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This book was conceived as a slim monograph, but grew to its present size 
as I attempted to set down an account of two-dimensional lattice models 
in statistical mechanics, and how they have been solved. While doing so 
I have been pulled in opposite directions. On the one hand I remembered 
the voice of the graduate student at the conference who said 'But you've 
left out all the working-how do you get from equation (81) to (82)?' On 
the other hand I knew from experience how many sheets of paper go into 
the waste-paper basket after even a modest calculation: there was no way 
they could all appear in print. 

I hope I have reached a reasonable compromise by signposting the route 
to be followed, without necessarily giving each step. I have tried to be 
selective in doing so: for instance in Section 8.13 I discuss the functions 
k(a) andg(a) in some detail, since they provide a particularly clear example 
of how elliptic functions come into the working. Conversely, in (8.10.9) 
I merely quote the result for the spontaneous staggered polarization Po of 
the F-model, and refer the interested reader to the original paper: its 
calculation is long and technical, and will probably one day be superseded 
when the eight-vertex model conjecture (10.10.24) is verified by methods 
similar to those used for the magnetization result (13.7.21). 

There are 'down-to-earth' physicists and chemists who reject lattice 
models as being unrealistic. In its most extreme form, their argument is 
that if a model can be solved exactly, then it must be pathological. I think 
this is defeatist nonsense: the three-dimensional Ising model is a very 
realistic model, at least of a two component alloy such as brass. If the 
predictions of universality are corrected, then they should have exactly the 
same critical exponents. Admittedly the Ising model has been solved only 
in one and two dimensions, but two-dimensional systems do exist (see 
Section 1.6), and can be quite like three-dimensional ones. It is true that 
the two-dimensional Ising model has been solved only for zero magnetic 

v 
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field, and that this case is quite unlike that of non-zero field; but physically 
this means Onsager solved the most interesting and tricky case. His solution 
vastly helps us understand the full picture of the Ising model in a field. 

In a similar way, the eight-vertex model helps us understand more 
complicated systems and the variety of behaviour that can occur. The hard 
hexagon model is rather special, but needs no justification: It is a perfectly 
good lattice gas and can be compared with a helium monolayer adsorbed 
onto a graphite surface (Riedel, 1981). 

There is probably also a feeling that the models are 'too hard' math- 
ematically. This does not bear close examination: Ruelle (1969) rightly 
says in the preface to his book that if a problem is worth looking at at all, 
then no mathematical technique is to be judged too sophisticated. 

Basically, I suppose the justification for studying these lattice models is 
very simple: they are relevant and they can be solved, so why not do so 
and see what they tell us? 

In the title the phrase 'exactly solved' has been chosen with care. It is 
not necessarily the same as 'rigorously solved'. For instance, the derivation 
of (13.7.21) depends on multiplying and diagonalizing the infinite-dimen- 
sional corner transfer matrices. It ought to be shown, for instance, that the 
matrix products are convergent. I have not done this, but believe that they 
are (at least in a sense that enables the calculation to proceed), and that 
as a result (13.7.21) is exactly correct. 

There is of course still much to be done. Barry McCoy and Jacques Perk 
rightly pointed out to me that whereas much is now known about the 
correlations of the Ising model, almost nothing is known about those of 
the eight-vertex and hard hexagon models. 

There are many people to whom I am indebted for the opportunity to 
write this book. In particular, my interest in mathematics and theoretical 
physics was nurtured by my father, Thomas James Baxter, and by Sydney 
Adams, J. C. Polkinghorne and K. J. Le Couteur. Elliott Lieb initiated 
me into the complexities of the ice-type models. Louise Nicholson and 
Susan Turpie worked wonders in transforming the manuscript into immacu- 
late typescript. Paul Pearce has carefully read the proofs of the entire 
volume. Most of all, my wife Elizabeth has encouraged me throughout, 
particularly through the last turbulent year of writing. 

R. J. Baxter 
Canberra, Australia 
February 1982 



CONTENTS 

Preface . . v 

1 Basic Statistical Mechanics 

Phase transitions and critical points . 
The scaling hypothesis . . 
Universality . . 
The partition function . 
Approximation methods . 
Exactly solved models . 
The general Ising model . 
Nearest-neighbour Ising model . 
The lattice gas . 
The van der Waals fluid and classical exponents 

2 The One-dimensional Ising Model 

2.1 Free energy and magnetization . . 32 
2.2 Correlations . 35 
2.3 Critical behaviour near T = 0 . . 37 

3 The Mean Field Model 

3.1 Thermodynamic properties . . 39 
3.2 Phase transition . . 42 
3.3 Zero-field properties and critical exponents . . 44 

vii 



. . . 
V l l l  CONTENTS 

Critical equation of state . . 45 
Mean field lattice gas . . 46 

4 Ising Model on the Bethe Lattice 

The Bethe lattice . . 47 
Dimensionality . . 49 
Recurrence relations for the central magnetization . . 49 
The limit n + m . . 51 
Magnetization as a function of H . . . 53 
Free energy . . 55 
Low-temperature zero-field results . . 56 
Critical behaviour . . 57 
Anisotropic model . . 58 

5 The Spherical Model 

Formulation of the model . . 60 
Free energy . . 61 
Equation of state and internal energy . . 64 
The function gr (z )  . . 65 
Existence of a critical point for d > 2 . . 66 
Zero-field properties: exponents a, P, y, yr . . 68 
Critical equation of state . . 70 

Duality and Star -Triangle Transformations of Planar Ising Models 

General comments on two-dimensional models . . 72 
Duality relation for the square lattice Ising model . . 73 
Honeycomb-triangular duality . . 78 
Star-triangle relation . . 80 
Triangular- triangular duality . . 86 

7 Square-Lattice Ising Model 

Historical introduction . . 88 
The transfer matrices V, W . . 89 
Two significant properties of V and W . . . 91 



CONTENTS ix 

Symmetry relations . . 95 
Commutation relations for transfer matrices . . 96 
Functional relation for the eigenvalues . . 97 
Eigenvalues A for T = Tc . . 98 
Eigenvalues A for T < T, . . 101 
General expressions for the eigenvalues . . 108 
Next-largest eigenvalues: interfacial tension, correlation length 

and magnetization for T < Tc . 
Next-largest eigenvalue and correlation length for T > Tc 
Critical behaviour . 
Parametrized star-triangle relation . 
The dimer problem . 

8 Ice-Type Models 

Introduction 
The transfer matrix . 
Line-conservation 
Eigenvalues for arbitrary n . 
Maximum Eigenvalue: location of zl , . 
The case A > 1 . 
Thermodynamic limit for A < 1 . 
Free energy for - 1 < A < 1 . 
Free energy for A < - 1 . 
Classification of phases . 
Critical singularities . 
Ferroelectric model in a field . 
Three-colourings of the square lattice . 

9 Alternative Way of Solving the Ice-Type Models 

Introduction 
Commuting transfer matrices . 
Equations for the eigenvalues . 
Matrix function relation that defines the eigenvalues . 
Summary of the relevant matrix properties . 
Direct derivation of the matrix properties: commutation 
Parametrization in terms of entire functions 
The matrix Q ( v )  . 
Values of p, A, v . 



X CONTENTS 

10 Square Lattice Eight-Vertex Model 

10.1 Introduction . 202 
10.2 Symmetries . . 204 
10.3 Formulation as an Ising model with two- and four-spin 

interactions . 
10.4 Star - triangle relation . 
10.5 The matrix Q(u) . 
10.6 Equations for the eigenvalues of V(v) . . 
10.7 Maximum eigenvalue: location of vl , . . . , v, . 
10.8 Calculation of the free energy . 
10.9 The Ising case . 
10.10 Other thermodynamic properties . 
10.11 Classification of phases . 
10.12 Critical singularities . 
10.13 An equivalent Ising model . 
10.14 The XYZ chain . 
10.15 Summary of definitions of A,  T, k, A, v, q, x ,  z, p, v, w 
10.16 Special cases . 
10.17 An exactly solvable inhomogeneous eight-vertex model 

11 KagomC Lattice Eight-Vertex Model 

11.1 Definition of the model . 
11.2 Conversion to a square-lattice model . 
11.3 Correlation length and spontaneous polarization . 
11.4 Free energy . 
11.5 Formulation as a triangular-honeycomb Ising model with 

two- and four-spin interactions . . 286 
11.6 Phases . . 293 
11.7 K' = 0: The triangular and honeycomb Ising models . . 294 
11.8 Explicit expansions of the Ising model results . . 300 
11.9 Thirty-two vertex model . . 309 
11.10 Triangular three-spin model . . 314 

12 Potts and Ashkin-Teller Models 

12.1 Introduction and definition of the Potts model . . 322 
12.2 Potts model and the dichromatic polynomial . . 323 



CONTENTS xi 

Planar graphs: equivalent ice-type model . . 325 
Square-lattice Potts model . . 332 
Critical square-lattice Potts model . . 339 
Triangular-lattice Potts model . . 345 
Combined formulae for all three planar lattice Potts models 350 
Critical exponents of the two-dimmsional Potts model 
square-lattice Ashkin - Teller model . 

13 Corner Transfer Matrices 

Definitions . 
Expressions as products of operators . 
Star- triangle relation . 
The infinite lattice limit . 
Eigenvalues of the CTMs . 
Inversion properties: relation for ~ ( u )  . 
Eight-vertex model . 
Equations for the CTMs . 

14 Hard Hexagon and Related Models 

Historical background and principal results . 
Hard square model with diagonal interactions . 
Free energy . 
Sub-lattice densities and the order parameter R . 
Explicit formulae for the various cases: the 

Rogers - Ramanu jan identities . 
Alternative expressions for the K, p, R . 
The hard hexagon model . 
Comments and speculations . . 
Acknowledgements . 

15 Elliptic Functions 

Definitions . 
Analyticity and periodicity . 
General theorems . 
Algebraic identities . 

15.5 Differential and integral identities . 



xii CONTENTS 

15.6 Landen transformation . . 466 
15.7 Conjugate modulus . . 467 
15.8 Poisson summation formula . . 468 
15.9 Series expansions of the theta functions . . 469 
15.10 Parametrization of symmetric biquadratic relations . . 471 

References . . 474 

Index . . 482 



BASIC STATISTICAL MECHANICS 

1.1 Phase Transitions and Critical Points 

As its name implies, statistical mechanics is concerned with the average 
properties of a mechanical system. Obvious examples are the atmosphere 
inside a room, the water in a kettle and the atoms in a bar magnet. Such 
systems are made up of a huge number of individual components (usually 
molecules). The observer has little, if any, control over the components: 
all he can do is specify, or measure, a few average properties of the system, 
such as its temperature, density or magnetization. The aim of statistical 
mechanics is to predict the relations between the observable macroscopic 
properties of the system, given only a knowledge of the microscopic forces 
between the components. 

For instance, suppose we knew the forces between water molecules. 
Then we should be able to predict the density of a kettleful of water at 
room temperature and pressure. More interestingly, we should be able to 
predict that this density will suddenly and dramatically change as the 
temperature is increased from 99°C to 101°C: it decreases by a factor of 
1600 as the water changes from liquid to steam. This is known as a phase 
transition. 

Yet more strange effects can occur. Consider an iron bar in a strong 
magnetic field, H, parallel to its axis. The bar will be almost completely 
magnetized: in appropriate units we can say that its magnetization, M, is 
+l. Now decrease H to zero: M will decrease, but not to zero. Rather, 
at zero field it will have a spontaneous magnetization Mo. 

On the other hand, we expect molecular forces to be invariant with 
respect to time reversal. This implies that reversing the field will reverse 
the magnetization, so M must be an odd function of H. It follows that 

1 



1 BASIC STATISTICAL MECHANICS 

M(H) must have a graph of the type shown in Fig. l . l (a) ,  with a dis- 
continuity at H = 0. 

This discontinuity in the magnetization is very like the discontinuity in 
density at a liquid - gas phase transition. In fact, in the last section of this 
chapter it will be shown that there is a precise equivalence between them. 

Fig. 1.1. Graphs of M ( H )  for (a) T < T c ,  (b) T = Tc, ( c )  T >  Tc. 

The iron bar can be regarded as undergoing a phase transition at H = 0, 
changing suddenly from negative to positive magnetization. In an actual 
experiment this discontinuity is smeared out and the phenomenon of 
hysteresis occurs: this is due to the bar not being in true thermodynamic 
equilibrium. However, if the iron is soft and subject to mechanical dis- 
turbances, a graph very close to that of Fig. l . l (a)  is obtained (Starling 
and Woodall, 1953, pp. 280-281; Bozorth, 1951, p. 512). 

The above remarks apply to an iron bar at room temperature. Now 
suppose the temperature T is increased slightly. It is found that M(H) has 
a similar graph, but Mo is decreased. Finally, if T is increased to a critical 
value T, (the Curie point), Mo vanishes and M(H) becomes a continuous 
function with infinite slope (susceptibility) at H = 0, as in Fig. l . l (b) .  

If T is further increased, M(H) remains a continuous function, and 
becomes analytic at H = 0, as in Fig. l .l(c). 
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These observations can be conveniently summarized by considering a 
( T ,  H) plane, as in Fig. 1.2. There is a cut along the T axis from 0 to T,. 
The magnetization M is an analytic function of both T and H at all points 
in the right-half plane, except those on the cut. It is discontinuous across 
the cut. 

The cut is a line of phase transitions. Its endpoint (T, ,0 )  is known as 
a critical point. Clearly the function M(H,  T) must be singular at this 
point, and one of the most fascinating aspects of statistical mechanics is 
the study of this singular behaviour near the critical point. 

H 
/ 
/ 

/ 

/ 
/ 
/ / 

Fig. 1.3. The spontaneous magnetization Mo as a function of temperature. 

/ / 

5 
/ 

5 5  
0 Tc T 

/ 
/ 
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/ / 

/ 

Fig. 1.2. The ( T ,  H) half-plane, showing the cut across which M is discontinuous. 
Elsewhere M is an analytic function of T and H. 
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The spontaneous magnetization is a function of T and can be defined as 

Mo(T) = lim M(H, T) , 
HjO+ 

(1.1.1) 

the limit being taken through positive values of H. It has a graph of the 
type shown in Fig. 1.3, being positive for T < Tc and identically zero for 
T > T,. 

Critical Exponents 

The susceptibility of a magnet is defined as 

When considering critical behaviour it is convenient to replace T by 

t = (T - Tc)/Tc. (1.1.3) 

Then the thermodynamic functions must have singularities at H = t = 0. 
It is expected that these singularities will normally be simple non-integer 
powers; in particular, it is expected that 

~ ( 0 ,  T) - t-y ast-O+, (1.1.6) 

x (0 ,T)  -(-t1-7' ast-0-. (1.1.7) 

Here the notation X - Y means that XIY tends to a non-zero limit. The 
power-law exponents P, 6, y, y' are numbers, independent of H and T: 
they are known as critical exponents. 

For brevity, the phrase 'near Tc' will be frequently used in this book to 
mean 'near the critical point', it being implied that H is small, if not zero. 

1.2 The Scaling Hypothesis 

It is natural to look for some simplified form of the thermodynamic functions 
that will describe the observed behaviour near T,. Widom (1965) and 
Domb and Hunter (1965) suggested that certain thermodynamic functions 
might be homogeneous. In particular, Griffiths (1967) suggested that H 
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might be a homogeneous function of MilB and t .  Since H i s  an odd function 
of M ,  this means that near T,  

HIkT, = M I  MI"-' h,(t I MI-"@) , ( 1 . 2 . 1 )  

where /3 and 6  are numbers (as yet undefined), k  is Boltzmann's constant, 
and h,(x) is a dimensionless scaling function. A typical graph of h,(x) is 
shown in Fig. 1.4: it is positive and monotonic increasing in the interval 
-xo < x  < CQ, and vanishes at - xo. 

Note that ( 1 . 2 , l )  implies that H is an odd function of M ,  as it should 
be. 

Fig. 1.4. The scaling function h,(x) for the square-lattice Ising model (Gaunt and 
Domb, 1970). 

The scaling hypothesis predicts certain relations between the critical 
exponents. To see this, first consider the behaviour on the cut in Fig. 1.2.  
Here H = 0 ,  t  < 0  and M  = +Mo. From (1 .2 .1 )  the function h,(x) must be 
zero, so x  = -xo, i.e. 

t =  -xolMI1'@. (1 .2 .2 )  

The relation (1 .1 .4 )  follows, so /3 in (1 .2 .1 )  is the critical exponent defined 
in ( 1 . 1 . 4 ) .  

Now set t  = 0  (1 .2 .1 ) .  Since h,(O) is non-zero, this implies that near T, 

in agreement with (1 .1 .5 ) .  Hence the 6  in (1 .2 .1)  is the same as that in 
(1 .1 .5 ) .  

Differentiate (1 .2 .1 )  with respect to M ,  keeping t fixed. From (1 .1 .2 )  
this gives 

( k T z ) - '  = I M I d - '  [6h, (x)  - P-'xh;(x)] (1 .2 .4 )  
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where 
x = t J ~ J - l / f i .  

Again consider the behaviour on the cut in Fig. 1.2. Here x has the fixed 
value -xo, so 

~ - 1  - 1 ~ 1 6 - 1  , (-t)B(d-l). (1.2.6) 

This agrees with (1.1.7), and predicts that the critical exponent y' is given 
by 

y1=/3(d- 1 ) .  (1.2.7) 

To obtain (1.1.6) from the scaling hypothesis, we need the large x 
behaviour of the scaling function h,(x). This can be obtained by noting 
that for fixed positive t, we must have 

H - M  asM+O. (1.2.8) 

Comparing this with (1.2.1), we see that 

From (1.2.1) and (1.2.9), it follows that for arbitrary small positive t, 
H - t S ( 6 - l ) ~  asM+O, (1.2.10) 

so from (1.1.1), 

Comparing this with (1.1.6), and using (1.2.7), we see that the scaling 
hypothesis predicts the exponent relations 

Other exponents a ,  v, v', q,  p will be defined in Section 1.7, but for 
completeness the various scaling predictions are listed here: 

where d is the dimensionality of the system. 
A partial derivation of (1.2.14) will be given in Section 1.7, but it is 

beyond the scope of this book to attempt to justify all these relations: the 
interested reader is referred to the articles by Widom (1965), Fisher (1967), 
Kadanoff et al. (1967), Hankey and Stanley (1972), Stanley (1971) and 
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Vicentini-Missoni (1972). Their relevance here is that exactly solved models 
can be used to test the relations, and indeed we shall find that scaling 
passes every possible test for the models to be discussed. 

The scaling relations (1.2.12)-(1.2.15) are in good agreement with avail- 
able experimental and theoretical results, and the scaling function h,(x) 
has been obtained approximately for a number of systems (see for example 
Gaunt and Domb, 1970). 

