hL + 2 H1 - eL V2p h

== optimum gain

FIDELITY =
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!HVinp + VoutpL * HVinm + VoutmL
assuming shot noise in both input quadratures Vbmêp = 1

Assume a symetric teleporter but two beams are antisqueezed! V1p = 1êV2p
FIDELITY =

2 ë I,I-IH1 + V1pL HV1p + h - V1p h + e H-1 + V1pL H-1 + 2 hLL I2 V1p + h - 2
è!!!!!!!!!!!!!!!!!!!!!!!!!

-H-1 + eL e è!!!!!!!!!!!!!!!!!!!!!!!!!
-H-1 + hL h +

V1p2 I1 - h + 2
è!!!!!!!!!!!!!!!!!!!!!!!!!

-H-1 + eL e è!!!!!!!!!!!!!!!!!!!!!!!!!
-H-1 + hL h M + e H1 - 2 V1p - 2 h + V1p2 H-1 + 2 hLLMM ë

HH-1 + eL V1p H-V1p2 H-1 + hL + h + e H-1 + V1pL HV1p H-1 + hL + hLLLMM;
e = n is the BEST combination

FIDELITY =
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

$%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%H-2+2 e-V1pL H1+V1pL H-2 e H-1+V1pL+2 e2 H-1+V1pL+V1pL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH-1+eL HV1p2+e H1+V1p-2 V1p2L+e2 H-1+V1p2LL

g
+

g
+ g

+

g
-

g
-

g
-

g
+

g
+

g
+

g
-

g
-

g
-

g
+

g
-

This function was optimised for e BS1, BS2 choices...

** ** ** ** ** ** ** ** ** ** ** ** **B.7  Reference to section 6.4



76 The supplement of full mathematical expressions



Bibliography

[1] N Rosen A Einstein, B Podolsky. Can quantum-mechanical description of physical

reality be considered complete? Phys. Rev, 47:777, 1935.

[2] E S Polzik A Kuzmich. Atomic quantum state teleportation and swapping. Phys.

Rev. Lett, 85:5639, 2000.

[3] T C Ralph B C Buchler, P K Lam. Enhancement of quantum nondemolition mea-

surements with an electro-optic feedforward amplifier. Phys. Rev. A, 60:4943, 1999.

[4] H A Bachor. A guide to experiments in quantum optics. VCH Publishers, New York,

1 edition, 1998.

[5] J S Bell. Physics, 1:195, 1964.

[6] B C Buchler. Electro optic control of Quantum measurement. PhD thesis, 2001.

[7] G Brassard C H Bennett. SIGACT News, 20:78, 1989.

[8] G Brassard C H Bennett. Experimental realization of teleporting an unknown pure

quantum state via dual classical and einstein-podolsky-rosen channels. Phys. Rev.

Lett., 70:1895, 1993.

[9] F De Martini L Hardy S Popescu D Boschi, S Branca. Experimental realization of

teleporting an unknown pure quantum state via dual classical and einstein-podolsky-

rosen channels. Phys. Rev. Lett, 80:1121, 1998.

[10] A Zelinger D Bouwmeester, A Ekert. The Physics of Quntum Information. Springer,

Berlin, Heidelberg, 2000.

[11] K Mattle M Eibl H Weinfurter A Zelinger D Bouwmeester, J W Pan. Experimental

quantum teleportation. Nature, 390:575, 1997.

[12] A K Ekert. Quantum cryptography based on bell’s theorem. Phys. Rev. Lett, 67:661,

1991.

[13] D F Walls G J Milburn. Quantum Optics. Springer-Verlag, New York, 1994.

[14] C Silberhorn N Korolkova G Leuchs, T C Ralph. J. Mod. Opt, 46:1471, 1999.

[15] Ph. Grangier, J. F. Roch, and G. Roger. Observation of backaction-evading mea-

surement of an optical intensity in a three-level atomic nonlinear system. Phys. Rev.

Lett., 66:1418, 1991.

[16] C A Fuchs R Jozsa B Schumacher H Barnum, C M Caves. Noncommuting mixed

states cannot be broadcast. Phys. Rev. Lett., 76:2818, 1996.

77



78 Bibliography

[17] K C Peng J Zhang. Quantum teleportation and dense coding by means of bright

amplitude-squeezed light and direct measurement of a bell state. Phys. Rev A,

62:064302, 2000.

[18] K C Peng J Zhang, C D Xie. J Opt. B, 3:293, 2001.

[19] J M Jauch and F Rochrlich. The Theory of Photons and Electrons. Springer, Berlin,

2 edition, 1976.

[20] P Kwiat A Zellinger K Mattle, H Weinfurter. Dense coding in experimental quantum

communication. Phys. Rev. Lett., 76:4656, 1996.

[21] T Mukai K Shimizu, N Imoto. Dense coding in photonic quantum communication

with enhanced information capacity. Phys. Rev. A, 59:1092, 1999.

[22] P Zoller E S Polzik L M Duan, J I Cirac. Quantum communication between atomic

ensembles using coherent light. Phys. Rev. Lett, 85:5643, 2000.

[23] P K Lam. Applications of Quantum Electro-Optic Control and Squeezed Light. PhD

thesis, 1998.

[24] P. K. Lam, T. C. Ralph, E. H. Huntington, and H.-A. Bachor. Noiseless signal

amplification using positive electro-optic feed-forward. Phys. Rev. Lett., 79:1471,

1997.

[25] P.K. Lam, Ralph T.C., Buchler B.C., McClelland D.E., Bachor H.-A., and Gao J.

