Recombination dynamics and screening of the internal electric field in ZnO/Zn$_x$Mg$_{1-x}$O multiple quantum wells

Centre for Atom Optics and Ultrashort Spectroscopy, Swinburne University of Technology, Melbourne 3122, Australia
Nanomaterials Microdevices Research Center, Osaka Institute of Technology, Asahi-ku Omiya, Osaka 535-8585, Japan
Department of Electronic Materials Engineering, Research School of Physical Sciences and Engineering, The Australian National University, Canberra, Australian Capital Territory 0200, Australia

Abstract: We investigate the recombination dynamics within screened c-axis ZnO/Zn$_{0.7}$Mg$_{0.3}$O quantum wells using time-resolved photoluminescence and femtosecond pump-probe spectroscopy. The relaxation of excited carriers restores the strength of the internal electric field, which we follow, via the decay time constant, as it increases from 180 ns to 5.8 µs. Pump-probe spectroscopy reveals faster, initial decay times of 160–250 ps, which we attribute to additional recombination mechanisms, that become significant for carrier densities greater than 2 x 1012 pairs cm$^{-2}$. In addition, the time for screening of the internal electric field to be established is measured to be less than 1 ps. These measurements are followed by a self-consistent calculation which solves the Schrödinger and Poisson equations for pair densities up to 1 x 1013 pairs cm$^{-2}$, where there is no further substantial blueshifting of the transition energy with increasing pair density because the electron and hole charge distributions cancel. This calculation fits the measured recombination dynamics and can be used to determine the quantum-well properties at any time following excitation, including carrier densities, transition energies, and recombination lifetimes.

I. INTRODUCTION

ZnO is a wide band-gap semiconductor that has properties suited for applications within devices optically active in the UV region, some of which make ZnO preferable to GaN, its established and main competitor. Of particular interest are the superior exciton and biexciton binding energies (ZnO 60 and 15 meV, GaN 25 and 5.3 meV, respectively) which give advantages to ZnO over GaN when considering oscillator strength and efficient light absorbing/emitting devices.

By integrating these materials into quantum-well (QW) structures, not only is there the opportunity to tune the transition energy but also the exciton and biexciton binding energies can be even larger; hence these structures are of considerable interest. Growth of ZnO/ZnMgO quantum wells is preferentially c-axis oriented, which, to the detriment of a number of properties, leads to an internal electric field across the quantum well and the quantum-confined Stark effect (QCSE). This internal electric field arises as a result of mismatches in the spontaneous and piezoelectric polarizations of the well and barrier materials. In sufficiently wide wells, this internal electric field redshifts the quantum-well transition energy below the bulk ZnO transition and spatially separates excited-state electrons and holes, consequently reducing the oscillator strength and decreasing the rate of recombination. As the width of the well increases so does the separation of the electron and hole wave functions for the E1–H1 transition (the primary radiative recombination pathway), producing even longer excited-state lifetimes. It has been shown that the exciton binding energies are also reduced as the well width is increased. When a large population of excited carriers is generated within such QWs, the internal electric field will be shielded, blueshifting the transition energy and increasing the recombination rate. In addition, given the large carrier densities, the possibility of crossing the Mott transition should also be considered, in which case an even faster rate of recombination proportional to electron-hole wave-function overlap would be observed. However, the exact density for the observation of the Mott transition is unknown given the quantum-well potential profile changes with carrier density.

To date, work on the QCSE in ZnO quantum wells has been limited to a number of photoluminescence (PL) measurements and fewer time-resolved measurements which have not looked at subnanosecond time scales in great detail. In this paper we examine the screening dynamics within wide ZnO QWs, including short-time dynamics, employing PL, time-resolved PL (TRPL), and femtosecond pump-probe (PP) spectroscopy. Using self-consistently solved Schrödinger and Poisson equations we model the recombination dynamics within such a structure and compare with experimental results.

II. EXPERIMENT

The sample examined is a ZnO/Zn$_{0.7}$Mg$_{0.3}$O multiple quantum well (MQW) made of six quantum wells of width 6 nm and barriers of 5.5 nm grown by molecular-beam epitaxy. A 30% Mg composition is used in the barrier to maximize the strength of the internal electric field. The large barrier width is intended to reduce carrier-induced shielding by adjacent wells. The electric field within the QWs in this sample has been determined previously to be 0.8 MV cm$^{-1}$, reduced from 0.9 MV cm$^{-1}$ due to the so-called geometric effect.