The last relation (1.2.16) involves the dimensionality d. It is derived by 
making further assumptions, known as 'strong scaling' or 'hyperscaling'. 
It is expected to be valid for d s 4, but there is some question whether it 
is consistent with available numerical results for three- and four-dimensional 
models (Baker, 1977). The total set of equations (1.2.12)-(1.2.16) is 
sometimes known as 'two exponent' scaling, since if two independent 
exponents (such as 6 and p) are given, then all other exponents can be 
obtained from the equations. 

1.3 Universality 

Consider a system with conservative forces. Let s denote a state (or 
configuration) of the system. Then this state will have an energy E(s), 
where the function E(s) is the Hamiltonian of the system. 

The thermodynamic properties, such as M(H , T) and T,, are of course 
expected to depend on the forces in the system, i.e. on E(s). However, 
it is believed (Fisher, 1966; Griffiths, 1970) that the critical exponents are 
'universal', i.e. independent of the details of the Hamiltonian E(s). 

They will, of course, depend on the dimensionality of the system, and 
on any symmetries in the Hamiltonian. To see the effect of these, suppose 
E(s) can be written as 

where Eo(s) has some symmetry (such as invariance under spatial reflection) 
and El(s) has not. The critical exponents are then supposed to depend on 
A only in so far as they have one value for A = 0 (symmetric Hamiltonian), 
and another fixed value for A # 0 (non-symmetric). For example, there 
would be two numbers &, & such that 

being discontinuous at A = 0. 
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On the other hand, if Eo(s) is some simple Hamiltonian and El(s) is 
very complicated, but they have the same dimensionality and symmetry, 
then /3 should be completely constant, even at A = 0. The implications of 
this are far reaching. One could take a realistic and complicated Hamil- 
tonian E(s), 'strip' it to a highly idealized Hamiltonian Eo(s), and still 
obtain exactly the same critical exponents. For instance, on these grounds 
it is believed that carbon dioxide, xenon and the three-dimensional Ising 
model should all have the same critical exponents. To within experimental 
error, this appears to be the case (Hocken and Moldover, 1976). 

There are some difficulties: there is usually more than one way of 
describing a system, in particular of labelling its states. In one of these 
there may be an obvious symmetry which occurs for some special values 
of the parameters. In another formulation this symmetry may not be 
obvious at all. Thus if the second formulation were used, and these special 
values of the parameters were accidentally chosen, then the critical expo- 
nents could be unexpectedly different from those appropriate to other 
values. 

Also, in this book the solution of the two-dimensional 'eight-vertex' 
model will be presented. This has exponents that vary continuously with 
the parameters in the Hamiltonian. This violates the universality hypoth- 
esis, but it is now generally believed that such violations only occur for 
very special classes of Hamiltonians. 

It should be noted that scaling and universality, while commonly grouped 
together, are independent assumptions. One may be satisfied and the other 
not, as in the case of the eight-vertex model, where universality fails but 
scaling appears to hold. 

1.4 The Partition Function 

How do we calculate thermodynamic functions such as M ( H ,  T) from the 
microscopic forces between the components of the system? The answer 
was given by John Willard Gibbs in 1902. Consider a system with states 
s and Hamiltonian E(s). Form the partition function 

where k is Boltzmann's constant and the summation is over all allowed 
states s of the system. Then the free energy F is given by 

F = - k T l n Z .  (1.4.2) 



Also, the probability of the system being in a state s is 

Z-' exp[- E(s)lkT] , (1.4.3) 

so if X is some observable property of the system, such as its total energy 
or magnetization, with value X(s) for state s, then its observed average 
thermodynamic value is 

(X )  = Z-' z X(s) exp[ - E(s)lkT] . (1.4.4) 
S 

In particular, the internal energy is 

U = (E) 

= 2-' E(s) exp[ - E(s)lkT] , (1.4.5) 
S 

and by using the above definitions (1.4.1) and (1.4.2) we can verify that 

a 
= - T2 - (FIT) , aT 

in agreement with standard thermodynamics. 
The basic problem of equilibrium statistical mechanics is therefore to 

calculate the sum-over-states in (1.4.1) (for continuum systems this sum 
becomes an integral, for quantum mechanical ones a trace). This will give 
Z and F as functions of T and of any variables that occur in E(s), such as 
a magnetic field. The thermodynamic properties can then be obtained by 
differentiation. 

Unfortunately, for any realistic interacting system of macroscopic size, 
including the examples mentioned above, the evaluation of Z is hopelessly 
difficult. One is therefore forced to do one or both of the following: 

A. Replace the real system by some simple idealization of it: this 
idealization is known as a model. Mathematically, it consists of 
specifying the states s and the energy Hamiltonian function E(s). 

B. Make some approximation to evaluate the sum-over-states (1.4.1). 

1.5 Approximation Methods 

Let us consider the step (B) above. Some of the better-known approxi- 
mation schemes are: 

(i) Cell or cluster approximations. In these the behaviour of the whole 
system is extrapolated from that of a very few components inside 
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some 'cell', approximations being made for the interaction of the 
cell with the rest of the system. Examples are the mean-field (Bragg 
and Williams, 1934; Bethe, 1935), quasi-chemical (Guggenheim, 
1935) and Kikuchi (1951) approximations. They have the advantage 
of being fairly simple to solve; they predict the correct qualitative 
behaviour shown in Figs. 1.1 to 1.3, and are reasonably accurate 
except near the critical point (Domb, 1960, pp. 282-293; Burley, 
1972). 

(ii) Approximate integral equations for the correlation functions, 
notably the Kirkwood (1935), hyper-netted chain (van Leeuwen et 
al., 1959) and Percus-Yevick (Percus and Yevick, 1958; Percus, 
1962) equations. These give fairly good numerical values for the 
thermodynamic properties of simple fluids. 

(iii) Computer calculations on systems large on a microscopic scale (e.g. 
containing a few hundred atoms), but still not of macroscopic size. 
These calculations evaluate Z by statistically sampling the terms on 
the RHS of (1.4.1), so are subject to statistical errors, usually of a 
few per cent. For this reason they are really 'approximations' rather 
than 'exact calculations'. 

(iv) Series expansions in powers of some appropriate variable, such as 
the inverse temperature or the density. For very realistic models 
these can only be obtained to a few terms, but for the three- 
dimensional Ising model expansions have been obtained to as many 
as 40 terms (Sykes et al., 1965, 1973a). 

The approximation schemes (i) to (iii) can give quite accurate values for 
the thermodynamic properties, except near the critical point. There is a 
reason for this: they all involve neglecting in some way the correlations 
between several components, or two components far apart. However, near 
T, the correlations become infinitely-long ranged, all components are 
correlated with one another, and almost any approximation breaks down. 
This means that approximations like (i), (ii) and (iii) are of little, if any, 
use for determining the interesting cooperative behaviour of the system 
near T,. 

Method (iv) is much better: if sufficient terms can be obtained then it 
is possible, with considerable ingenuity, to obtain plausible guesses as to 
the nature of the singularities of the thermodynamic functions near the 
critical point. In particular, the best estimates to date of critical exponents 
in three dimensions have been obtained by the series expansion method. 
However, an enormous amount of work is required to obtain the series, 
and the resulting accuracy of the exponents is still not as good as one would 
like. 
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(v) There is another approach, due to Kadanoff (1966) and Wilson 
(1971) (see also Wilson and Kogut, 1974; Fisher, 1974): this is the 
so-called renormalization group. In this method the sum over states 
(1.4.1) is evaluated in successive stages, a 'renormalized' Hamil- 
tonian function E(s) being defined at each stage. This defines a 
mapping in Hamiltonian space. If one makes some fairly mild 
assumptions about this mapping, notably that it is analytic, then it 
follows that the thermodynamic functions do have branch-point 
singularities such as (1.1.4) at T,, that the scaling hypothesis (1.2.1) 
and the relations (1.2.12)-(1.2.16) are satisfied, and that the expo- 
nents of the singularities should normally be universal (Fisher, 1974, 
p. 602). 

In principle, the renormalization group approach could be carried 
through exactly. However, this is more difficult than calculating the par- 
tition function directly, so to obtain actual numerical results some approx- 
imation method is needed for all but the very simplest models. The fas- 
cinating result is that quite crude cell-type approximations give fairly 
accurate values of the critical exponents (Kadanoff et al., 1976). The reason 
for this is not yet fully understood. 

To summarize: approximate methods (step B) either fail completely near 
T,, or require considerable acts of faith in the assumptions made. 

1.6 Exactly Solved Models 

Another approach is to use step A to the fullest, and try to find models 
for which E(s) is sufficiently simple that the partition function (1.4.1) can 
be calculated exactly. This may not give useful information about the values 
of the thermodynamic functions of real systems, but it will tell us quali- 
tatively how systems can behave, in particular near T,. In fact if we could 
solve a model with the same dimensionality and symmetry as a real system, 
universality asserts that we should obtain the exact critical exponents of 
the real system. 

There is a further condition for universality, which was not mentioned 
in Section 1.3. In most physical systems the intermolecular forces are 
effectively short ranged: in inert gases they decay as r-', r being the distance 
between molecules; in crystals it may be sufficient to regard each atom as 
interacting only with its nearest neighbour. The infinite-range correlations 
that occur at a critical point are caused by the cooperative behaviour of 
the system, not by infinite-range interactions. 
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If, on the other hand, sufficiently long-range interactions are included 
in E(s ) ,  they clearly can affect the way the correlations become infinite 
near T,, and it comes as no surprise that critical exponents can be altered 
in this way. Thus universality only applies to systems with the same range 
of interactions. To obtain the correct critical behaviour, a model of a real 
system should not introduce non-physical long-range interactions. 

Unfortunately no short-range genuinely three-dimensional model has 
been solved. The simplest such model is the three-dimensional Ising model 
(which will be defined shortly): this has been extensively investigated using 
the series expansion method (Gaunt and Sykes, 1973), but no exact solution 
obtained. 

The models of interacting systems for which the partition function (1.4.1) 
has been calculated exactly (at least in the limit of a large system) can 
generally be grouped into the following four classes. 

One-Dimensional Models 

One-dimensional models can be solved if they have finite-range, decaying 
exponential, or Coulomb interactions. As guides to critical phenomena, 
such models with short-range two-particle forces (including exponentially 
decaying forces) have a serious disadvantage: they do not have a phase 
transition at a non-zero temperature (van Hove, 1950; Lieb and Mattis, 
1966). The Coulomb systems also do not have a phase transition, (Lenard, 
1961; Baxter, 1963, 1964 and 1965), though the one-dimensional electron 
gas has long-range order at all temperatures (Kunz, 1974). 

Of the one-dimensional models, only the nearest-neighbour Ising model 
(Ising, 1925; Kramers and Wannier, 1941) will be considered in this book. 
It provides a simple introduction to the transfer matrix technique that will 
be used for the more difficult two-dimensional models. Although it does 
not have a phase transition for non-zero temperature, the correlation length 
does become infinite at H = T = 0, so in a sense this is a 'critical point' and 
the scaling hypothesis can be tested near it. 

A one-dimensional system can have a phase transition if the interactions 
involve infinitely many particles, as in the cluster interaction model (Fisher 
and Felderhof, 1970; Fisher, 1972). It can also have a phase transition if 
the interactions become infinitely long-ranged, but then the system really 
belongs to the following class of 'infinite-dimensional' models. 

'Infinite Dimensional' Models 

To see what is meant by an 'infinite dimensional' system, one needs a 
working definition of the effective dimensionality of a Hamiltonian. For 
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a system with finite or short-range interactions in all available directions 
there is usually no problem: the dimensionality is that of the space 
considered. 

For other systems, a useful clue is to note that the dimensionality of a 
lattice can be defined by starting from a typical site and counting the 
number of sites that can be visited in a walk of n steps. For a d-dimensional 
regular lattice and for n large, this is proportional to the volume of a box 
of side n ,  i.e. to nd. The larger the dimensionality, the more close neighbours 
there are to each site. 

If the number of neighbours becomes infinite, then the system is effec- 
tively infinite-dimensional. Such a system is the mean-field model discussed 
in Chapter 3. In Chapter 4 the Ising model on the Bethe lattice is considered. 
This 'lattice' has the property that the number of neighbours visited in n 
steps grows exponentially with n .  This is a faster rate of growth than nd, 
no matter how large d is, so again this model is infinite-dimensional. 

The results for these two models are the same as those obtained from 
the mean-field and Bethe approximations, respectively, for regular lattices 
(Section 1.5). Thus these two approximations are equivalent to replacing 
the original Hamiltonian by an infinite-dimensional model Hamiltonian. 

Kac et al. (196314) considered a solvable one-dimensional particle model 
with interactions with a length scale R. For such a model it is appropriate 
to define 'close neighbours' as those particles within a distance R of a given 
particle. They then let R + c~ and found that in this limit (and only in this 
limit) there is a phase transition. From the present point of view this is not 
surprising: by letting R+ w the number of close neighbours becomes 
infinite and the system effectively changes from one-dimensional to 
infinite-dimensional. A remarkable feature of this system is that the equa- 
tion of state is precisely that proposed phenomenologically by van der 
Waals in 1873 (eq. 1.10.1). All these three 'infinite-dimensional' models 
satisfy the scaling hypothesis (1.2.1), and have classical exponents (see 
Section 1.10). 

The Spherical Model 

As originally formulated (Montroll, 1949; Berlin and Kac, 1952), this 
model introduces a constraint coupling all components equally, no matter 
how far apart they are. Thus it is 'unphysical' in that it involves infinite 
range interactions. However, Stanley (1968) has shown that it can be 
regarded as a limiting case of a system with only nearest neighbour inter- 
actions. The model is discussed in Chapter 5. It is interesting in that its 
exponents are not classical in three dimensions. 
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Two-Dimensional Lattice Models 

There are a very few two-dimensional models that have been solved (i.e. 
their free energy calculated), notably the Ising, ferroelectric, eight-vertex 
and three-spin models. These are all 'physical' in that they involve only 
finite-range interactions; they exhibit critical behaviour. The main attention 
of this book will be focussed on these models. 

It is of course unfortunate that they are only two-dimensional, but they 
still provide a qualitative guide to real systems. Indeed, there are real 
crystals which have strong horizontal and weak vertical interactions, and 
so are effectively two-dimensional. Examples are KzNiF4 and Rb2MnF4 
(Birgenau et al., 1973; Als-Nielsen et al., 1975). The models may provide 
a very good guide to such crystals. 

What is probably more unfortunate is that most of the two-dimensional 
models have only been solved in zero field (H = 0), so only very limited 
information on the critical behaviour has been obtained and the scaling 
functions h(x)  have not been calculated. The one exception is the ferro- 
electric model in the presence of an electric field, but this turns out to have 
an unusual and atypical behaviour (Section 7.10). 

1.7 The General Ising Model 

Most of the models to be discussed in this book can be regarded as special 
cases of a general Ising model, which can be thought of as a model of a 
magnet. Regard the magnet as made up of molecules which are constrained 
to lie on the sites of a regular lattice. Suppose there are N such sites and 
molecules, labelled i = 1, . . . , N. 

Now regard each molecule as a microscopic magnet, which either points 
along some preferred axis, or points in exactly the opposite direction. Thus 
each molecule i has two possible configurations, which can be labelled by 
a 'spin' variable ai with values + 1 (parallel to axis) or - 1 (anti-parallel). 
The spin is said to be 'up' when o;: has value + 1, 'down' when it has value 
-1. Often these values are written more briefly as + and -. Let 

denote the set of all N spins. Then there are 2N values of a, and each such 
value specifies a state of the system. For instance, Fig. 1.5 shows a system 
of 9 spins in the state 
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The Hamiltonian is now a function E ( q  , . . . , aN) of the N spins 
q, . . . , aN, or more briefly a function E(a) of a. It is made up of two 
parts: 

E(a) = Eo(4 + &(a) , (1.7.2) 

where Eo is the contribution from the intermolecular forces inside the 
magnet, and El(o) is the contribution from the interactions between the 

Fig. 1.5. An arrangement of spins on a square lattice with labelled sites. Full circles 
denote up (positive) spins, open circles denote down (negative) spins. 

spins and an external magnetic field. Since ai is effectively the magnetic 
moment of molecule i, El(a) can be written as 

where H is proportional to the component of the field in the direction of 
the preferred axis. From now on we shall refer to H simply as 'the magnetic 
field'. The sum in (1.7.3) is over all sites of the lattice, i.e. over i = 
1 , .  . . ,N .  

In a physical system we expect the interactions to be invariant under 
time reversal, which means that E is unchanged by reversing all fields and 
magnetizations, i.e. by negating Hand q , . . . , ON. It follows that Eo must 
be an even function of a, i.e. 

These relations define a quite general Ising model, special cases of which 
have been solved. From a physicist's point of view it is highly simplified, 
the obvious objection being that the magnetic moment of a molecule is a 
vector pointing in any direction, not just up or down. One can build this 
property in, thereby obtaining the classical Heisenberg model (Stanley, 
1974), but this model has not been solved in even two dimensions. 

However, there are crystals with highly anisotropic interactions such that 
the molecular magnets effectively point only up or down, notably FeC12 
(Kanamori, 1958) and FeC03 (Wrege et al., 1972). The three-dimensional 
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Ising model should give a good description of these, in fact universality 
implies that it should give exactly correct critical exponents. 

The gaps in Sections 1.1, 1.2 and 1.4, notably a statistical-mechanical 
definition of M(H,  T) and the critical exponents a ,  v, q, p, can now be 
filled in. From (1.4.1), (1.7.2) and (1.7.3), the partition function is a 
function of N, H and T, so can be written 

ZN(H, T) = C expi-[Eo(o) - H 2 q]lkT). (1.7.5) 
0 1 

Free Energy and Specific Heat 

Physically, we expect the free energy of a large system to be proportional 
to the size of the system, i.e. we expect the thermodynamic limit 

f ( H ,  T) = -kT lim N-' In ZN(H,  T) (1.7.6) 
N+ m 

to exist, f being the free energy per site. 
We also expect this limit to be independent of the way it is taken. For 

example, it should not matter whether the length, breadth and height of 
the crystal go to infinity together, or one after the other: so long as they 
do all ultimately become infinite. 

From (1.4.6), the internal energy per site is 

The specific heat per site is defined to be 

a 
C(H, T) =-u(H, T).  

aT 
(1.7.8) 

It has been usual to define two critical exponents a and d by asserting 
that near T, the zero-field specific heat diverges as a power-law, i.e. 

where t is defined by (1.1.3). 
The difficulty with this definition is that C(0, T) may remain finite as t 

goes to zero through positive (or negative) values, even though it is not 
an analytic function at t = 0. For instance C(0, T) may have a simple jump 
discontinuity at t = 0, as in the mean-field model of Chapter 3. 