Optimization and transfer of vacuum squeezing from an optical parametric oscillator.

J. Opt. B, 1:469, 1999.

[26] N Lutkenhaus. Estimates for practical quantum cryptography. Phys. Rev. A, 59:3301,

1999.

[27] C W Gardiner M J Collett, R Loudon. J. Mod. Opt, 34:881, 1987.

[28] H Weinfurter A Zellinger M Michler, K Mattle. Interferometric bell-state analysis.

Phys. Rev A, 53:1209, 1996.

[29] S Iblisdir N J Cerf. Optimal n-to-m cloning of conjugate quantum variables. Phys.

Rev. A, 62:040301, 2000.

[30] X Rottenberg N J Cerf, A Ipe. Cloning od continuous quantum variables. Phys. Rev.

Lett., 85:1754, 2000.

[31] G Leuchs N Korolkova, C Silberhorn. Iqec 2000 nice,. Conference Digest QMB6,

page p. 8.

[32] G Leuchs N Korolkova, C Silberhorn. Quantum key distribution with bright entangled

beams. Phys, Rev Lett, 88:167902, 2002.

[33] O Glockl S Lorenz C Marquardt G Leuchs N Korolkova, C Silberhorn. Eur. Phys J

D, 18:229, 2001.

[34] R Loudon T C Ralph C Silberhorn N Korolkova, G Leuchs. Polarisation squeezing

and continuous-variable polarisation entanglement. Phys. Rev. A, 65:052306, 2002.



Bibliography 79

[35] H Weinfurter A Zellinger P G Kwiat, K Mattle. New high intensity source of

polarisation-entangled photon pairs. Phys. Rev. Lett, 75:4337, 1995.

[36] F Grosshans P. Grangier. Quantum cloning and teleportation criteria for continuous

quantum variables. Phys. Rev. A, 64:010301, 2001.

[37] S L Braunstein P Loock. Multipartite entanglement for continuous variables: A

quantum teleportation network. Phys. Rev Lett, 84:3482, 2000.

[38] S L Braunstein P Loock. Telecloning of continuous quantum variables. Phys. Rev

Lett, 87:247109, 2001.

[39] S Schiller J Mlynek R Bruckmeier, H Hansen. Realization of a paradigm for quantum

measurements: The squeezed light beam splitter. Phys. Rev. Lett., 79:43, 1997.

[40] S. Schiller J. Mlynek R. Bruckmeier, K. Schneider. Quantum nondemolition mea-

surements improved by a squeezed meter input. Phys. Rev. Lett., 78:1243, 1997.

[41] T C Ralph. Continuous variable quantum cryptography. Phys. Rev. A, 61:010303,

2000.

[42] B A Robson. The Theory of Polarisation Phenomena. Clarendon, Oxford,, 1947.

[43] H. J. Kimble S. L. Braunstein. Teleportation of continuous quantum variables. Phys.

Rev. Lett., 80:869, 1998.

[44] S Iblisdir P Loock S Massar S L Braunstein, N J Cerf. Optimal cloning of coherent

states with linear amplifier and beam splitters. Phys. Rev. Lett, 86:4938, 2001.

[45] J.H. Shapiro. Optical waveguide tap with infinitesimal insertion loss. Opt. Lett.,

5:351, 1980.

[46] G G Stokes. Trans. Camb. Phil. Soc, 9:399, 1852.

[47] P K Lam T C Ralph. Teleportation with bright squeezed light. Phys. Rev. Lett.,

81:5668, 1998.

[48] R E S Polkinghorne T C Ralph, P K Lam. Characterising teleportation in optics. J.

Opt. B , Opt 1,, page 483, 1999.

[49] K. S. Thorne, R. W. P. Drever, C. M. Caves, M. Zimmermann, and V. D. Sandberg.

Quantum nondemolition measurements of harmonic oscillators. Phys. Rev. Lett.,

40:667, 1978.

[50] F Ya Khalili V B Braginsky, Yu I Vorontsov. Sov. Phys. JETP, 46:705, 1977.

[51] K S Thorne V B Braginsky, Yu I Vorontsov. Quantum nondemolition measurements.

Science, 209:547, 1980.

[52] L Vaidman. Teleportation of quantum states. Phys. Rev A, 49:1473, 1994.

[53] Yu. I Voronsov V.B. Braginsky. Quantum-mechanical limitations on macroscopic

experiments and modern experimetnal techniques. Sov. Phys. Usp., 17:644, 1975.



80 Bibliography

[54] B C Buchler R Schnabel T C Ralph H Bachor T Symul P K Lam W Bowen, N Trepps.

Experimental investigation of continuous variable quantum teleportation. pre-print

archive : quant-ph/0209001.

[55] R Schnabel H Bachor W Bowen, P K Lam. Polarization squeezing of continuous

variable stokes parameters. Phys. Rev. Lett, 88:093601, 2002.

[56] T C Ralph W Bowen, P K Lam. Biased epr entanglement and its application to

teleportation. accepted by J. Mod. Opt.

[57] W H Zurek W K Wootters. Nature, 299:802, 1982.

[58] J Jing J Zhang C D Xie K C Peng X Y Li, Q Pan. Quantum dense coding exploiting

a bright einstein-podolsky-rosen beam. Phys. Rev Lett, 88:047904, 2002.

[59] M Watanabe Y Zhang, K Kasai. Continuous variables quantum switch teleportation

using two-mode squeezed light. accepted by Eur. Phys J D.