Both PL and PP experiments were carried out with 100 fs laser pulses at a repetition rate of 1 kHz. Two synchronously pumped optical parametric amplifiers were used to tune the
photon energy from 4.96 to 3.26 eV in these experiments. The TRPL measurements were made using a PMT and a 500 MHz oscilloscope. For all results discussed here the sample was maintained at a temperature of 20 K.

III. EXPERIMENTAL RESULTS

The intensity dependence of the PL for this sample at 4.96 eV with a maximum excitation of 4×10^{15} photons cm$^{-2}$ per pulse is shown in Fig. 1(a). As a pulsed laser was used as the excitation source, the spectra appear somewhat different to previously reported results that have used continuous-wave (cw) excitation. When cw excitation is used, a constant excited-state population can be sustained, which in turn maintains a constant shielding magnitude within the QW. A narrow peak that can be blueshifted by an amount proportional to the excitation intensity is observed. In our case, where pulsed excitation is used, the excited-state population decays before the arrival of successive pulses. The decaying population progressively restores the internal electric field, which in turn redshifts the transition energy. Time-integrated detection consequently records a peak that appears broad but represents emission from a shifting transition over a continuous range of screening magnitudes from some initial carrier density that decays to zero.

The excitation intensity in Fig. 1(a) is varied over 3 orders of magnitude and a significant blueshift of the peak emission (\sim66 meV) with increasing intensity is observed due to screening of the internal electric field. There is also increased broadening on the low-energy side of the PL peak, which is attributed to an enhanced longitudinal-optical phonon-exciton coupling that is manifested in strong phonon replica peaks (a well-known characteristic of spatially separated electron-hole pairs) and collisional broadening associated with the high carrier densities present within the quantum well.

Figure 1(b) shows the time-resolved PL, where care was taken to keep the signal strength well within the linear-response range of the PMT. The measured signal is clearly nonexponential and continuously varying up to a seemingly steady rate of decay with a relatively long lifetime, more than an order of magnitude larger than the initial rate of decay. The continuously changing lifetime can be explained as follows: for a large initial carrier density there is substantial screening of the internal electric field but as excited-state carriers gradually recombine the amount of screening is reduced. This restores the magnitude of the internal electric field, which in turn decreases the electron and hole wavefunction overlap, resulting in increased carrier lifetimes. The changing lifetime of this system is described by the relationship

$$\tau(n) = \tau(0) \left(\int_{-\infty}^{\infty} \psi_e(0) \psi_h(0) dz \right)^2 / \int_{-\infty}^{\infty} \psi_e(n) \psi_h(n) dz \right)^2,$$

where $\tau(0)$ is the lifetime of the unscreened QW and $\left(\int_{-\infty}^{\infty} \psi_e(n) \psi_h(n) dz \right)$ is the electron and hole overlap integral as a function of carrier density. Table I presents the time constants for single exponential decays fit to successive periods over the decay curve presented in Fig. 1(b), and for two other emission energies (curves not shown). It is evident that as the excited population decays over time, the lifetime of the measured decay grows. Over this measurement, the decay.

<table>
<thead>
<tr>
<th>Period</th>
<th>Decay time constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0-0.04$</td>
<td>$*$</td>
</tr>
<tr>
<td>$0.04-0.14$</td>
<td>0.18</td>
</tr>
<tr>
<td>$0.14-0.24$</td>
<td>0.27</td>
</tr>
<tr>
<td>$0.24-0.34$</td>
<td>0.34</td>
</tr>
<tr>
<td>$0.34-0.44$</td>
<td>0.41</td>
</tr>
<tr>
<td>$0.44-1$</td>
<td>0.75</td>
</tr>
<tr>
<td>$1.0-2.0$</td>
<td>1.57</td>
</tr>
<tr>
<td>$2.0-3.0$</td>
<td>2.3</td>
</tr>
<tr>
<td>$3.0-4.0$</td>
<td>3.91</td>
</tr>
<tr>
<td>$4.0-5.0$</td>
<td>5.8</td>
</tr>
</tbody>
</table>