To obtain an exponent which characterizes such behaviour it is better 
to proceed as follows. 
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Let f+(O, T) and f-(0, T) be the zero-field free energy functions for 
T > Tc and T < Tc, respectively. Analytically continue these functions into 
the complex T plane and define the 'singular part' of the free energy to be 

Near T = Tc this usually vanishes as a power law, and a can be defined 
by 

fs(O , T) - t2-a ast+O. (1.7. lob) 

This definition is equivalent to (1.7.9) (with a' = a) for those cases 
where u(0, T) is continuous and C(0, T) diverges both above and below 
Tc . 

It used to be thought that the only possible singularity in f(0, T) was a 
jump-discontinuity in some derivative off .  If the first r - 1 derivatives 
were continuous, but the rth derivative discontinuous, then it was said that 
the system had a 'transition of order r'. In particular, a discontinuity in u 
(i.e. latent heat) is called a first-order transition. 

While it is now known that this classification is not exhaustive, such 
behaviour is included in (1.7.10): a transition of order r corresponds to 
2 - a = r. In particular, a = 1 for a first-order transition. 

From (1.7.8), the definition (1.7.10) implies that u(0 , T) contains a term 
proportional to t l -".  Since u(0, T) is usually bounded, it follows that 

The exponent a may be negative. 

Magnetization 

The magnetization is the average of the magnetic moment per site, i.e., 
using (1.4.4), 

M(H,T)  = N - ' ( q + .  . . + ON), (1.7.12) 

Differentiating (1.7.5) with respect to H, and using (1.7.6), one obtains 
that in the thermodynamic limit (N+ m )  
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Since the summand in (1.7.5) is unchanged by negating Hand a, ZN and 
f a r e  even functions of H, so M is an odd function, i.e. 

From (1.7.12) it lies in the interval 

Differentiating (1.7.13) with respect to H and using (1.1.1) and (1.4.4), 
the susceptibility is 

dM 
x== 

where 

Using only the fact that the average of a constant is the same constant, 
(1.7.17) can be written 

x = (Nk T )  -' ([A - (A) j') . (1.7.19) 

Thus x is the average of a non-negative quantity, so 

The magnetization M is therefore an odd monotonic increasing function 
of H, lying in the interval (1.7.16), as indicated in Fig. 1.1. 

Note that for finite N, Z is a sum of analytic positive functions of H, so 
f and Mare also analytic. The discontinuity in Fig. l .l(a), and the singularity 
in Fig. l . l (b) ,  can only occur when the thermodynamic limit is taken. 

The critical exponents p, 6, y, y' associated with the magnetization have 
been defined in Section 1 .l. The scaling relations (1.2.13) can be obtained 
by integrating (l.7.14), using the scaling hypothesis (1.2.1). 

Correlations 

The correlation between spins i and j is 

gij = (aiai> - (ai) (4 . (1.7.21) 

If Eo(a) is translation invariant, as is usually the case, (q) is the same for 
all sites i, so from (1.7.12), 



Also, gv will depend only on the vector distance rij between sites i and j, 
i.e. 

gij = g(rij) (1.7.23) 

where g(r) is the correlation function. 
Away from Tc the function g(r) is expected to decay exponentially to 

zero as r becomes large. More precisely, if k is some fixed unit vector, we 
expect that 

where z is some number and 5 is the correlation length in the direction k. 
The correlation length is a function of H and T, and is expected to 

become infinite at Tc. In fact, this property of an infinite correlation length 
can be regarded as the hallmark of a critical point. In particular, it is 
expected that 

E(0, T) - t-" ast+O+ (1.7.25) 
- (- t)-"' ast+O-, 

where v and v' are the correlation length critical exponents. 
It is a little unfortunate that also depends on the direction k. However, 

near T, this dependence is expected to disappear and the large-distance 
correlations to become isotropic (see for example McCoy and Wu, 1973, 
p. 306). Thus the exponents v and v' should not depend on the direction 
in which is defined. 

At the critical point itself, the correlation function g(r) still exists, but 
instead of decaying exponentially decays as the power law 

where is a critical exponent. 
In scaling theory, these properties are simple corollaries of the correlation 

scaling hypothesis, which is that near T,, for r - 5, 

g(r) - r-d+2-'l D(rlg, t l ~ ) - " ~ ' )  . (1.7.27) 

The susceptibility can be expressed in terms of g(r). To do this, simply 
sum (1.7.21) over all sites i and j. From (1.7.17) it immediately follows 
that 

x =  ( N ~ T ) - ~ X I : ~ ~ .  
i j 

(1.7.28) 

For a translation-invariant system, 

X gij = g(q)  = independent of i , (1.7.29) 
i I 
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so (1.7.28) becomes 

x = (kT)-' g(roj) , (1.7.30) 
I 

where 0 is some fixed site in the lattice. 
Near Tc the function g(r) is an isotropic bounded slowly varying function 

of r ,  so the summation can be replaced by an integration, giving 

x- ~ g ( r ) r d '  dr .  

Making the substitution r = x g  and using (1.7.27), it follows that near Tc 

x- g2-? (1.7.32) 

The scaling relations (1.2.14) now follow from the definitions of y, y', 
v, v' and the equality of y and y'. 

Interfacial Tension 

This quantity is defined only on the cut in Fig. 1.2, i.e. for H = 0 and 
T < T,. If the cut is approached from above, i.e. H goes to zero through 
positive values, the equilibrium state is one in which most spins are up. If 
the cut is approached from below, most spins are down. 

At H = 0 these two equilibrium states can coexist: the crystal may consist 
of two large domains, one in one state, the other in the other. The total 
free energy is then 

where Nf is the normal bulk free energy and Ls is the total surface free 
energy due to the interface between the domains. If L is the area of this 
interface, then s is the interfacial tension per unit area. 

It will be shown in Section 1.9 that there is a correspondence between 
the magnetic model used here and a model of a liquid - gas transition. In 
the latter teminology, s is the surface tension of a liquid in equilibrium 
with its vapour, e.g. water and steam at 100°C. 

The interfacial tension is not usually emphasized in the theory of critical 
phenomena, but it is one of the thermodynamic quantities that can be 
calculated for the exactly soluble two-dimensional models, so is of interest 
here. It is a function of the temperature T. 

As T approaches Tc from below, the two equilibrium states become the 
same, so s goes to zero. It is expected that near T, 
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where p is yet another critical exponent, the last to be defined in this book. 
Widom (1965) used scaling arguments to suggest that near T, 

from which the scaling relation (1.2.15) follows. He also obtained the 
hyper-scaling relation (1.2.16). 

1.8 Nearest-Neighbour Ising Model 

The discussion of Section 1.7 applies for any even Hamiltonian Eo(a), 
subject only to some implicit assumptions such as the existence of the 
thermodynamic limit (1.7.6) and a ferromagnetic critical point. 

The simplest such Hamiltonian is one in which only nearest neighbours 
interact, i.e. 

Eo(a) = - J  2 aiaj (1.8.1) 
(i.i) 

where the sum is over all nearest-neighbour pairs of sites in the lattice. 
This is the normal Ising model mentioned in Section 1.6. If J is positive 
the lowest energy state occurs when all spins point the same way, so the 
model is a ferromagnet. 

A great deal is known about this model, even for those cases where it 
has not been exactly solved, such as in three dimensions, or in two dimen- 
sions in the presence of a field. For instance, one can develop expansions 
valid at high or low temperatures. 

From (1.7.5), the partition function is 

K C. aiq + h  C ai , 
i I (1.8.2) 

(i.i) 

where 

K = J I k T ,  h = H l k T ,  (1.8.3) 

so ZN can be thought of as a function of h  and K. From (1.7.6) and (1.7.14) 
the magnetization per site is 

a 
M = - lim N-' In ZN(h , K) . (1.8.4) 

ah N-+m 

It is easy to produce a plausible, though not rigorous, argument that M 
should have the behaviour shown in Fig. 1.1, and that there should be a 
critical point at H = 0 for some positive value T, of T. This will now be 
done. 
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For definiteness, consider a square lattice (but the argument applies to 
any multi-dimensional lattice). The RHS of (1.8.2) can be expanded in 
powers of K, giving 

where 

Substituting this expansion into (1.8.4) gives 

M = tanh h (1 + 4 sech2 h [K + (3 - 7t2) K2 + 0(K3)]). (1.8.7) 

All terms in this expansion are odd analytic bounded functions of h. 
Assuming that the expansion converges for sufficiently small K, i.e. for 
sufficiently high temperatures, it follows that for such temperatures 
M(H , T) has the graph shown in Fig. l.l(c). In particular, it is continuous 
at H = 0 and 

Mo(T) = M(0 , T) = 0 , T sufficiently large . (1.8.8) 

Alternatively, at low temperatures K is large and the RHS of (1.8.2) 
can be expanded in powers of 

The leading term in this expansion is the contribution to Z from the state 
with all spins up (or all down). The next term comes from the N states 
with one spin down and the rest up (or vice versa); the next from the 2N 
states with two adjacent spins down (or up), the next term comes from 
either states with two non-adjacent spins, or a spin and two of its neighbours, 
or four spins round a square, reversed; and so on. This gives 

The first series in curly brackets is the contribution from states with 
almost all spins up, the second from states with almost all spins down. 
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Equation (1.8.10) can be written 

zN = eNW(h , K )  + eNW(-h ,K) 

where 

q ( h , ~ ) = 2 ~ + h + u ~ e - "  

+ 2u3 e-4h + u4(-2$ e-4h + 6 e-6h + e-sh) 

To any order in the u-expansion, q(h , K) is independent of N, provided 
N is sufficiently large. 

If h is positive, the first term on the RHS of (1.8.11) will be larger than 
the second. In the limit of N large it will be the dominant contribution to 
ZN, SO from (1.8.4) 

and the spontaneous magnetization is 

Mo(T) = lim M 
h+o+ 

If these expansions converge for sufficiently small u (i.e. sufficiently 
low temperatures), then Mo is positive for small enough u. Remembering 
that M(H, T) is an odd function of H, it follows that at low temperatures 
M(H,  T) has the graph shown in Fig. l .l(a), with a discontinuity at 
H=O.  

The function Mo(T) is therefore identically zero for sufficiently large T, 
but strictly positive for sufficiently small T. At some intermediate tem- 
perature T, it must change from zero to non-zero, as indicated in Fig. 1.3, 
and at this point must be a non-analytic function of T. Thus there must be 
a 'critical point' at H = 0, T = T,, where the thermodynamic functions 
become non-analytic, as indicated in Fig. 1.2. 

This argument does not preclude further singularities in the interior of 
the ( H  , T) half-plane, but Figs. 1.1 to 1.3 are the simplest picture that is 
consistent with it. 

Parts of the argument, or variants of them, can be made quite rigorous. 
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For instance, as long ago as 1936 Peierls proved that Mo(T)  is positive for 
sufficiently low temperatures (see also Griffiths, 1972, p. 59). 

The argument fails for the one-dimensional Ising model. This is because 
the next-to-leading term in the low temperature u expansion comes from 
states such as that shown in Fig. 1.6, where 8 line of adjacent spins are all 

Fig. 1.6. An arrangement of spins in a one-dimensional Ising model that contributes 
to next-to-leading order in a low-temperature expansion. Full circles denote up 

spins, open circles down spins. 

reversed, rather than just a single spin. There are fN(N - 1) such states, 
instead of N, so even to this order ZN is not of the form (1.8.11). This of 
course is consistent with the fact that the one-dimensional model does not 
have a phase transition at non-zero temperatures. 

1.9 The Lattice Gas 

As well as being a model of a magnet, the Ising model is also a model of 
a fluid. 

To see this rather startling fact, consider a fluid composed of molecules 
interacting via some pair potential $(r). Typically this potential will have 
a hard-core (or at least very strong short-range repulsion), an attractive 
well and a fairly rapidly decaying tail. The usual example is the Lennard 
- Jones potential 

$(r) = 4&[(rdr)l2 - ( r ~ l r ) ~ ]  (1.9.1) 

shown in Fig. 1.7(a). 
Instead of allowing the molecules to occupy any position in space, restrict 

them so that their centres lie only on the sites of some grid, or lattice. If 
the grid is fairly fine this is a perfectly reasonable step: indeed it is a 
necessary one in almost any numerical calculation. 

Since $(r) is infinitely repulsive at r = 0, no two molecules can be centred 
on the same site. With each site i associate a variable s, which is zero if the 
site is empty, one if it is occupied. If there are N sites, then any spatial 
arrangement of the molecules can be specified by s ={sl,. . . , sN}  . The 
number of molecules in such an arrangement is 
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( b )  

Fig. 1.7. Interaction potentials for a model fluid: (a) Lennard- Jones, (b) 
square-well. 

and the total potential energy is 

where the sum is over all pairs of sites on the lattice (not necessarily nearest 
neighbours) and Gij = $(rij) is the interaction energy between molecules 
centred on sites i and j. 

The grand-canonical partition function is then 

Z = exp[(np - E)IkT] , (1.9.4) 
S 

where p is the effective chemical potential (for classical systems the con- 
tribution of the integrations in momentum space can be incorporated into 
PI. 
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In appropriate units, the pressure is 

P =  ~ - ' k ~ l n Z ,  (1.9.5) 

the density is the average number of molecules per site, i.e. 

p = (n)IN 

and the compressibility is 

the differentiations being performed at constant temperature. 
The Lennard - Jones potential (1.9.1) is a fairly realistic one, but the 

qualitative features of the liquid - gas transition are not expected to depend 
on the details of the potential: it should be sufficient that it have short- 
range repulsion and an attractive well. Thus @v should be large and positive 
when sites i and j are close together: negative when they are a moderate 
distance apart; and zero when they are far apart. The simplest such choice 
is 

- - - E if i and j are nearest neighbours , 
= 0 otherwise. (1.9.8) 

This corresponds to the 'square well' potential shown in Fig. 1.7(b), which 
is often used in model calculations. 

Letting @ii = ++co is equivalent to taking the potential to be infinitely 
repulsive if two molecules come together, i.e. to prohibiting two molecules 
from occupying the same site. This feature has already been built into the 
formulation, so if (Pii is given by (1.9.8), then from (1.9.3) the energy is 

E =  - & X s i s i ,  (1.9.9) 
( i d  

the sum now being only over nearest-neighbour pairs of sites on the lattice. 
It is now trivial to show that (1.9.4) is the partition function of a 

nearest-neighbour Ising model in a field. Replace each si by a 'spin' Ui, 
where 
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Thus c-q = -1 if the site is empty, +1 if it is full. If each site has q 
neighbours, there are fNq nearest-neighbour pairs, and eliminating n, E, 
sl, . . . , SN between equations (1.9.2), (1.9.4), (1.9.9) and (1.9.10) gives 

Comparing this with (1.8.2) and (1.8.3), it is obvious that, apart from 
a trivial factor, Z is the partition function of an Ising model with 

J = d 4 ,  H = ( 2 p + q ) / 4 .  (1 -9.12) 

Using also (1.9.5)-(1.9.7), (1.7.6), (1.7.14) and (1.7.18), one can establish 
the following expressions for the lattice gas variables in terms of those of 
the Ising model: 

The known general behaviour of the king model can now be used to 
obtain the form of the equation of state of the lattice gas. To do this, 
consider a fixed value of T. Then (1.9.15) and (1.9.16) define P and p as 
functions of H. Using also (1.7.14) and (1.7.20), it is easily seen that 

so both P and p are monotonic increasing functions of H. When H is large 
(positive or negative) the dominant term in the Ising model partition 
function is one in which all spins are alike, so 

From (1.7.14), (1.9.15) and (1.9.16) it follows that 

Since P and p are monotonic increasing functions of H, from (1.9.20) they 
must be positive. 
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For T > Tc, f and M, and hence P and p, are continuous functions of 
H. Thus P is a monotonic increasing function of p, and a monotonic 
decreasing function of the volume per molecule 

u = p-' . (1.9.22) 

As u increases from 1 to m, P decreases from infinity to zero. 
For T < T,, M is a discontinuous function of H as shown in Fig. l .l(a). 

Thus p and u have a discontinuity (but P does not). 

Fig. 1.8. Typical (P , u )  isotherms for a simple fluid whose intermolecular inter- 
actions have a hard core. The upper two isotherms are for temperatures greater 
than T,, the middle one is the critical isotherm (T  = T,), and the lower two are for 

temperatures less than T,. 

Noting also that the expansion coefficient 

of a fluid is usually positive (an exception is water between 0°C and 4"C), 
it follows that the ( P ,  u) isotherms of the lattice gas (in any dimension 
greater than one) have the general structure indicated in Fig. 1.8. These 
are typical isotherms of a fluid in which the intermolecular potential has 
a hard core. 

The point C in this figure is the critical point, and corresponds to the 
critical point H = 0, T = Tc in Fig. 1.2. 

Since M = 0 at this point, we see from (1.9.14) and (1.9.16) that the 
critical values of p, p and u for the lattice gas are 
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At T = T,, from (1 .1 .5)  and (1.9.16) we expect that 

U ,  - v - H~~~ asH-0.  (1.9.24) 

Since P - PC is proportional to H for small H, it follows that near C the 
equation of the critical isotherm is 

P -  P C - ( v , -  v ) ~ .  (1.9.25) 

For T < T, an isotherm breaks up into three parts: that part to the left 
of the broken curve in Fig. 1.8, corresponding to fairly high densities and 
to a liquid state; the low-density part to the right, corresponding to a gas; 
and the horizontal line in between, corresponding to the two-phase region 
where the liquid can co-exist with its vapour. The broken curve is known 
as the co-existence curve. It corresponds to the cut in Fig. 1.2, where 
H = 0 and M = +Mo(T) .  From (1.9.16) and (1.9.23),  we see that on this 
curve 

From (1 .1 .3) ,  (1 .1 .4)  and (1.9.22),  it follows that near T,, the equation 
of the co-existence curve in the ( v  , T )  plane is 

Near the critical point P - PC is proportional to t ,  so from (1.9.27) the 
equation of the co-existence curve in the ( v  , P )  plane is 

PC - P - lu - ucll'B. (1.9.28) 

Equations (1.9.25) and (1.9.28) relate the exponents 6 and 6 to the 
liquid - gas critical point. To do the same for m, y and y', first note that 
M = 0 on the line segment H = 0, T > T, in Fig. 1.2. From (1.9.16) this 
line segment therefore corresponds to the critical isochore u = v,. From 
(1.7.7)-(1.7.9) and (1.9.15),  and (1.1.6) and (1.9.17),  it follows that 

a 2 ~ l d ~ 2  - cn, kT - tcY (1.9.29a) 

as C is approached from above along the critical isochore v = u,. 
The line segment H = 0, T <  T, in Fig. 1.2 corresponds to the co- 

existence curve in Fig. 1.8, so 

d 2 ~ l d ~ 2  - ( - t ) - d ,  k T -  (-t)-' (1.9.29b) 

as C is approached along the co-existence curve, the differentiation being 
performed on this curve. 

These definitions (1.9.29) of a and d are the analogue of (1 .7 .9) ,  and 
suffer from the same difficulties. If dPIdT is not continuous, or if d2pldT2 
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does not diverge at C, it is better to use the analogue of (1.7.10) and define 
a single exponent a as follows. 

Let P+(T) be the pressure when v = v, and T > Tc; P-(T) be the pressure 
when v lies on the co-existence curve and T < T,. Analytically continue 
these functions into the complex T-plane and define Ps(T) and a by 

Ps(T) = P+(T) - P-(T) - t2-". (1.9.30) 

To summarize this section: the Ising model of a magnet is also a model 
of a lattice gas; it merely depends whether one uses 'magnetic language' 
(spins up or down) or 'particle language' (sites occupied or empty). In the 
second language the critical exponents 6, P, y, y', a are defined by (1.9.25), 
and (1.9.28)-(1.9.30). 

The magnetic language is more convenient in theoretical calculations: 
it clearly exhibits the symmetries of the Hamiltonian and the thermodyn- 
amic functions, notably the relation M(-H) = -M(H). 

1.10 The van der Waals Fluid and Classical Exponents 

There are phenomenological equations of state, notably that proposed for 
continuum fluids by van der Waals (1873): 

P = kTl(v - b) - alv2 (1.10.1) 

where a and b are constants. This equation is valid only outside the co- 
existence curve, which curve is defined by the Maxwell equal area con- 
struction (Pathria, 1972, p. 376) which ensures that P and p are continuous 
along any isotherm. As we remarked in Section 1.6, it is the exact equation 
of state of a model solved by Kac et al. (196314). 

The critical exponent definitions (1.9.25), (1.9.28-30) apply to any liquid 
- gas critical point, not just that of the simple lattice gas of Section 1.9. 
Equations such as van der Waals predict that near Tc the critical isotherm 
is a cubic curve, and the coexistence curve a parabola. From (1.9.25) and 
(1.9.28) this implies 

Also, the van der Waals equation (1.10.1) has a critical point at 

Tc = 8a/27bk, vc = 3b. (1.10.3) 

Near this point it is readily verified that kT - t-', so 
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On the critical isochore it is easily seen from (1.10.1) that 

while on the coexistence curve a more complicated calculation gives 

Thus a 2 ~ / a ~ 2  is finite at C but has a jump discontinuity on going from the 
critical isochore to the co-existence curve. The definitions (1.9.29) of a 
and d fail, but (1.9.30) gives 

The values (1.10.2), (1 .lO.4), (1 .lO.7) of the critical exponents are 
known as the classical values. They satisfy the scaling relations (1.2.12) 
and (1.2.13), and are the values given by the simple 'infinite dimensional' 
mean field and Bethe lattice models (Chapters 3 and 4). They are not 
correct for the nearest-neighbour Ising model in two or three dimensions, 
but it is now generally believed (Fisher, 1974, p.607) that they are correct 
in four or more dimensions. 



THE ONE-DIMENSIONAL ISING MODEL 

2.1 Free Energy and Magnetization 

Ising proposed his model in 1925 and solved it for a one-dimensional 
system. The solution is presented in this chapter, partly because it provides 
an introduction to the transfer matrix technique that will be used in later 
chapters, as well as for the intrinsic interest of a simple exactly soluble 
model. The one-dimensional model does not have a phase transition at 
any non-zero temperature, but it will be shown that it has a critical point 
at H = T = 0, that critical exponents can be sensibly defined, and that the 
scaling hypothesis and relevant scaling relations are satisfied. 

- - - - - - - -  
1 2 3  N 

Fig. 2.1. The one-dimensional lattice of N sites. 

Consider an Ising model on a line of N sites, labelled successively 
j = 1, . . . , N, as shown in Fig. 2.1. Then the energy of the model is given 
by (1.7.2), (1.7.3) and (1.8.1), i.e. 

Here site N is regarded as being followed by site 1, so that ON+ in (2.1.1) 
is to be interpreted as q. This is equivalent to joining the two ends of the 
line so as to form a circle, or to imposing periodic boundary conditions on 
the system. This is often a useful device, partly because it ensures that all 
sites are equivalent and that the system is translationally invariant. In 

32 
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particular, 
(q) = (02) = . . . = (aN) , 

so from (1.7.12) the magnetization per site is 

M ( H ,  T )  = (4, (2.1.3) 

where 1 is any particular site of the lattice. This result is true for any 
translationally inuariant system. 

From (1.8.2), the partition function is 

where 

K = JIkT, h = HlkT. 

Now we make a vital observation: the exponential in (2.1.4) can be 
factored into terms each involving only two neighbouring spins, giving 

where 
V(a7 d )  = exp[Kad + ih(a  + d)] . (2.1.7) 

This is not the only possible choice of V: it could be multiplied by 
exp [a(a- d ) ]  (for any a) without affecting (2.1.6). However, this choice 
(in which each h q  is shared equally between two V's) ensures that 

V(o, 4 = V ( d ,  4 ,  (2.1.8) 

which we shall see is a useful symmetry property. 
Now look at the RHS of (2.1.6): regard the V(a, d )  as elements of a 

two-by-two matrix 

Then the summations over q, g, . . . , ON in (2.1.6) can be regarded as 
successive matrix multiplications, and the summation over q as the taking 
of a trace, so that 

ZN = Trace vN . (2.1.10) 

At each stage in the procedure, matrix multiplication by V corresponds 
to summing over the configurations of one more site of the lattice. The 
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matrix V is known as the transfer matrix. In later chapters we shall see that 
transfer matrices can be defined for two- and higher dimensional models. 
Equation (2.1.10) is then still satisfied, but unfortunately V becomes an 
extremely large matrix. 

Let xl, x2 be the two eigenvectors of V, and A1, A2 the corresponding 
eigenvalues. Then 

Vxj=;lixj,j= 1 , 2 .  (2.1.11) 

Let P be the two-by-two matrix with column vectors XI, XZ, i.e. 

Since V is a symmetric matrix, it must be possible to choose xl and x2 
orthogonal and linearly independent. Doing so, it follows that the matrix 
P is non-singular, i.e. it has an inverse P-'. Multiplying (2.1.13) on the 
right by P-I gives 

Substituting this expression for V into (2.1.10), the matrix P cancels out, 
leaving 

ZN = Trace ( ; J N  = A r  + Ay 

Let A1 be the larger of the two eigenvalues and write (2.1.15) as 

N-' In ZN = In A1 + N-' In [I + (A2/A1)N] . (2.1.16) 

Since )A21All < 1, the second term on the RHS tends to zero as N-+ 03. 

Thus from (1.7.6) the free energy per site does tend to a limit as 
N -t 03, namely 

f ( H ,  T) = - kT lim N-' lnZN 
N+ m 

Differentiating this result with respect to h, using (1.7.14) and (2.1.5), 
gives 

eK sinh h 
M(H , T) = 

[e2K sinh2 h + e-2K]1 ' 
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The free energy is an analytic function of H and T for all real H and 
positive T. The magnetization M(H, T) is an analytic function of H 7  with 
a graph of the type shown in Fig. l.l(c). Thus the system does not have 
a phase transition for any positive temperature. 

2.2 Correlations 

From (1.4.3), (2.1.1), (2.1.7), the probability of the system being in the 
state a = { @ ,  . . . , u ~ } i s  

zil V(q 7 az) V(az 7 a) V(q 7 04). - . V ( ~ N  7 01). (2.2.1) 

Thus the average value of (say) qq is 

(am) = zil 2 4 V(fi 7 az) V(az 7 03) 0 3  

v ( q 7  04). . . ~ ( u N ,  4. (2.2.2) 

This can also be written in terms of matrices: let S be the diagonal matrix 

i.e. S has elements 
S(u7 d )  = uS(a ,  d ) .  (2.2.4) 

Then the RHS of (2.2.2) can be written as 

Z i l  Trace SVVSV . . . V , (2.2.5) 

SO 

(qq) = zil Trace sv2svN-' . (2.2.6) 

Similarly, if 0 sj - i G N, 

(q) = 2i1 Trace SVN . (2.2.8) 

Note that the translation invariance of the system is explicitly shown in 
these equations: (q) is independent of i and (qq) depends on i and j only 
via their difference j - i. 
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Define a number 

THE ONE-DIMENSIONAL ISING MODEL 

@ by the equation 

Then a direct calculation of the eigenvectors of V, using (2.1.9), (2.1.11) 
and (2.1.12), reveals that the matrix P  can be chosen to be orthogonal, 
being given by 

cos @ - sin @ 
P = (  

sin @ cos @ 

The expressions (2.2.7), (2.2.8) are unchanged by applying the similarity 
transformation (2.1.14) to both V and S, i.e. replacing V, S by 

respectively. 
Substituting these expressions into (2.2.7) and (2.2.8), and taking the 

limit N-,  w (keeping j - i fixed), we obtain 

Together with (2.1.3), this second equation gives us an alternative 
derivation of the magnetization M ( H ,  T). The result is of course the same 
as (2.1.18) above. 

From (1.7.21), (2.2.12) and (2.2.13), the correlation function gV can now 
be evaluated. It is 

for j 3 i. 
Since 1&/All < 1, we see immediately that gij does tend exponentially to 

zero as j - i becomes large, and from (1.7.24) the correlation length lj is 
given (in units of the lattice spacing) by 
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2.3 Critical Behaviour near T = 0 

It is true that JA21All < 1 for all positive temperatures T and all real fields 
H. However, if H = 0, then 

lim (&/Al) = 1 . 
T-tO+ 

The correlation length therefore becomes infinite at H = T = 0. We 
remarked in Section 1.7 that a critical point can be defined as a point at 
which 5 = 03, so in this sense H = T = 0 is a critical point of the one- 
dimensional Ising model. 

This is interesting because it enables us to make some tests of the scaling 
hypotheses discussed in Sections 1.2 and 1.7. We shall find that the tests 
are satisfied. 

The scaling hypothesis (1.2.1) is formulated in terms of M ,  H and 
t = (T  - Tc)/Tc. However, if Tc = 0 it is more sensible to replace these by 
the variables M, h = HIkT, and 

Then h and t measure the deviation of the field and temperature, respec- 
tively, from their critical values. 

The scaling hypothesis (1.2.1) is equivalent to stating that the relation 
between M, h and t is unchanged by replacing them by 

for any positive number A. Thus another way of writing (1.2.1) is (for h, 
t small) 

M = hlhld-'-' @(tlhl-l'Pd) , (2.3.2) 

where @(x) is another scaling function, related to h(x). 
For the one-dimensional Ising model, we see from (2.1.18) and (2.3.1) 

that if lhl< 1, then 

M = hl(t2 + h2)*. (2.3.3) 

Clearly M is a function only of tlh, so the scaling hypothesis (2.3.2) is 
indeed satisfied, with 

/ 3 6 = 1 , 6 = ~ 0 ,  (2.3.4) 

and 

@(x) = (x2 + I ) - ~ .  (2.3.5) 
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The exponent relations (1.2.12) and (1.2.13) are consequences of the 
scaling hypothesis, so must be satisfied. From these and (2.3.4) it follows 
that 

Also, if h = 0 we see from (2.le9) that the eigenvalues of V are 

Al = 2 cosh K , A2 = 2 sinh K , (2.3.7) 

so from (2.3.1) 

When t 4 1, equation (2.2.15) therefore becomes 

which is of the scaling form (1.7.25), with 

At the critical point Al = A2, SO from (2.2.14) the correlation function gv 
is a constant. This is of the scaling form (1.7.26), with 

We can now use these values of the exponents to test the scaling relation 
(1.2.16) and the second of the relations (1.2.14). They are indeed satisfied. 

The other relations v = v', ,u + v = 2 - a cannot be tested, since they 
involve functions defined in the ordered state 0 < T < T, and h = 0. This 
state does not exist for this model. 

The definition (2.3.1) of t is somewhat arbitrary: the RHS could be 
replaced by any positive power of exp(-2K). The effect of this would be 
to multiply each of 2 - a, y and v by the same factor. In view of this, we 
can only say of the critical exponents of the one-dimensional Ising model 
that they satisfy 

Despite the fact that T, = 0, these exponents are still of interest: they 
can be compared with the Ising model exponents for 2, 3 and higher 
dimensions. 



THE MEAN FIELD MODEL 

3.1 Thermodynamic Properties 

In any statistical mechanical system each component interacts with the 
external field and with the neighbouring components. In the mean-field 
model the second effect is replaced by an average over all components. 

Consider a nearest-neighbour Ising model of N spins, with Hamiltonian 
given by (1.7.2),  (1.7.3) and (1.8.1).  If each spin ui has q neighbours, then 
the total field acting on it is 

H + J &  (3.1.1) 

where the sum is over the q neighbouring sites j. In the mean-field model 
this is replaced by 

H + ( N -  l ) - l q ~ & ,  (3 .1 .2)  
j +i 

the sum now being over all N - 1 sites j other than i .  This is equivalent 
to replacing the Hamiltonian by 

where the first sum is over all the iN(N - 1 )  distinct pairs (i  , j ) .  
This 'mean-field' Hamiltonian (3.1.3) is the one that will be considered 

in this chapter. As was remarked in Section 1.6, it is in a sense 'infinite- 
dimensional', since each spin interacts equally with every other. It also has 
the unphysical property that the interaction strength depends on the number 
of particles. Nevertheless, it does give moderately sensible thermodynamic 
properties. 

39 
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For a given configuration of spins, the total magnetization is 
N 

A M , = C O i ,  
i = l  

(3.1.4) 

and (3.1.3) can be written (using 0: =1)  as 

Thus in this model E(u) depends on q , . . . , UN only via A .  This is a 
great simplification: the sum over spin-values in the partition function can 
be replaced by a sum over the allowed values of A ,  weighted by the number 
of spin configurations for each value. 

From (3.1.4), if r of the spins are down (value -1) and N - r are up 
(value +I ) ,  then 

There are (y)  such arrangements of spins, so from (1.7.5) the partition 
~, 

function is 
N 

where 

N !  
Cr = 

r!(N - r)! exp{*pqJ[(N - 2r)2 - N]/(N - 1) 

and 

Also, from (1.4.4), the average magnetization per site is 
N 

The properties of co , . . . , CN are most readily obtained by considering 
dr = C , + ~ / C ~ .  From (3.1.8) 

We are interested in the case when N is large. As r increases from 0 to 
N - 1, the RHS of (3.1.11) increases from large values (of order N) to 
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small values (of order N-I). Provided &J is not too large, this decrease 
must be monotonic. Then there must be a single integer ro such that 

Since c ,+~  =drcr, it follows that c, increases as r goes from 0 to ro, 
decreases as r goes from ro + 1 to N, and that c,, is the largest c,. 

When N and r are both large, (3.1.11) can be written 

where, for -1 < x  < 1, 

Let xo be the solution of the equation 

Then, when N is large, ro is given by 

Regarded as a function of r, c, has a peak at r = ro, the width of the 
peak being proportional to N ~ .  Although this width is large compared to 
one, it is small compared to N. Thus across this peak 1 - 2rlN in (3.1.10) 
can be replaced by 1 - 2rdN. Since values of r outside the peak give a 
negligible contribution to the sums in (3.1.7) and (3.1.10), it follows that 
the magnetization per site is 

From (3.1.14) and (3.1.15), M is given by @(M) = 1, i.e. 

M = tanh[(q JM + H)IkT] . (3.1.18) 

This equation defines M as a function of H and T. It was first obtained 
by Bragg and Williams (1934). The free energy can now be obtained by 
integration, using (1.7.14), or more directly by arguing that when N is large 
the sum in (3.1.7) is dominated by values of r close to ro, so 

-Pf = lim N-' In 2 
N+ m 

= lim N-' In c, 
N+ m 
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Using (3.1.8), Stirling's approximation 

n! - (2n)le-" n n + & ,  

and (3.1.17) and (3.1.18), it follows that 

-flkT = 4 ln[4/(1 - M ~ ) ]  - 2 J M ~ I ~ T .  

This gives f as a function of M and T. 

3.2 Phase Transition 

From (3.1.18), 
H = -qJM + kT artanh(M) . (3.2.1) 

This equation can be used to plot H as a function of M, for -1 < M < 1. 
The graph can then of course be reversed to give M as a function of H. 
If qJ < kT, then the resulting graph is similar to Fig. l .l(c), i.e. a typical 
high-temperature graph, with no spontaneous magnetization. 

However, if qJ > kT, the graph looks like that in Fig. 3.l(a). This graph 
is not sensible, since for sufficiently small H it allows 3 possible values of 
M, whereas M is defined by (1.7.12) or (1.7.14) to be a single-valued 
function of H. 

The source of this contradiction is in the statements preceding equation 
(3.1.12). If qJ > kT, then the RHS of (3.1.11) is not a monotonic decreasing 
function of r: instead it behaves as indicated in Fig. 3.2. 

If H is sufficiently small, then there are three solutions of the equation 
d, = 1, as indicated in Fig. 3.2. This means that c, has two maxima, as 

(a 1 (b )  

Fig. 3.1. M as a function of H for T = 0.94 T,; (a) shows all solutions of (3.1.18), 
(b) is the correct graph obtained by rejecting spurious solutions. 



3.2 PHASE TRANSITION 

Fig. 3.2. d, as a function of r for T = 0.94 T,, pH = 0.006 and N large. 

shown in Fig. 3.3. Together with the intervening minimum, these corre- 
spond to the three solutions for M of equation (3.1.18). If H is positive 
(negative), then the left-hand (right-hand) peak is the greater. 

It is still true that the sum in (3.1.7) is dominated by values of r close 
to ro, where ro is the value of r that maximizes (absolutely) c,. Thus if 
(3.1.18) has three solutions and H i s  positive, we must choose the solution 

Fig. 3.3. c, as a function of r for T = 0.94 T,, pH = 0.006 and N = 100. As N 
increases, the maximum becomes larger and more sharply peaked. The other two 

turning values correspond to the spurious solutions of (3.1.18). 
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with the smallest value of ro, i.e. the largest value of M. Conversely if H 
is negative. Doing this, the multi-valued graph of Fig. 3.l(a) becomes the 
single-valued graph of Fig. 3.l(b). This is similar to the typical low-tem- 
perature graph of M(H) shown in Fig. 1.1. In particular, there is a spon- 
taneous magnetization Mo given by 

provided that qJ > kT. 
Thus the mean-field model has a ferromagnetic phase transition for 

temperatures below the Curie temperature 

3.3 Zero-Field Properties and Critical Exponents 

Spontaneous Magnetization and /? 