Figure 1. (a) Intensity-dependent PL at 20 K for intensities 0.001I, 0.01I, 0.1I, and I (bottom to top). Over 3 orders of magnitude of incident intensity, the PL peak emission blueshifts 66 meV. The bulk ZnO exciton emission energy at 20 K (Ref. 25) is included to demonstrate the substantial redshift of the QW transition energy due to the internal electric field. (b) Time-resolved PL at 20 K.
In order to examine the dynamics of the carrier-induced shielding of the internal electric field in the same ZnO MQW on a faster time scale we have used PP spectroscopy. Given that screening of the internal electric field is carrier induced, we have varied the pump intensity to examine the carrier-density-dependent screening dynamics. A maximum excitation intensity of $I = 2.5 \times 10^{17}$ photons cm$^{-2}$ per pulse was used.

Figure 2(a) shows the transmitted probe signal for a pump of varying intensity. The pump and probe photon energies are tuned to be slightly blue of the high intensity PL peak with a photon energy of 3.28 eV and below the band gap of bulk ZnO to ensure that any observed dynamics are from the quantum well. From this data it is evident that at early times the decay rate increases with increasing excitation intensity. This is confirmed by fitting a single exponential to the data in the period 0–100 ps, which gives decay time constants of 180 ns to 5.8 μs after a period of 5 μs.

In order to verify our interpretation thus far, and provide some additional insight concerning the changing quantum-well properties, we have calculated the extent of shielding and the effect on transition energy and lifetime due to a large excited-state population. The simplest way to calculate the carrier-induced shielding within a quantum well with an internal electric field would be to assume that all excited carriers are produced in instantaneously polarized states.

IV. SIMULATION

In order to verify our interpretation thus far, and provide some additional insight concerning the changing quantum-well properties, we have calculated the extent of shielding and the effect on transition energy and lifetime due to a large excited-state population. The simplest way to calculate the carrier-induced shielding within a quantum well with an internal electric field would be to assume that all excited carriers are produced in instantaneously polarized states.

![Diagram](image-url)
transition energy from 3.18 to 3.25 eV. The most significant increase in transition energy, however, occurs from 1×10^{12} to 4.2×10^{13} pairs cm$^{-2}$, where the transition energy shifts from 3.25 eV and plateaus at 3.40 eV. The plateau appears when additional excited pairs produce no significant change in the shape of the potential profile because the electron and hole wave functions of additional pairs overlap and their charge distributions cancel.

The square of the electron and hole wave-function overlap integral as a function of pair density can be determined using $S_{\text{FIT}} = A \times S_{\text{CALC}}[t] \times T + t_0], \quad (3)$

where n is the pair density and $\tau(n)$ is the density-dependent lifetime determined from the electron-hole overlap integral using Eq. (1).

We have calculated the recombination dynamics using Eq. (2) and the data presented in Fig. 3. However, there is no point of reference to scale the calculated recombination dynamics given that we cannot assume the longest measured decay time constant corresponds to the unscreened quantum-well lifetime (because the measured signal is limited by detector sensitivity and the lifetime continues to evolve beyond this point), and we do not know the initial carrier density without guessing the QW capture efficiency. We have therefore chosen to fit this result to the experimental TRPL using $S_{\text{CALC}}[t] \propto S_{\text{VW}}[t] \times S_{\text{EF}}[t] \times S_{\text{INT}}[t] \times S_{\text{EXP}}[t]$, \quad (2)$

where n is the pair density and $\tau(n)$ is the density-dependent lifetime determined from the electron-hole overlap integral using Eq. (1).

We have calculated the recombination dynamics using Eq. (2) and the data presented in Fig. 3. However, there is no point of reference to scale the calculated recombination dynamics given that we cannot assume the longest measured decay time constant corresponds to the unscreened quantum-well lifetime (because the measured signal is limited by detector sensitivity and the lifetime continues to evolve beyond this point), and we do not know the initial carrier density without guessing the QW capture efficiency. We have therefore chosen to fit this result to the experimental TRPL using $S_{\text{FIT}} = A \times S_{\text{CALC}}[t] \times T + t_0], \quad (3)$

where n is the pair density and $\tau(n)$ is the density-dependent lifetime determined from the electron-hole overlap integral using Eq. (1).