Set 

t = ( T  - Tc)/Tc ; (3.3.1) 

then, using (3.2.3), the equation (3.2.2) can be written as 

Mo = (1 + t) artanh Mo . (3.3.2) 

For T just less than T, the spontaneous magnetization Mo is small but 
non-zero, so artanh Mo can be approximated by Mo + ~ $ 3  . Solving the 
resulting equation for Mo gives 

Mo = (-3t)' (1 + 6(t)). (3.3.3) 

Thus Mo is effectively proportional to (-t)*. From (1.1.4) the critical 
exponent p exists and is given by 

p=' 2 .  (3.3.4) 

Free Energy and cu 

Let H + 0 for T > Tc. Then M + 0 and from (3.1.21) the free energy is 
given very simply by 

-flkT = In 2 .  (3.3.5) 
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On the other hand, if T < T, then M+ Mo. For Mo small it follows from 
(3.1.21) that 

- flkT = In 2 + f ~ i ( 1  - qJlkT) 

Using (3.2.3), (3.3.1) and (3.3.3), when t is small and negative the free 
energy is therefore given by 

From (1.7.7), (1.7.8), (3.3.5) and (3.3.7), we see that the free energy 
and internal energy are continuous at T = T,, but the specific heat has a 
jump discontinuity. The definition (1.7.9) of the exponents a and d is 
meaningless, but the alternative definition (1.7.10) gives 

Susceptibility and y, y' 

Hold T fixed and differentiate (3.2.1) with respect to H.  Using (1.7.17), 
(3.2.3) and (3.3.1), it follows that the susceptibility x is given exactly by 

x = (1  - ~ ' ) / [ q ~ ( t  + M')] . (3.3.9) 

Now let H+ 0.  If T > T, then M-* 0 ,  giving 

If T < Tc then M+ Mo. Using the approximate relation (3.3.3) we then 
obtain that near T,  

Thus at T, the zero-field susceptibility becomes infinite, diverging as t-l. 
From (1.1.6) and (1.1.7) the exponents y and y' are given by 

3.4 Critical Equation of State 

Using (3.2.3) and (3.3.1) the exact equation of state can be written as 

HIkT, = -M + ( 1  + t )  artanh M . (3.4.1) 
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Near the critical point M is small. Taylor expanding the function artanh M, 
(3.4.1) gives 

HIkT, = M2 (4 + t ~ - ~ )  , (3.4.2) 

neglecting terms of order t~~ or MS. 
Comparing this result with (1.2.1), we see that the scaling hypothesis is 

indeed satisfied for this model, with 

h,(x) = 5 + x , (3.4.3) 

This agrees with (3.3.4) and it is easy to verify that the scaling relations 
(1.2.12) and (1.2.13) are satisfied. Indeed they should be, since they are 
consequences of the scaling hypothesis. 

The values (3.3.4), (3.3.8), (3.3.11), (3.4.4) of the exponents are the 
same as those of the van der Waals fluid discussed in Section 1.10, i.e. 
they are the classical values. 

Since each spin interacts equally with every other, correlations are not 
distance dependent, nor can the model have two physically separated 
coexisting phases. Thus the exponents v, q and ,u are not defined for this 
model. 

3.5 Mean Field Lattice Gas 

Regarding a 'down' spin as an empty site and an 'up' spin as a site containing 
a particle, the above model is also one of a lattice gas. Making the 
substitutions (1.9.13)-(1.9.16) in (3.2.1) and (3.1.21), we find that the 
chemical potential p and pressure P are given by 

p = - q ~ p  + kT In[pl(l - p)] , (3.5.1) 

P = - kT ln(1 - p) - $ q ~ p 2 .  (3.5.2) 

Here p is the density, i.e. the mean number of particles per site. It must 
lie in the range 0 < p < 1. 

Equation (3.5.2) is the equation of state of the mean-field lattice gas. 
Comparing it with (1.9.31), and noting that v = p-', we see that it is very 
similar to the van der Waals equation. Both equations are of the form 

where a is a constant and the function @(p) is independent of the tem- 
perature T.  Indeed, there are solvable models which have exactly the van 
der Waals equation of state (Kac et al., 196314). 



ISING MODEL ON THE BETHE LATTICE 

4.1 The Bethe Lattice 

Another simple model that can be exactly solved is the Ising model (or 
indeed any model with only nearest-neighbour interactions) on the Bethe 
lattice. Like the mean-field model, this is equivalent to an approximate 
treatment of a model on, say, a square or cubic lattice (Bethe, 1935). 
However, it can be defined as an exactly solvable model, and this is what 
we shall do here. 

Consider the graph constructed as follows: start from a central point 0 
and add q points all connected to 0. Call the set of these q points the 'first 
shell'. Now create further shells by taking a point in shell r and connecting 
q - 1 new points to it. Do this for all points in shell r and call the set of 
all the new points 'shell r + 1'. 

Proceeding interatively in this way, construct shells 2,3, . . . , n .  This 
gives a graph like that shown in Fig. 4.1. There are q(q - I)''-' points in 
shell r and the total number of points in the graph is 

4[(4 - 1)" - l]/(9 - 2) (4.1.1) 

We call the points in shell n 'boundary points'. They are exceptional in 
that each has only one neighbour, while all other points (interior points) 
each have q neighbours. 

Such a graph contains no circuits and is known as a Cayley tree. From 
our point of view it can be thought of as a regular 'lattice' of coordination 
number q (i.e. q neighbours per site), provided the boundary sites can be 
ignored. 

There is a problem here: normally the ratio of the number of boundary 
sites to the number of interior sites of a lattice becomes small in the 
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thermodynamic limit of a large system. Here it does not, since both numbers 
grow exponentially like (q  - 1)". To overcome this problem we here 
consider only local properties of sites deep within the graph (i.e. infinitely 
far from the boundary in the limit n + 0 3 ) .  Such sites should all be equiv- 
alent, each having coordination number q ,  and can be regarded as forming 
the Bethe lattice. (This distinction between the Cayley tree and the Bethe 
lattice is not always made, but does seem to be useful terminology. I am 
grateful to Professor J. Nagle for suggesting it to me and drawing my 
attention to a relevant article [Chen et al., 19741.) 

Fig. 4.1. A Cayley tree (with q = 3 and n = 4), divided at the central site 0 into 
three sub-trees. They are identical, but here the upper sub-tree is distinguished by 
indicating its sites with solid circles. Each sub-tree is rooted at 0. The site 1 adjacent 

to 0 in the upper sub-tree is shown. The spin at 0 is fi, that at 1 is sl. 

Put another way, if we construct an Ising model on the complete Cayley 
tree, then the partition function Z contains contributions from both sites 
deep within the graph: and sites close to or on the boundary. The contri- 
bution.from the latter is not negligible, even in the thermodynamic limit. 

If one considers the total partition function, then one is considering the 
'Ising model on the Cayley tree'. This problem has been solved (Runnels, 
1967; Eggarter, 1974; Miiller-Hartmann and Zittartz, 1974) and has some 
quite unusual properties. We shall not, however, consider this problem 
here. Instead we shall effectively consider only the contribution to Z from 
sites deep within the graph, i.e. from the Bethe lattice. 

Some motivation for this choice is given by series expansions. If one 
makes a low temperature expansion as in Section 1.8 for any regular lattice, 
then to second order the only properties of the lattice that one needs to 
know are the number of sites and the coordination number. To third order 
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one needs the number of triangles in the lattice, to fourth order the number 
of tetrahedra (i.e. clusters of 4 sites all connected to one another) and 
other highly connected 4-point sub-graphs, and so on. An interesting simple 
case is when there are no circuits at all, and hence no triangles, tetrahedra, 
etc. Then one obtains the Ising model on the Bethe lattice as defined here. 

4.2 Dimensionality 

Consider any regular lattice. Let ml(=q) be the number of neighbours per 
site, m2 the number of next-nearest neighbours, m3 the number of next- 
next-nearest neighbours, etc. Then c, = 1 + ml + m2 + . . . + m, is the 
number of sites within n steps of a given site. For the hyper-cubic lattices 
it is easy to see that 

lim (In c,)/ln n = d , 
n+ m 

where d is the dimensionality of the lattice. 
The relation (4.2.1) is also true for all the regular two and three-dimen: 

sional lattices, and can be regarded as a definition of the dimensionality 
d. 

Now return to considering the Bethe lattice. In this case c, is given by 
(4.1.1). Substituting this expression into (4.2.1) gives d = 03,  so in this 
sense the Bethe lattice is 'infinite-dimensional'. 

4.3 Recurrence Relations for the Central Magnetization 

Consider an Ising model on the complete Cayley tree (but we shall later 
ignore boundary terms, thereby reducing it to the Bethe lattice). The 
partition function is given by (1.8.2), i.e. by 

where 

K C aiq + h Z ai . 
i I (4.3.2) 

( id) 

The first summation in (4.3.2) is over all edges of the graph, the second 
over all sites. The P(a) can be thought of as an unnormalized probability 
distribution: in particular, if a0 is the spin at the central site 0, then the 
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local magnetization there is 

M = (00) = aoP(u)/Z. 
u 

From Fig. 4.1 it is apparent that if the graph is cut at 0, then it splits up 
into q identical disconnected pieces. Each of these is a rooted tree (with 
root 0). This implies that the expression (4.3.2) factors: 

where SO') denotes all the spins (other than aoj  on the jth sub-tree, and 

K C sisj + K S ~ Q  + h C s i ]  , (4.3.5) 
(id 

si being the spin on site i of the sub-tree (other than the root, which has 
spin GO). Site 1 is the site adjacent to 0, as in the upper sub-tree of Fig. 
4.1. The first summation in (4.3.5) is over all edges of the sub-tree other 
than (0,l); the second is over all sites other than 0. The suffix n denotes 
the fact that the sub-tree has n shells, i.e. n steps from the root to the 
boundary sites. 

Further if the upper sub-tree in Fig. 4.1 is cut at the site 1 adjacent to 
0, then it too decomposes into q pieces: one being the 'trunk' (0, I ) ,  the 
rest being identical branches. Each of these branches is a sub-tree like the 
original, but with only n - 1 shells. Thus 

where tO') denotes all the spins (other than sl) on the jth branch of the 
sub-tree. 

These factorization relations (4.3.4) and (4.3.6) make it easy to calculate 
M. Let 

g n ( d  = C Qn(@Is). (4.3.7) 

Then from (4.3.1) and (4.3.4), 

Similarly, from (4.3.3) and (4.3.4), 
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Let 

Xn = gn(- )/gn( + ) . (4.3.10) 

Then from (4.3.8) and (4.3.9), 

Thus M is known if x, is. To obtain x, we sum (4.3.6) over all the spins 
s, i.e. over sl and the fl), to give, using only (4.3.7): 

&(GI) = 2 exp(K00s1 + hsd [gn-l(sdIq-' (4.3.12) 
S1 

Remembering that g and sl are single spins, with values +1 and -1, 
performing the summation in (4.3.12) for a = + 1 or -1, taking ratios and 
using (4.3. lo), we obtain 

Xn = ~ ( x n - l ) ,  (4.3.13) 

where the function y(x) is given by 

y(X) = [e-K+h + eK-hXq-l]fleK+h + e-K-h x q - 1  1 .  (4.3.14) 

Equation (4.3.13) is a recurrence relation between x, and x,-~. It is easy 
to see that 

xo = go(%) = 1 , (4.3.15) 

so (4.3.13) defines x,, and (4.3.11) defines M. 

4.4 The Limit n -, 

Hereafter we consider the ferromagnetic case, K > 0. Then y(x) increases 
monotonically from exp(-2K) to exp(2K) as x goes from 0 to 03. 

The recurrence relation (4.3.13) can be thought of graphically by sim- 
ultaneously plotting y = y(x) and y = x. 

Let P,- 1 be the point (x,-1 ; y(x,- 1)) in the (x, y) plane. To construct 
P, draw a horizontal line through P,- 1 to intercept the line y = x at a point 
Q,. Now draw a vertical line through Q,. Its intercept with y = y(x) is the 
point P,. 

There are two cases to consider: either the line y = x crosses the curve 
y = y(x) once, or it crosses it three times, as shown in Fig. 4.2. In the 
former case the point P, will always monotonically approach the cross-over 
point A as n+ w ,  as indicated in Fig. 4.2(a). Thus x, and M tend to a 
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limit as n becomes large, as we expect. This M is therefore the local 
magnetization of a site deep within the Cayley tree, i.e. the magnetization 
per site of the Bethe lattice. 

If there are three cross-over points, then the outer two (A and C in Fig. 
4.2(b)) are stable limit points of (4.3.13), while the centre one (B) is 
unstable. If Po lies to the left (right) of B, then Pn tends to A (C). Thus 
again Pn tends to a limit, giving the magnetization M for the Bethe lattice. 

Fig. 4.2. Typical sketches of the function y(x) given by (4.3.14), with z = 
exp(-2K). In (a) the curve intercepts the straight line y = x only once, at A. Two 
typical sequences of points P,, = (x,, , y(x,,)) are shown, one starting to the right of 
A, the other {P; , Pi , Pi,.  . .) to the left. All such sequences converge to the limit 
point A. In (b) there are three intersections A, B, C. A sequence {P,) grows in the 
direction of the arrows, never crossing A ,  B or C. Thus A and C are stable limit 

points, B is an unstable fixed point. 

We need some more convenient rule to determine which stable fixed 
point, A or C, is the one approached. The borderline case is when Po is 
the point B, i.e. when x = 1 is a solution of the equation x = y(x). From 
(4.3.14) this occurs when, and only when, h = 0. If h > 0, then Po lies to 
the left of B so Pn tends to A. Conversely, if h > 0, then Pn tends to C.  

Summarizing, when n-+ the magnetization is given, using (4.3.11), 
by 

where x is a solution of 

x = Y(X) 

If there are three solutions, the smallest must be chosen for h > 0, the 
largest for h < 0. 
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These equations can be written in a more conventional form by defining 

2 = e-2K, p = e-2h, p1 = CLXq-l . (4.4.3) 

Then, using (4.3.14), (4.4.2) gives 

x = (2 + p1)/(1 + p g ) .  (4.4.4) 

From (4.4.3), (4.4.4) and (4.4.1) it follows that 

PI/P = [(z + pdl(1 + p1z)Iq-', (4.4.5a) 

M = (1 - pT)I(l+ pi + 2p12). (4.4.5b) 

The first of the equations (4.4.5) defines pi; the second gives the mag- 
netization M. These are the same as the results of the Bethe approximation 
for a lattice of coordination number q (Domb, 1960, pp. 251-254). 

4.5 Magnetization as a Function of H 

Now suppose T, and hence K, is fixed and consider the variation of x and 
M with h = HIkT. Using (4.3.14) the equation (4.4.2) can be written 

e2h - q - 1 - x (e2K - ~ ) l ( e ~ ~ x  - 1) .  (4.5.1) 

All the x, are positive, and so is the limit point x. For the RHS of (4.5.1) 
to be positive it follows that x must lie in the interval 

e-2K < x < e2K. (4.5.2) 

Clearly (4.5.1) defines h as a function of x, for fixed K. (This function 
is of course not the same as the scaling function h,(x) of Section 1.2.) 
Differentiating (4.5.1) logarithmically gives 

dh h - = q - l -  2 sinh 2K 
dx 2cosh2K-x -x-" 

For x in the interval (4.5.2), the RHS of (4.5.3) has its maximum at 
x = 1. If this maximum is negative, i.e. if K < Kc, where 

Kc = 4ln [ql(q - 2)] , (4.5.4) 

then h decreases monotonically from OJ to 0 as x increases from 
exp(-2K) to exp(2K). Hence for given real h, (4.5.1) has one and only 
one real positive solution for x, and x is an analytic function of h for 
-OJ<h<w.  



54 4 ISING MODEL ON THE BETHE LA'ITICE 

If, on the other hand, K > Kc, then dhldx is positive for x sufficiently 
close to one. From (4.5.1), h = 0 when x = 1, so the function h(x) has a 
graph of the type shown in Fig. 4.3. 

For sufficiently small h, (4.5.1) therefore has three solutions for x .  From 
the discussions of Section 4.4, if h > 0 the limit point of the sequence given 
by (4.3.1) corresponds to the smallest solution for x .  If h < 0 it corresponds 
to the largest solution. 

Fig. 4.3. A typical sketch of h as a function of x for T < T,. 

Considering the behaviour as h decreases from + w  through zero to 
- m, it is therefore apparent from Fig. 4.3 that x is an analytic function of 
h, except at h = 0, where it jumps discontinuously from the smallest to the 
largest solution. 

In all cases x is a decreasing function of h, satisfying 

From (4.4.1) it follows that M is an odd function of h. It increases 
monotonically from -1 to 1 as h increases from - w  to and is analytic 
if K < Kc. If K > Kc, then it is analytic apart from a jump discontinuity at 
h = 0. 

This is precisely the typical behaviour of a ferromagnet that was outlined 
in Section 1.1. Thus the Ising model on the Bethe lattice exhibits ferro- 
magnetism, with a critical point at H = 0, T = T,, where 

JIkT, = fln [q/(q - 2)] . (4.5.6) 



4.6 FREE ENERGY 

4.6 Free Energy 

The total free energy of the Cayley tree is 

where Z is given by (4.3.1) and (4.3.2). Differentiating these equations 
with respect to H = hkT gives 

where the summation is over all sites i and 

is the local magnetization at site i. Each Mi is a function of H, and hence 
h, for given temperature T. To show this we shall sometimes write it as 
Mi(h). 

If H is large and positive the summation in (4.3.1) is dominated by the 
state with all spins up, so in this limit 

N, being the number of edges and N the number of sites. Also, in this limit 
( a ) = l f o r i =  1, . . . ,  N. 

We can now integrate (4.6.2) with respect to H, using (4.6.3) to obtain 
the integration constant. This gives 

Alternatively, if qi is the number of sites adjacent to site i, then Z qi = 
i 

2Ne, and (4.6.4) can be written 

where 

Each fi can be thought of as the free energy of site i. For an homogeneous 
lattice the fi are all equal to the usual free energy f, and on differentiating 
(4.6.5) one regains the usual relation (1.7.14). 
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As we remarked above, the difficulty with the Cayley tree is that it is 
not homogeneous, there being a significant number of boundary or near- 
boundary sites that have properties different from the interior. However, 
all sites deep inside the graph have the same local magnetization M, and 
hence the same local free energy f, given by (4.6.5). This free energy is 
therefore the free energy of the Ising model on the Bethe lattice. It is given 
bysettingqi = q,  M, = Min (4.6.5), and using the equations (4.5.1), (4.4.1) 
for x and M as functions of h. 

Noting that x is a monotonic differentiable function of h for h > 0, one 
can change the integration variable in (4.6.5) from h' to x' = x(hl). This 
gives [dropping the suffixes i and using z = exp(-2K)] 

provided h > 0 (or K < Kc). 
Substituting the expression (4.5.1) for exp(2h) into (4.4.1), and using 

(4.5.3), the integrand in (4.6.6) can be written, after a little re-arrangement, 
as 

This can be easily integrated to give, eliminating h by using (4.5.1), 

Negating h has the effect of inverting x, which leaves (4.6.8) unchanged. 
Since f must be an even function of h,  it follows that (4.6.8) is true for all 
real h. Together with the equation (4.5.1) for x ,  it gives the free energy 
per site of the Ising model on the Bethe lattice. 

4.7 Low-Temperature Zero-Field Results 

A problem arises with any ferromagnetic Ising model if H = 0 and 
T < Tc. In this case the spins do not know whether to be mostly up, or 
mostly down. If just the boundary spins are fixed to be up, every spin will 
have a greater probability of being up than down. In a sense the 'ther- 
modynamic limit' does not exist, since the bulk properties depend on the 
boundary conditions. 

This is particularly evident in the present model: if H = 0 then it is 
obvious from (4.3.13)-(4.3.15) that x, = 1, for all n. If T < T, this means 
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that all the points P, = (x,, y,) are the point B in Fig. 4.2(b). However, 
this is an unstable fked point of (4.3.13): if xo is not one, but just less than 
one, then the sequence {P,) will converge not to B, but to the stable limit 
point A. 

There are at least two ways round this difficulty: one is to take H = 0 
and fix all boundary spins up; the other to take H > 0, let n -+ m, and then 
let H+ O+.  In either case the sequence {P,) will converge to A and the 
limiting value of x is, from (4.4.2) and (4.3.14), the smallest positive 
solution of the equation 

If T < T,, this value of x is less than one. From (4.4.1) and (4.6.8) the 
spontaneous magnetization M and free energy f are then given by 

It  is interesting to compare these results with those of the two-dimensional 
Ising model. This will be done in Section 11.8. 

4.8 Critical Behaviour 

Set x = exp(- 2s), then (4.5.1) becomes 

h = -(q - 1)s + 4 ln[sinh(K + s)lsinh(K - s)] , (4.8.1) 

which makes it clear that h is an odd function of s. Taylor expanding, we 
obtain 

! 

h = [coth K - q + 11s + coth K cosech2 K s3 + . . . . (4.8.2) 

The critical value of K is given by (4.5.4), i.e. by coth Kc = q - 1. Setting 
as usual 

t = ( T  - Tc)/Tc, (4.8.3) 

and using K = JIkT, it follows that for t small 

coth K - q + 1 = q(q - 2)Kct + 6(t2). (4.8.4) 
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Using this result in (4.8.2), together with h = HIkT, gives (for r and s 
small) : 

From (4.4.1), the magnetization M is given by 

M = tanh(h + qs) . (4.8.6) 

From (4.8.5), h is much less than s, which is itself small, so M -- qs, or 
conversely 

Substituting this result into (4.8.5) and neglecting terms of order r2M, 
t~~ or M, we obtain 

HIkT, = M3hS(tlM2) , (4.8.8) 

where 

hs(x) = f(q - 2)x ln[q/(q - 2)] + (q - 1) (q - 2)/(3q2). (4.8.9) 

Comparing (1.2.1) and (4.8.8), we see that the scaling hypothesis is 
satisfied for this model, hs(x) being the scaling function. It is linear, and 
critical exponents /3 and 6 have the values 

Thus all the exponents P, 6, a, d, y, y' must have the same values as 
those of the mean-field model (Section 3.3), i.e. the 'classical' values. 

All the above results are very similar to those of the mean-field model 
of Chapter 3. (In fact they are the same in the limit q +  w ,  qK finite.) 
However, the Bethe-lattice model is really much more respectable than 
the mean-field one: its interactions are independent of the size of the 
system, and each spin interacts only with its nearest neighbours. 

4.9 Anisotropic Model 

The key equations (4.3.14), (4.4.2), (4.4.1), (4.6.8) of the above working 
can be summarized (using the first two to eliminate z from the last) as 

z = exp(-2K) = (x - ,w?-')/(l - ~ 9 )  , (4.9.1) 

M = (1 - / ~ x ~ ) / ( l  + p q )  , (4.9.2) 
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The edges of the Bethe lattice can be grouped into classes 1 , . . . , q, so 
that each site lies on just one edge of each class. Then the interaction 
coefficient K can be given a different value for different classes of edges. 
If Kr is its value for class r (where r = 1, .  . . , q), then this anisotropic 
model can also be solved by the above methods. 

The equations (4.9.1)-(4.9.3) generalize to 

zr = exp(-2Kr) = (x, - tx;')l(l - t) , r = 1 , . . . , q , (4.9.4a) 

y = exp(-2h) = tl(x1. . . x,) , (4.9.4b) 

These define M, f as functions of Kl, . . . , K,, h; the parameters 
XI, . . . , x,, t being defined by (4.9.4). The critical point occurs when 
h = 0 and xl, . . . , x,, t are infinitesimally different from one. From (4.9.4) 
this implies that 

exp(-2K1) + . . . + exp(-2K,) = q - 2 .  (4.9.7) 

[This result is derived in (11.8.37)-(11.8.42). ] 



THE SPHERICAL MODEL 

5.1 Formulation of the Model 

In 1952, Berlin and Kac solved another model of ferromagnetism, the 
spherical model. This is similar to the Ising model of Section 1.8. One 
considers a lattice 2 in space (e.g. the simple cubic lattice), containing N 
sites. To each site j of 3 one assigns a spin q which interacts with its 
neighbours and with an external field. However, instead of taking only the 
values +1 or -1, each q can now take all real values, subject only to the 
constraint that 

N 

E u ; = N .  
] = I  

(5.1.1) 

For an homogeneous system this constraint ensures that the average of the 
square of any spin is one, as in the usual Ising model. 

The partition function is again given by (1.8.2), except that the a- 
summation is replaced by an integration subject to the constraint (5.1. I ) ,  
SO 

The first summation in (5.1.2) is over all edges (j, I )  of 2; the other two 
are over all sites j. As usual, K = JIkT and h = HIkT. 

Berlin and Kac regarded this as an approximation to the usual Ising 
model. They argued that in the Ising model the a-summation can be viewed 
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as a sum over all corners of an N-dimensional hyper-cube in a-space. In 
the spherical model this is replaced by an integration over the surface of 
a hyper-sphere passing through all such corners. 

While this is mathematically plausible, it is still true that the constraint 
(5.1.1) is unphysical in that it implies an equal coupling, or interaction, 
between all spins, no matter how far apart on % they may be. 

Fortunately Stanley (1968) has shown that the spherical model is a special 
limiting case of another model (the n-vector model) which has only 
nearest-neighbour interactions. This equivalence has since been proved 
rigorously by Kac and Thompson (1971) and Pearce and Thompson (1977). 
It effectively removes the above objection and establishes the spherical 
model as a physically acceptable model of critical behaviour. 

Many papers have been written on the spherical model (see Joyce (1972) 
and references therein) covering many aspects of it. This is because it is 
one of the few (if not the only) model of ferromagnetism that can be solved 
exactly in a field, and exhibits non-classical critical behaviour. 

In this chapter we shall not attempt to consider all facets of the model, 
but shall outline the derivation of the equation of state and discuss the 
critical behaviour of the thermodynamic functions. 

5.2 Free Energy 

To evaluate (5.1.2), first note that it is unchanged if an extra factor 

I (5.2.1) 

is introduced into the integrand, since the delta function ensures that this 
is unity. Now use the identity 

to obtain 

The argument of the exponential in (5.2.3) is the sum of quadratic and 
linear forms in q, . . . , ON. It is useful to introduce a matrix notation to 
handle these. 
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Let a be the N-dimensional vector with elements q, . . . , ON. Let V be 
the N by N symmetic matrix such that 

uTvu = z z qvjp, 
i 1 

Finally, let h be the N-dimensional vector with every element equal to h. 
Then (5.2.3) can be written more neatly as 

Choose the arbitrary constant a sufficiently large to ensure that all the 
eigenvalues of V have positive real part. Then (and only then) the order 
of the a and s integrations can be interchanged. The a integration can be 
performed by first changing variables from a to 

and then rotating axes in (tl, . . . , tN )  space to make V diagonal. This gives 

ZN = iniN-' ds [det v]-&exp[(a + is)N 
(5.2.7) 

The matrix V depends on s and the structure of the lattice on which the 
spins are placed. Let us take 3 to be the d-dimensional hyper-cubic lattice, 
contained in a box with each side of length L lattice spacings. Then 

Impose periodic boundary conditions. Then V is cyclic and from (5.2.4) 
its eigenvalues can be found to be 

A(wl, . . . , cod) = a + is - K(cos wl + . . . + cos cod) , (5.2.9) 

where each wj can take the values 0, 2 d L ,  4 d L ,  . . . , 2 4 L  - 1)lL. 
The determinant of V is the product of its eigenvalues, so 

ln det v = z . . ..Z ln A(01, . . . , cod) . 
W1 Wd 

In the thermodynamic limit L is large and the summations in (5.2.10) 
become integrations. Using (5.2.8) and (5.2.9), it follows that 

In det V = N[ln K + g(z)] , (5.2.11) 



where 

Also, since V is cyclic, h is the eigenvector of V corresponding to its 
minimum eigenvalue a + is - Kd = Kz. Thus 

Using (5.2.11) and (5.2.14), and changing the integration variables from 
s to z,  the equation (5.2.7) can now be written as 

ZN = (K12n-i) ( d ~ ) ~ ~ r ~ ~ ~  dz exp[N@(z)] , (5.2.15) 
c - i m  

where 

and c = (a - Kd)IK. From (5.2.9) it is apparent that all the eigenvalues 
of V have positive real part only if a > Kd, so c must be positive. The 
function @(z) is analytic for Re(z) > 0, so the RHS of (5.2.15) is the same 
for all positive values of c. 

In the limit of N large, the integral in (5.2.15) can be evaluated by the 
method of steepest descent (Courant and Hilbert, 1953). First consider 
the function @(z) for z real and positive. Provided K > 0 and h # 0, the 
function tends to plus infinity as z tends to either zero or infinity. Thus in 
between H z )  must have a minimum at some positive value zo of z. Further, 
it is easy to see from (5.2.16) and (5.2.13) that @"(z) > 0, so there is only 
one such minimum. 

Take the arbitrary constant c to be 20. Then along the path of integration 
in (5.2.15), @(z) has a maximum at z = zo. In the limit of N large this 
maximum will give the dominant contribution to the integral, so 

-flkT = lim N-' In ZN 
N+ 

Here f is as usual the free energy per site. The parameter zo is of course 
defined by the condition that @'(zo) be zero, i.e., using (5.2.16), 
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There is one and only one positive solution for 20, so (5.2.16)-(5.2.18) 
define f as a function of K and h, provided K > 0 and h # 0. 

5.3 Equation of State and Internal Energy 

The parameter zo can be simply related to the magnetization. To do this, 
hold K fixed and differentiate (5.2.17) with respect to h, using (5.2.16). 
Remembering that zo itself depends on h, this gives 

However, 20 is defined so that O1(zO) is zero. Using (1.7.14) and (1.8.3), 
the equation (5.3.1) therefore simplifies to 

M being the magnetization per site. 
We can now eliminate zo between (5.2.18) and (5.3.2). Using the defi- 

nitions (1.8.3) of K and h,  we obtain 

This is the exact equation of state (i.e. the relation between M, H and 
T) of the spherical. model. 

From (1.7.7), the internal energy per site is 

where the differentiation is performed holding J and H fixed. Using (1.8.3), 
(5.2.16) and (5.2.17), it follows that 

Again we note that Of(zo) is zero. Using (5.3.2) to eliminate zo, we 
obtain 

U = & ~ T - J ~ - ~ H ( M + M - ' ) .  (5.3.6) 

This is an exact relation between the internal energy and magnetization. 
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5.4 The Function gl(z) 

The equation of state (5.3.3) involves the function gl(z). This can be 
obtained by differentiating (5.2.13), but the result is a rather unwieldy 
multi-dimensional integral. It is useful to simplify it as follows. 

Differentiate (5.2.13) and use the formula 

I-' = exp( - i t )  dt 

to write the result as 

Provided Re(z) > 0, the integrals converge and may be re-ordered. The 
wl, . . . , wd integrations can then be performed by using the formula 

Jo(x) being the usual Bessel function (Courant and Hilbert, 1953, p. 474). 
This gives 

gl(z) = [' exp[ - t(z + d)]  [lo(it)ld dl. (5.4.4) 

This expression for gl(z)  is convenient when considering the dependence 
of the thermodynamic functions on the dimensionality d of the lattice 2. 
In fact, d need no longer be restricted to integer values, but can be allowed 
to take any positive value. 

This concept of continuously variable dimensionality is quite common 
in modern statistical mechanics (e.g. Wilson and Fisher, 1972; Fisher, 
1974). It can be quite useful in discussing the dependence of critical 
exponents on d, as we shall see in Section 5.6. 

To discuss the behaviour of gl(z) we need to consider the convergence 
of the infinite integral in (5.4.4). To do this we can use the large t relation 

From this we see that the integral (5.4.4) converges if Re(z) > 0, so gl(z) 
is analytic in the right half-plane. In particular, for real positive z it is 
analytic and decreases monotonically to zero as z -+ a. 

We shall find thar the critical properties depend on the behaviour of 
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g r ( z )  for small positive z. If z is zero we see from (5.4.5) that the integral 
in (5.4.4) diverges if d > 2 ,  but converges if d 9 2. Thus 

gr (0 )  = a if 0 < d 6 2 ,  

< m  if d > 2 .  (5.4.6) 

For d > 2 we shall need the dominant small z behaviour of g r ( 0 )  - gr(z) .  
To obtain this, first differentiate g r ( z )  and then apply the same reasoning 
as above. This gives 

If d < 4, the dominant small z behaviour of g"(z) is obtained by simply 
neglecting the terms of relative order t-' in (5.4.5) and substituting into 
(5.4.4) to give 

- - ( 2 4 - b d r ( 2  - i d )  ztd-'. 

For d = 4 a slightly more subtle calculation gives 

gU(z) - - (2n)-' In z . 
Define a (positive) coefficient A d  by 

A d = ( 2 n ) - t d ( f d - 1 ) - 1 1 ' ( 2 - t d ) ,  2 < d < 4 ,  

= (2n)-', d = 4 ,  

= - g " ( O ) ,  d > 4 .  

Then from (5.4.7) and (5.4.8) it follows for z small that 

g r ( 0 )  - g ' ( z ) = ~ ~ z * ~ - ' ,  2 < d < 4 ,  

5.5 Existence of a Critical Point for d > 2 

Suppose T, and hence K, is fixed. From (5.3.2) and (1.8.3) the function 
M ( H )  can be obtained from zo as a function of h. The behaviour of these 
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functions can be understood by plotting both sides of (5.2.18) as functions 
of zo (or rather z)  for non-negative z. Typical graphs are sketched in Fig. 
5.1. 

Let P be the intersection of the two curves in the graph. Then its z- 
coordinate is the solution zo of (5.2.18). Provided h # 0, zo is non-zero and 
varies smoothly with h: in fact zo is an even analytic function of h. Hence 
M is an odd analytic function of H, provided H # 0. 

( a )  ( b )  
Figure 5.1. The zo in eq. (5.2.18) is here replaced by z ,  and typical sketches given 
of the LHS and RHS as functions of z .  The intersection P corresponds to the 

solution z = zo of the equation. 

Now suppose that h2 is decreased to zero. The graph of the LHS of 
(5.2.18) becomes the step-function OKA in Fig. 5.1. Thus P moves to the 
left, its limiting position being the intersection of O K .  with the graph of 
$gt(z). There are two cases to consider, depending on whether the limit 
of P lies on the horizontal line KA (as in Fig. 5.l(a)), or the vertical line 
OK (Fig. 5.l(b)). 

Define Kc, T, by 

Then the first case arises if T > T,; the second if T < T,. 

Suppose that T >  T,, i.e. K c  Kc = fgt(0), as in Fig. 5.l(a). As h2+0, 
P+ A, so from (5.2.18) zo tends to a non-zero value w given by 
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For sufficiently small h the term h2/4~za in (5.2.18) can be treated as a 
perturbation and the equation solved iteratively to give zo as a non-zero 
even analytic function of h. From (5.3.2) and (1.8.3), M is therefore an 
odd analytic function of H at H = 0, and its graph must be similar to that 
of Fig. l.l(c). There is no spontaneous magnetization and no phase tran- 
sition across h = 0. 

If d G 2, gr(0) and Kc are infinite, so K is always less than Kc. Thus the 
spherical model has no transition for d 2. 

Now suppose that d > 2, so that Kc is finite, and that K >  Kc, i.e. T < 
T,. Then the graphs of (5.2.18) take the form sketched in Fig. 5.l(b). As 
h2 tends to zero, P tends to the point (0, Kc) and zo tends to zero. 

More strongly, the RHS of (5.2.18) tends to Kc, so 

lim I hl/zo = [4K(K - K , ) ] ~ .  (5.5.3) 
h-0 

From (5.3.2) and (1.8.3) it follows that 

lim M = sgn (H) Mo , 
h-0 

where MO is given by 

Thus in this case M(H) has a jump-discontinuity across H = 0, as in Fig. 
l .l(a). There is a non-zero spontaneous magnetization Mo, given by the 
remarkably simple exact formula (5.5.5). 

Thus for d > 2 the spherical model exhibits the typical ferromagnetic 
behaviour outlined in Section 1.1. There is a Curie point (i.e. a critical 
point) at H = 0, T = T,, where Tc is given by (5.5.1). 

5.6 Zero-Field Properties: Exponents a, P, y, y' 

Internal Energy and a 

Let H +  0 in (5.3.6). If T < T, then M tends to the non-zero value Mo, so 

u = u - = h k T - J d  i f T <  Tc. (5.6.la) 



If T > T,, then M tends to zero and from (5.3.2) HIM tends to Uw,  where 
w is given by (5.5.2). Thus 

Clearly the low-temperature function u ( T )  defined by (5.6. l a )  is analytic 
at T,, so the definition (1.7.9) fails and we must use (1.7.10) to define 
a. Let us,  the singular part of the internal energy be 

us (T)  = u + ( T )  - U-(T) . 

As in (1.1.3), set 

t = ( T  - T,)/T,. 