We have calculated the recombination dynamics using Eq. (2) and the data presented in Fig. 3. However, there is no point of reference to scale the calculated recombination dynamics given that we cannot assume the longest measured decay time constant corresponds to the unscreened quantum-well lifetime (because the measured signal is limited by detector sensitivity and the lifetime continues to evolve beyond this point), and we do not know the initial carrier density without guessing the QW capture efficiency. We have therefore chosen to fit this result to the experimental TRPL using $S_{\text{FIT}} = A \times S_{\text{CALC}}[t] \times T + t_0], \quad (3)$

where n is the pair density and $\tau(n)$ is the density-dependent lifetime determined from the electron-hole overlap integral using Eq. (1).

We have calculated the recombination dynamics using Eq. (2) and the data presented in Fig. 3. However, there is no point of reference to scale the calculated recombination dynamics given that we cannot assume the longest measured decay time constant corresponds to the unscreened quantum-well lifetime (because the measured signal is limited by detector sensitivity and the lifetime continues to evolve beyond this point), and we do not know the initial carrier density without guessing the QW capture efficiency. We have therefore chosen to fit this result to the experimental TRPL using $S_{\text{FIT}} = A \times S_{\text{CALC}}[t] \times T + t_0], \quad (3)$

where n is the pair density and $\tau(n)$ is the density-dependent lifetime determined from the electron-hole overlap integral using Eq. (1).
lifetimes, however, would not be affected. Unfortunately, band-gap renormalization in this case is difficult to calculate because of the continuously changing potential profile. In addition, there does not seem to be any detailed publications giving typical values for band-gap renormalization in ZnO/ZnMgO quantum wells.

At 5 μs following excitation, a pair density of 9.2 \(\times 10^{11} \) to 7.1 \(\times 10^{11} \) cm\(^{-2} \) remains within each QW giving a transition energy of 3.256–3.237 eV (the transition-energy discrepancy due to band-gap renormalization will be minimal). The decay time constant for this pair density is calculated to be 4.5–4.38 μs and agrees with the measured value of 5.8±2 μs. As there is still a substantial excited-state population within the QWs at this point, it is clear that these values cannot represent the lifetime of the unshielded QWs. According to the calculation, \(\tau_0 \), the lifetime in the unshielded well, is 34±9 μs. Based on these values for \(\tau_0 \) and using Eq. (1), we may determine the fastest decay time constant for this sample (assuming the pair density is below the Mott transition) in the event of complete wave-function overlap to be 1–2 ns (where the unshielded well-squared overlap integral is 0.0048).

Returning to the pump-probe results in Fig. 2(a), initial decay times from 157 to 245 ps, dependent on excitation intensity, were observed, shorter than the 1–2 ns predicted. In Fig. 2(a), the initial periods of decay occur on top of a decay with a much longer lifetime constant. We attribute this long lifetime to behavior consistent with the TRPL experiments and calculations. The rapidly decaying part of the signal is then attributed to an increase in nonradiative recombination at the initial high pair densities. This is further confirmed by the elimination of the fast component for lower excitation intensities. An alternative explanation that cannot be ruled out is that the increased rate of decay at early times is due to the density exceeding the Mott density. Regardless, the density required for this nonlinear behavior to be present is greater than 2.1×10^{12} cm\(^{-2} \) (from Fig. 3), although this value may be underestimated due to band-gap renormalization being excluded from the calculations.

VI. SUMMARY

In summary, we have studied the recombination dynamics within 6 nm ZnO/ZnMgO QWs. The presence of carrier-induced shielding is evidenced by blueshifting of the PL peak with excitation intensity and in TRPL by a decay constant that increases as the system evolves in time by more than an order of magnitude from an initial decay time of 180 ns. The recombination dynamics were calculated and fit to the TRPL, from which we determined the pair density at any point following excitation and predicted the asymptotic lifetime of the unshielded well to be 34±9 μs. The calculated transition energies, however, are overestimated, as the extent of band renormalization in ZnO quantum wells is unknown. Pump-probe spectroscopy measured faster initial recombination times, from 160 to 250 ps, due to additional recombination pathways that become important for carrier densities greater than 2.1×10^{12} pairs cm\(^{-2} \). These possibly include nonradiative recombination and/or an increased radiative recombination due to having exceeded the Mott-transition density. On even shorter time scales we observed a rapidly established absorption, the screening establishment time, which was measured to take less than 1 ps.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of the Australian Research Council. C.R. Hall would also like to thank Lastek for their financial support.