Then for t  small (1.7.10) implies that 

This defines a. 
Now use the results (5.6.1) in (5.6.2) (taking T > T,). This gives 

From (5.4.10), (5.5.1) and (5.5.2), w vanishes as t+0, its asymptotic 
behaviour being given by 

Thus for d # 4 the relation (5.6.4) is satisfied, with 

Spontaneous Magnetization and P 

The spontaneous magnetization has been calculated in (5.5.5). Comparing 
this exact result with (1.1.4) it is obvious that 
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Susceptibility and y, y' 

The susceptibility x is defined by (1.1.2). Differentiating (5.3.3) with 
respect to H and using (5.3.2), it follows that 

Let H tend to zero. If T > T,, then M tends to zero and zo to w, giving 

From (5.6.6) it follows that x becomes infinite as T+ Tc from above. 
Provided d # 4, its asymptotic behaviour has the power-law form (1.1.6), 
with 

On the other hand, if H+ 0 for some (fixed) T < Tc, then zo-, 0. From 
(5.4.7), gl'(0) is infinite if d 6 4,  so from (5.6.9) 

This result is qualitatively different from that of the classical mean-field 
and Bethe lattice models. When d 6 4 the zero-field susceptibility is infinite 
for all temperatures less than T,. The usual definition (1.1.7) of the 
exponent y' has no meaning. 

If d > 4,  then g"(0) is finite and (5.6.9) gives 

For t small x is therefore effectively proportional to ~ i * ,  i.e. using ( 5 . 5 3 ,  
to (-t)- ' .  Thus it does have the power-law behaviour ( l . l . 7 ) ,  with 

5.7 Critical Equation of State 

Using (5.5.1) and (5.6.3), the exact equation of state can be written as 

gl(0)  - g1(HI2JM) = W ( M ~  + t)lkT . (5.7.1) 

When Hand t are small, so are both sides of (5.7.1). The Ton the KHS 
can be replaced by T, and the LHS approximated by (5.4.10). Solving the 
resulting equation for H gives 
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The quantities J ,  Kc, Ad are constants, so this critical equation of state 
is of the form (1.2.1), with /3 = 4 (in agreement with (5.6.8)) and 

Using (5.6.11) and neglecting multiplicative constants, the scaling func- 
tion h,(x) is given by 

provided d # 4. 
The scaling hypothesis is therefore satisfied, so the scaling relations 

(1.2.12) and (1.2.13) should be also. Indeed they are, as is evident from 
(5.7.3) and the results of the previous section, subject to the proviso that 
J does not exist for d S 4. 

If d < 4 most of the exponents vary with d, but for d > 4 they all take / 

the classical constant values. This is perhaps the most interesting result of 
the spherical model, for it is generally believed that the same is true of the 
usual nearest-neighbour Ising model, but with different values of the 
exponents for d < 4 (Fisher, 1974, first two lines of p. 607). 



DUALITY AND STAR - TRIANGLE 
TRANSFORMATIONS OF PLANAR ISING 

MODELS 

6.1 General Comments on Two-Dimensional Models 

In this and the remaining chapters of this book I shall consider the few 
Ising-type models that have been solved exactly in two dimensions. As I 
remarked in Section 1.6, it is unfortunate that they are only two dimen- 
sional, and even more so that they have only been solved in the absence 
of external fields. Even so, they do contain the essential prerequisite for 
a 'physical' model of a magnet or a fluid, namely short-range non-zero 
interactions, and they do have critical points. They can therefore be used 
to obtain insight into the behaviour (particularly the critical behaviour) of 
real systems. 

In particular, the two-dimensional exactly solvable models provide 
extremely valuable tests of general theories and assumptions, such as the 
scaling and universality hypotheses. For instance, the first evidence of 
universality was provided by the solution of the square lattice Ising model 
by Onsager in 1944. Onsager allowed the interactions to have different 
strengths J and J' in the horizontal and vertical directions, but his solution 
showed that for T near T, the specific heat diverges as In 1 T - T, I, inde- 
pendently of the ratio J'IJ. The evidence for universality accumulated in 
the next twenty-five years. It took another exact solution, that of the 
eight-vertex model (Baxter, 1972b), to show that there are exceptions to 
universality. 
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Three years before Onsager solved the square lattice model, Kramers and 
wannikr (1941) 
simplified to the 

located its critical temperature. Their argument can be 
following. 

Fig. 6.1. The square lattice 2 (solid circles and lines), and its dual lattice XD (open 
circles and broken lines). 

Consider an Ising model on the square lattice 2 shown in Fig. 6.1. At 
each site there is a spin ui, with two possible values: + 1 or - 1. Two 
nearest-neighbour spins ui and q contribute a term -Jqq to the Hamil- 
tonian if they are horizontal neighbours, -J1uiq if they are vertical neigh- 
bours, where J and J' are some fixed energies. If there is no external 
magnetic field, then the Hamiltonian is simply the sum of such terms, one 
for each nearest-neighbour pair of sites (i.e. an edge) of the lattice 2. 
From (1.4.1), for a lattice of N sites the analogue of equation (1.8.2) for 
the partition function is 

where the first sum inside the brackets is over all horizontal edges (i, j ) ,  
the second is over all vertical edges (i, k),  the outer sum is over all values 
of all the spins, and 

K = J/kBT, L = JIIkBT, (6.2.2) 

k~ being Boltzmann's constant and T the temperature. 
To locate the critical temperature, one notes that ZN can be represented 

graphically in two different ways, but with a similar form: 



'Low-Temperature' Graphical Representation 

For a given set of values of the spins (a spin 'configuration'), let r be the 
number of unlike nearest-neighbour vertical pairs, and s the number of 
horizontal ones. Let M be the total number of vertical edges of 2 ,  and 
suppose T has as many columns as rows, so that M is also the number of 
horizontal edges. Then there are M - r like vertical pairs, and M - s like 
horizontal pairs, and the summand in (6.2.1) has the value 

In particular, it depends only on the numbers of unlike nearest-neighbour 
pairs. 

A useful concept in two-dimensional lattice models is that of the dual 
lattice: from any planar lattice T one can form another lattice by placing 
points at the centres of the faces of 2 and connecting points in faces that 
are 'adjacent' (i.e. have an edge in common). These points and their 
connections are the sites and edges of the dual lattice TD. 

The dual TD of the square lattice 2 in Fig. 6.1 is also shown therein and 
is also a square lattice. It differs from 2 in being shifted a half-lattice 
spacing in both directions. 

Instead of regarding the soins as being on the sites of 2 ,  we can just as 
well regard them as being on the faces of 2 ~ .  Given a spin configuration, 
we can then represent unlike nearest-neighbours pairs by lines on TD, as 
follows: If two adjacent spins are different, draw a line on the edge of TD 
between them; if they are the same, do nothing. Do this for all nearest- 
neighbour spin pairs. 

This generates a set of r horizontal lines and s vertical lines on 2,. There 
must be an even number of lines into each site, since there must be an 
even number of successive spin changes between the four surrounding 
faces. The lines can therefore be joined up to form polygons, as in Fig. 
6.2. 

Conversely, these polygons divide the plane into up-spin domains and 
down-spin domains, as is evident in Fig. 6.2. For any such set of polygons 
there are just two corresponding spin configurations, one being obtained 
from the other by negating all spins. 

Using (6.2.3), it follows that the expression (6.2.1) for ZN can equiv- 
alently be written as 

ZN = 2 exp[M(K + L)] 2 exp(-2Lr - 2Ks) , 
P 

(6.2.4) 

where the summation is over all polygon configurations on XD, i.e. over 
all sets of lines with an even number of lines into each site. The r and s 
are the numbers of horizontal and vertical lines, respectively. 
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The expression (6.2.4) is useful when developing low-temperature series 
expansions, since then K and L are large, and the dominant term comes 
from the case r = s = 0, i.e. no lines at all. For this reason it is convenient 
to call it a 'low-temperature' representation, but note that it is exact for 
all temperatures. 

Fig. 6.2. A configuration of spins on the faces of a square lattice, showing the 
polygons that separate + and - spins. 

'High-Temperature' Graphical Representation 

Another form for ZN can be obtained by noting that, since oiq can only 
take the values of + 1 or - 1: 

exp[Koiq] = cosh K + sinh K oiq . (6.2.5) 

Using this identity, and its analogue with K replaced by L,  the definition 
(6.2.1) can be written 

ZN = (cosh K cosh L ) ~  (1 + v )  1 + w o o )  , (6.2.6) 
(Lk) 

where 
v= tanhK,  w = t a n h L ,  (6.2.7) 

the first product is over all the M horizontal edges of 3; the second is over 
all the M vertical edges. 

Now expand the combined product in the summand of (6.2.6). Since 
there are 2M factors (one for each edge), each with two terms, there are 
22M terms in this expansion. Each such term can be represented graphically 
as follows: 



Draw a line on the edge (i , j )  if from the corresponding factor one 
selects the term v a q ,  or wqq. Draw no line if one takes the term 1. Do 
this for all edges of 3. 

This gives a one-to-one correspondence between terms in the expansion 
and line configurations on the edges of 2. Each term in the expansion is 
of the form 

vrWS0~'0!j20?j3. . . , (6.2.8) 

where r(s) is the total number of horizontal (vertical) lines in the corre- 
sponding line configuration, and ni is the number of lines with site i as an 
end-point . 

Now sum (6.2.8) over 01, q, . . . , aN. Since ai = f-1, the result will 
vanish unless nl, nz, . . . , n~ are all even, when it will be ~ ' $ 2 ~ .  

Classifying such terms by their corresponding line configurations, (6.2.6) 
can therefore be written as 

where the sum is over all line configurations on 2 having an even number 
of lines into each site, i.e. over polygon configurations on 3. 

Duality 

Let kBTW be the free energy per site, i.e. from (1.7.6), 

From (6.2.1), q is a function of K and L,  so we can write it as q ( K ,  L). 
The summations in (6.2.4) and (6.2.9) are similar, but not quite identical 

as the first is a sum over polygon configurations on 3 ~ ,  while the second 
is over polygon configurations on 2. For finite square lattices gD and 2 
differ at their boundaries. 

However, in the thermodynamic limit this should have no effect on the 
free energy. Also, in this limit MIN = 1, so (6.2.4), (6.2.9) and (6.2.10) 
give 

- v ( K ,  L) = K + L + @ (e-2L, e-2K), (6.2.11) 

= ln[2 cosh K cosh L] + @(v, w) , (6.2.12) 

where 

@(u , w) = lim N-' In 
N+ m 

(6.2.13) 
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Replacing K, L in (6.2.12) by K*, L*, where 

tanh K* = e-2L, tanh L* = e-2K, (6.2.14a) 

and comparing with (6.2.11), it becomes obvious that the function Q> can 
be eliminated, leaving 

q(K* , L*) = K + L + q(K,  L)  - ln[2cosh K* cosh L*] . (6.2.14b) 

If K, L are large, then K*, L* are small. Thus (6.2.14) relates the free 
energy at a low temperature to that at a high temperature, and is known 
as a duality relation. It can be written in the more symmetric form 

sinh 2K* sinh 2L = 1, sinh 2L* sinh 2K = 1 , 

q(K* , L*) = q(K,  L) + f ln(sinh2K sinh2L). (6.2.15) 

which makes it clear that it is a reciprocal relation. 
To locate the critical point, consider first the isotropic case when J = 

J', so K = L and K* = L*. At a critical point the free energy is non-analytic, 
so Q will be a non-analytic function of T, and hence of K. Suppose this 
happens at some value Kc of K, then from (6.2.15) it will also be true that 
q i s  non-analytic when K* = Kc. Normally this will correspond to a different 
value of K, so there will be two critical points. If we assume that there is 
only one critical point, then it must occur when K* = K, i.e. Kc is given 
by 

sinh 2Kc = 1 , Kc = 0.44068679. . . . (6.2.16) 

The argument is similar for the anisotropic case: the mapping (K, 
L)-+ (K*, L*) takes the region I in Fig. 6.3 into the region 11, and vice- 
versa. It leaves all points on the curve AB unchanged. Thus if there is a 
line of critical points inside I, there must be another such line inside 11. 

Fig. 6.3. Square lattice duality: the mapping (6.2.15) interchanges regions I and 
11, and leaves unaltered all points on the graph AB of sinh 2K sinh 2 L  = 1. 



If there is only one line of critical points, it must be the boundary line AB, 
the equation of which is 

sinh 2K sinh 2L = 1 . (6.2.17) 

In the next chapter it will be shown that this is indeed the criticality 
condition for the square lattice Ising model. 

6.3 Honeycomb-Triangular Duality 

One can construct Ising models on any lattice, in particular on the honey- 
comb and triangular lattices shown in Fig. 6.4. 

Fig. 6.4. The honeycomb lattice (solid lines) and associated triangular lattices 
(dotted lines) formed by: (a) duality; (b) the star-triangle transformation. 

Consider first the honeycomb lattice, with N sites. The edges can be 
grouped into three classes: those parallel to the edges marked L1 in Fig. 
6.5; those parallel to edges marked L2; and those parallel to edges marked 
L3. Let the energy of two adjacent spins a, d be - kBTL,ad, if the edge 
between them is of the L, class. Then in zero magnetic field the analogue 
of equation (1.8.2) for the partition function is 

L ~ ~ ~ ~ + L ~ ~ ~ o I + L ~ ~ u ~ u ~  . (6.3.1) I 
Here L denotes the set of three 'interaction coefficients' L1, L2, L3, and 
the three summations within the exponential are over all edges of the 
classes L1, Lz, L3, respectively. For instance, the last summation is over 
all vertical edges (k , I )  of the lattice. 

Similarly, for the triangular lattice with N sites the partition function is 



where the first summation inside the exponential is over all edges ( j  , k) 
parallel to that marked KI in Fig. 6.5, the second is over edges (k , i) 
parallel to that marked K2, and the third is over edges (i , j)  parallel to 
that marked K3. 

Fig. 6.5. A star ijkl on the honeycomb lattice and its associated (dotted) triangle. 
The interaction coefficients for the various edges are shown. 

One can readily use the technique of Section 6.2 to obtain a duality 
relation between these two partition functions. First apply the 'low-tem- 
perature' procedure of Section 6.2 to the honeycomb Ising model. As is 
shown in Fig. 6.4(a), the dual of a honeycomb lattice of 2N sites is a 
triangular lattice of N sites. It follows that the analogue of (6.2.4) is 

where the P-summation is over all polygon configurations on the triangular 
lattice, rj being the number of lines on edges of type j. 

(A factor 2 corresponding to the leading term in (6.2.4) has been ignored, 
and the number of edges of each class has been taken to be N, which 
ignores boundary effects. These approximations have no effect on the free 
energy in the thermodynamic limit.) 

Also, apply the 'high-temperature' procedure of Section 6.2 to the 
triangular lattice. This gives 

Z ~ K }  = (2 cosh K1 cosh ~2 cosh ~ 3 ) ~  viluTuP, (6.3.4) 
P 

where 
v,= tanhK,, j =  1 , 2 , 3 ,  (6.3.5) 

and in the thermodynamic limit the P-summation has the same meaning 
as in (6.3.3). 



Comparing (6.3.3) and (6.3.4), it follows that if 

tanh Kj = exp(-2L,), j =  1 , 2 , 3 ,  
then 

ZFAL} = ( 2 ~ 1 ~ ~ 3 )  N'2 ZRK}, 

where 
s, = 4 exp(2L) sech2 K, 

= sinh 2L, = llsinh 2Kj. (6.3.8) 

If Kl, K2, K3 are large and positive, then L1, LZ, L3 are small; and 
vice-versa. Thus the duality relation (6.3.7) maps a low-temperature 
(high-temperature) model on the triangular lattice to a high-temperature 
(low-temperature) one on the honeycomb lattice. 

This is not sufficient to locate the critical temperature: to do this we 
need some more information so as to be able to map a low-temperature 
model to a high-temperature one on the same lattice. This information will 
be supplied in the following two sections. 

6.4 Star - Triangle Relation 

In addition to the duality relation (6.3.7), there exists another relation, 
known as the 'star - triangle' relation, between the partition functions of 
the triangular and honeycomb Ising models. Onsager (1944) referred in 
passing to it in the introduction to his paper on the solution of the square 
lattice Ising model. Wannier (1945) wrote it down, and it has subsequently 
been re-presented by many authors (e.g. Houtappel, 1950). 

To derive it, first note that the honeycomb lattice is 'bi-partite', i.e, its 
sites can be divided into two classes A and B such that all neighbours of 
an A site are B sites, and vice-versa. This is indicated in Fig. 6.4, where 
the A sites are indicated by solid circles and the B sites by open ones. 

The summand in (6.3.2) can therefore be written as 

the product in (6.4.1) is over all B sites 1, and i, j ,  k are the A-site 
neighbours of I, arranged as in Fig. 6.5. 



The important point about (6.4.1) is that each B-spin q occurs in one 
and only one factor. Using the form (6.4.1) of the summand, it follows 
that the summations in (6.3.2) over the B-spins can be performed at once, 
giving 

and the summation in (6.4.3) is over the remaining A-spins. 
Since w(q , q , uk) is unaltered by negating all of q, q ,  uk, and since 

q ,  q ,  uk only take the values + 1 or - 1, there must exist parameters R,  
K1, K2, K3 such that 

for all values of ui, q, uk. Substituting this expression for w into (6.4.3) 
then gives 

The summation is over iN spins on the A-sites of the honeycomb lattice. 
As is indicated in Fig. 6.4(b) these form a triangular lattice. The product 
in (6.4.6) is over all down-pointing triangles (i , j , k) of this triangular 
lattice. 

The sum in (6.4.6) is therefore precisely the partition function of the 
Ising model on a triangular lattice of Nl2 spins. Replacing N by 2N, and 
comparing with (6.3.1), it is obvious that 

This relation between the honeycomb and triangular lattice partition 
functions is known as the star- triangle relation, since it is obtained by 
summing over the centre spin of a star (Fig. 6.5) to obtain a triangle. 

Relations Between Interaction Coefficients 

Given L1, Lz, LJ, the parameters R,  K1, Kz, K3 are defined by the four 
equations obtained by equating (6.4.4) and (6.4.5) for all values of q ,  
q ,  a k .  These are 



Multiplying the first two of these equations, and dividing by the second 
two, gives 

where, for all permutations i, j, k of 1, 2, 3, 

Using standard hyperbolic function identities, it follows from (6.4.9) 
that 

exp(4K1) - 1 = sinh 2L2 sinh 2L3/c2c3, (6.4.11) 

and hence that 
sinh 2L1 sinh 2L2 sinh 2L3 

sinh 2K1 sinh 2L1 = . (6.4.12) 
2(cclcZc3)' 

Clearly the original set of star - triangle relations (6.4.8) is invariant 
under permutation of the suffixes 1, 2, 3, so two other equations can be 
obtained from (6.4.12) by such permutations. However, the RHS is a 
symmetric function of L1, L2, L3, so remains unchanged. Defining k-I to 
be its value, it follows that 

sinh 2Kj sinh 2Lj = k-', j = 1,2 ,3  . (6.4.13) 

This is a remarkable and very important property of the star - triangle 
relations: the products sinh 2Kj sinh 2Lj, for j = 1,2,3,  all have the same 
value. 

Multiplying the four equations (6.4.8), using (6.4.12) to eliminate C C ~ C ~ C ~ ,  
and then using (6.4.13), one obtains 

R' = 2k sinh 2L1 sinh 2L2 sinh 2L3 

= 2/(k2 sinh 2K1 sinh 2K2 sinh 2K3) . (6.4.14) 

These last three equations define K1, K2, K3, k and R as functions of LI, 
L2, L3. Alternatively, one can obtain equations for L1, k, etc. as functions 
of Kl, Kz, K3. For instance, eliminating R, L2 and L3 between the equations 
(6.4.8) gives, after a little algebra, 
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sinh 2K1 cosh 2K2 cosh 2K3 + cosh 2Klsinh 2K2sinh 2K3 

= sinh 2K1 cosh 2L1. (6.4.15) 

Eliminating L1 between this identity and (6.4.13) gives 

where vl, u2, VJ are given by (6.3.5). 

Operator Form 

In two-dimensional lattice problems it is often useful to consider a row of 
spins q, . . . , ON, and operators that build up the lattice by adding sites 
and/or edges. These operators are 2N by 2N matrices, with rows labelled 
by (q, . . . , uN), and columns by ( 4 ,  . . . , dj). Two important simple sets 
of operators are sl, . . . , SN, and el,. . . , CN, where 

and a denotes (q, . . . , uN), v' denotes ( 4 ,  . . . , d ~ ) .  
Thus si is a diagonal matrix with entries a;:, ci is the operator that reverses 

the spin in position i. Writing (x,y) for the commutator xy-yx of two 
operators x, y, and I for the identity operator, it is readily seen that 

In the Ising model, the two basic sets of operators are 

The effect of the operator Pi(K) is to introduce an edge, with interaction 
coefficient K, between sites i and i + 1. The effect of Qi(L) is to introduce 



a new site in position i, linked to the old site by an edge with interaction 
coefficient L. If we regard q, . . . ON as being a horizontal row of spins; 
then Pi(K) adds a horizontal edge, Qi(L) a vertical one. 

Using (6.4.17), the definitions (6.4.19) can be written more compactly 
as 

Since 2 =I, it follows that 

exp(Lci) = ( C O S ~  L)I + (sinh L)ci (6.4.21) 

for all complex numbers L. Thus Qi(L) can be written as 

Qi(L) = (2 sinh 2 ~ ) ~  exp(L*ci) , (6.4.22) 

where L* is related to L by 

tanh L* = exp(-2L). (6.4.23) 

(This is the same as the relation (6.2.14a) which occurs in the duality 
transformation. ) 

It is useful to interlace the operators Pi, Qi in the order Ql, PI, Q2, 
Pz7.. . , QN and to define a corresponding set of operators 
U17 U2,. . . , U2N-1, dependent on two interaction coefficients K and L, by 

= (2 sinh ~L)-"~(L) = exp(L*ci) if i = 2j - 1 .  (6.4.24) 

These are all the operators that are needed to construct a square-lattice 
Ising model with horizontal interaction coefficient K and vertical coefficient 
L. 

Let K17 K2, K3, L1, L2, L3 be related by the star-triangle relations 
(6.4.8)-(6.4.15). Then, using (6.4.19) to directly expand the matrix prod- 
ucts, and using (6.4.13) and (6.4.14), the star - triangle relation (6.4.4-5) 
is found to imply that 

for i = I , .  . . , 2N - 2 .  It is also obvious that 

Ui(K , L) Ui(Kt , L') = U,(Kt , L ') Ui(K , L) (6.4.26) 

for all complex numbers K, L,  K', L', provided li - jl2 2. 
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Like the Pi and Qi, the Ui(K, L)  are operators that add edges to the 
lattice. If i is even, the LHS of (6.4.25) has the effect of adding an (L1, 
L2 , L3) star, the RHS of adding a (K1 , K2 , K3) triangle; and vice versa 
if i is odd. Thus (6.4.25) is a simple operator form of the star - triangle 
relation. 

If we write Ui(K1 , Ll), Ui(L2 , Kz), Ui(K3 , L3) simply as Ui , U:, u:', 
respectively, then (6.4.25) is simply 

which makes its structure rather more obvious. Also, (6.4.26) implies that 

Significance of the Star - Triangle Relation 

The star - triangle relation turns out to have very significant consequences. 
Consider two square-lattice Ising models as in Section 6.2, with different 
values of K and L, but the same value of sinh 2K sinh 2L. Onsager (1971) 
noted that the star - triangle relation implies that their diagonal-to-diagonal 
transfer matrices commute, providing cyclic boundary conditions are 
imposed. 

A proper derivation of this is given in Section 7.3, but a partial demon- 
stration follows readily from (6.4.25). Consider the operator 

where n = 2N - 1. This corresponds to adding a vertical edge in column 
N, then a horizontal one between columns N - 1 and N, then a vertical 
one in column N - 1, and so on, going downwards as this proceeds. 
Altogether this adds a 'staircase' to the usual square lattice. Apart from 
boundary conditions (and a trivial normalization factor), V(K , L) is there- 
fore the diagonal-to-diagonal transfer matrix of the square lattice. 

Let us again take K1, K2, K3, L1, Lz, L3 to satisfy the star - triangle rela- 
tions (6.4.8)-(6.4.15). Write V(K1 , Ll), V(L2 , Kz) simply as V , V'. Then 

By repeated use only of (6.4.27) and (6.4.28), it is easily verified that 

The bracketted terms are 'boundary terms' involving only operators 



acting on the end spins. It is therefore perhaps not surprising that these 
terms disappear when the cyclic boundary conditions are treated properly 
(as is done in Section 7.3), leaving 

W'= V'V. (6.4.32) 

Thus V(Kl , L1) and V(L2, K2) commute providing K3, L3 can be chosen 
to satisfy (6.4.8)-(6.4.15). This is so if sinh 2K1 sinh 2L1 = sinh 2L2 
sinh 2K2. 

More generally, if we have any lattice model whose transfer matrix V 
can be written in the form (6.4.30a), and if we can also construct operators 
Ui, . . . , UL =u;l, . . . , U satisfying (6.4.27) and (6.4.28), then the 
pseudo-commutation rule (6.4.31) is satisfied by V and V'. In Chapters 9 
and 10 it is shown that this can be done for the six- and eight-vertex models. 
The corresponding commutation relation is a vital first step in the solution 
of the eight-vertex model. 

To obtain exact commutation relations it is necessary to use an explicit 
representation of the operators so as to handle the cyclic boundary con- 
ditions. Also, to cast the transfer matrix into a form like (6.4.30a), it would 
be necessary to introduce an irritating cyclic shift in the spin-labelling from 
row to row. For these reasons the commutation relations of the king 
six- and eight-vertex models will be obtained directly, instead of by invoking 
(6.4.30)-(6.4.31). Even so, in each case the commutation relations are a 
direct consequence of the appropriate 'star - triangle' relation, and this will 
be emphasized. 

Further, in Section 11.7 it is shown that for the Ising model the transfer 
matrix formalism can be dispensed with altogether: the free energy is 
obtained solely from the star-triangle relation and its corollaries! 

6.5 Triangular - Triangular Duality 

If L1, LZ, Lf in (6.4.8) are small, then so are K1, K2, K3. The star - triangle 
relation (6.4.7) therefore maps a high-temperature model on the triangular 
lattice to a high-temperature one on the honeycomb lattice. 

Now apply the duality transformation (6.3.6)-(6.3.8). This maps the 
high-temperature honeycomb model to a low-temperature triangular one. 

Taken together in this way, the star - triangle and duality transformations 
therefore give the following self-duality relation for the triangular Ising 
model: 

2 % ~ )  = k-NQ Z w * ) ,  (6.5.1) 
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where 

sinh 2K7 = k sinh 2 K j ,  j = 1 , 2 , 3  , (6.5.2) 

and k is given in terms of K I ,  K2, K3 by (6.4.16) and (6.3.5). Alternatively, 
in terms of KT, K;, K3*, it is given by 

where 

uy = tanh KT, j =  1 , 2 , 3 .  (6.5.4) 

Clearly this mapping is reciprocal: i.e. it maps a point K = (K1  , K2 , K3)  
to the point K* =(KT, K$,  K?), and the point K* back again to K .  From 
(6.5.2) there is a surface of self-dual points in ( K 1  , K 2 ,  K3 )  space, corre- 
sponding to k = 1. We can therefore argue as in Section 6.2: if there is 
only one critical surface in (K1, K2, K3) space, then it must be the self-dual 
surface, in which case the condition for criticality must be 

This is in fact true, as is shown in Chapter 11. For the isotropic triangular 
model, with K1 = K2 = K3 = K ,  it implies that the critical point K = Kc is 
given by 

sinh 2Kc = 3- ' ,  Kc = 0.27465307 . . . . (6.5.6) 

From (6.3.6), the isotropic honeycomb model therefore has its critical 
point at L1 = L2 = L3 = LC,  where 

sinh 2L, = 3f , LC = 0.6584789 . . . . (6.5.7) 



SQUARE-LATTICE ISING MODEC 

7.1 Historical Introduction 

The free energy of the two-dimensional Ising model in zero field was first 
obtained by Onsager in 1944. He diagonalized the transfer matrix by 
looking for irreducible representations of a related matrix algebra. His 
student, Bruria Kaufman, simplified this derivation in 1949 by showing that 
the transfer matrix belongs to the group of spinor operators. 

Since then many alternative derivations have been given. The transfer 
matrix method has been used by Schultz et al., Lieb (1964), Thompson 
(1965), Baxter (1972b) and Stephen and Mittag (1972). 

A completely different technique was discovered by Kac and Ward 
(1952), who used combinatorial arguments to write the partition function 
as a determinant which could be easily evaluated. This method was refined 
by Potts and Ward (1955). 

Hurst and Green (1960), and Kasteleyn (1963) also used combinatorial 
arguments, but this time to write the partition function as a Pfaffian. 
Another combinatorial solution was obtained by Vdovichenko (1965), and 
is given by Landau and Lifshitz (1968). 

Quite recently, Hilhorst et a1 (1978), and Baxter and Enting (1978), have 
shown that the planar Ising models can be solved quite directly by using 
the star - triangle relation of Section 6.4 as a recurrence relation. 

It is quite beyond the scope of this book to discuss all these approaches 
in detail. The one given in this chapter may be called the 'commuting 
transfer matrices' method. It has the advantage that it can be generalized 
to solve the eight-vertex model, as is shown in Chapter 9. 

The basic idea is to regard the diagonal-to-diagonal transfer matrix as 
a function of the two interaction coefficients K and L. It is easily established 

88 
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that two such matrices commute if they have the same value of k = (sinh 2K 
sinh 2 ~ ) - ' ,  and for any such matrix another one can be found which is 
effectively its inverse. These properties are basically sufficient to obtain 
the eigenvalues of the transfer matrix. From these, the free energy, inter- 
facial tension and correlation length are derived. 

The result for the spontaneous magnetization Mo is also given (in Section 
7.10), but is not derived in this chapter as its calculation is rather technical: 
five years elapsed between Onsager's derivation of the free energy f and 
his announcement at a conference in Florence of the result for Mo (Qnsager, 
1949 and 1971). The first published derivation was given by Yang in 1952, 
while Montroll et al. obtained it by the simpler Pfaffian method in 1963. 
A derivation based on corner transfer matrices is given in Section 13.7 for 
the more general eight-vertex model. 

In Sections 7.7-7.12 the cases k < 1, k = 1 and k > 1 are distinguished. 
As is shown in Section 7.12, these correspond to the low-temperature 
(T < T,),  critical temperature (T = T,) and high-temperature (T > T,) 
cases, respectively. 

7.2 The Transfer Matrices V, W 

Consider the square lattice zero-field Ising model, as defined in Section 
6.2, but draw the lattice diagonally as in Fig. 7.1. The partition function 
is still given by (6.2.1), but now the first summation inside the brackets is 
over all edges parallel to those marked K in Fig. 7.1, and the second 
summation is over all edges parallel to those marked L. 

Group the sites into horizontal rows: for instance, the sites denoted by 
solid circles in Fig. 7.1 form a row. As is indicated in Fig. 7.1, these rows 
can be classified into two types A and B (open circles and solid circles). 
A row of type A is above one of type B, and vice-versa. 

Let m be the number of such rows in the lattice. Label them so that row 
r is below row r + I, and impose cyclic boundary conditions so that row 
m is below row 1. This means that m must be even. 

Let n be the number of sites in each row and label them from left to 
right. Again impose cyclic boundary conditions, this time to ensure that 
site n is to the left of site 1, as indicated in Fig. 7.1. (Taken together, these 
cyclic boundary conditions are equivalent to drawing the lattice on a torus: 
they are known as 'toroidal'.) 

Let @, denote all the spins in row r, so & has 2" possible values. The 
summand in (6.2.1) can be thought of as a function of 41, . . . , &. Since 
each spin interacts only with spins in adjacent rows, this function factorizes 
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and (6.2.1) can be written as 

ZN = I: I:. . . I: vh.& w & , ~  v ~ , ~  W&,&. . . Wh,&. (7.2.1) 
91 h h 

Here V,+,,,+, contains all the Boltzmann weight factors in the summand 
that involve only spins in adjacent rows j and j + 1, the lower row j being 
of type A. The same is true for W(Gj, @j+l), except that the lower row is 
of type B. 

Fig. 7.1. Three successive rows of the square-lattice (drawn diagonally). 

Consider two typical successive rows. Let @ = {al, . . . , an) be the spins 
in the lower row, and @' = {a;, . . . , a;) the spins in the upper row. Then 
from, (6.2.1) and Fig. 7.1, it is clear that 

where = q and d,+l = 4. 
These observations parallel those made in Chapter 2 for the one-dimen- 

sional Ising model. Again V(@, @') can be regarded as the element 
@, @' of a matrix V, and similarly for W. Then (7.2.1) can be written as 

ZN = Trace VWVW. . . W 

= Trace (VW)m12. (7.2.3) 

The main difference from the one-dimensional case is that @ and @ have 
2" values, so V and W are 2" by 2" matrices, rather than 2 by 2. It is also 
no longer true that VW is symmetric: even so, the working of (2.1.11) to 
(2.1.15) can be generalized to show that (7.2.3) implies 

where A?, 114, . . . are the eigenvalues of VW. 



We are interested primarily in the thermodynamic limit, when m and n 
are large. To obtain this it is permissible to first let m-, m, keeping n 
fixed. From (7.2.4) it then immediately follows that 

ZN - (&m)" , (7.2.5) 

where A&= is the numerically largest eigenvalue of VW. 
The matrices V and Ware known as transfer matrices. The problem now 

is to calculate the maximum eigenvalue of VW. 

7.3 Two Significant Properties of V and W 

Commutation 

From (7.2.2) it is obvious that the matrices V and W are functions of the 
interaction coefficients K and L. It is convenient here to exhibit this 
explicitly and to write V and W as V(K , L) and W(K , L). 

In this section, I shall establish two properties of these matrix functions, 
and in subsequent sections will show that these properties enable Am, to 
be evaluated. Although indirect, this presentation has the advantage of 
showing that it is basically only local properties of the lattice model that 
are being used. 

In (7.2.3) one is interested in the matrix product V(K, L) W(K, L). 
Let us generalize this and consider the product. 

where for the moment K, L, K', L' can be any complex numbers. This 
product matrix has a lattice model meaning: it is the transfer matrix for 
going from the lower row of open circles in Fig. 7.1 to the upper one, 
provided the interaction coefficients K, L of edges above the solid circles 
are replaced by K', L', respectively. 

Each element of the product matrix is therefore the product of the 
Boltzmann weights of the complete edges shown in Fig. 7.1, summed over 
all the spins a!, . . . , a: on the intermediate solid circles. Let $ = 
{q, . . . , a,) be the spins on the lower row of open circles, and @' = 
{of,. . . , a;) the spins on the upper row. Then the element $, $' of the 
matrix product (7.3.1) is 
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The exponential in (7.3.2) is simply the Boltzmann weight of the four 
edges in Fig. 7.1 that have solid circle j as an end-point. Since aj  enters 
only this term, the summation over aj is readily performed. Doing this for 
01, . . . , a;, (7.3.2) becomes 

where, for a, b, c, d =* 1, 

Now ask the following question: suppose we interchange the interaction 
coefficients K and K', and the coefficients L and L': does this change the 
product matrix (7.3.1)? Explicitly: is the equation 

V(K , L) W(K1, L') = V(K1, L') W(K , L) (7.3.5) 

true? 
This is a generalized commutation relation. If it is true, then it is shown 

in the next section that the transfer matrices all commute, and this property 
will be used to obtain the free energy. For the moment, however, let us 
just ask whether (7.3.5) can be satisfied. 

Clearly (7.3.3) is unchanged by replacing X(a , b; c , d) by 

since the exponential factors from adjacent terms cancel. Thus (7.3.5) will 
certainly be true if there exists a number M such that 

where X' is obtained from X by interchanging K with K', and L with L'. 
This equation can be interpreted graphically as in Fig. 7.2(a). It is 

equivalent to requiring that the Boltzmann weights of both figures therein, 
summed over the centre spin, be the same for all values (? 1) of the exterior 
spins a ,  b, c, d. 

The condition (7.3.7) can be examined directly, but to link with the 
remarks of Section 6.4, it is better to proceed as follows. 

In both figures there is a (L , K' , M) triangle. Define K1, Kz, K3 by 

and convert these triangles to stars by using the star - triangle relation 
(6.4.4), (6.4.5). Then LI ,  Lz, L3 are defined by (6.4.8)-(6.4.15), and, to 
within a common factor R, we see that the Boltzmann weights are those 
of the figures in Fig. 7.2(b), each summed over the two internal spins. 
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Clearly these weights are the same if 

L I =  K ,  L 2 =  L ' .  (7.3.8b) 

From (6.4.14), it follows that K, L ,  K', L' must satisfy 

sinh 2K sinh 2L = sinh 2K' sinh 2L' . (7.3.9) 

This condition can be obtained more directly by making the substitutions 
(7.3.8) into (6.4.8) and eliminating R, L j  and M. Provided (7.3.9) is true, 
we can choose R, L3 and M so that (6.4.8) is satisfied. The relations (7.3.7) 
and (7.3.5) follow immediately. 

Fig. 7.2. (a) The lattice segments whose weights (summed over the spin on the 
solid circle) are the left- and right-hand sides of (7.3.7); (b) the same segments 

after applying a triangle-to-star transformation. 

We have therefore used the star - triangle relation to establish that 
(7.3.9) is a sufficient condition for the exact commutation relation (7.3.5) 
to be satisfied. It is also necessary. 

Inversion 

The other property that will be needed can be thought of as a relation for 
the inverse of V, or W. It can be approached by asking the question: given 
K, L; can K', L' be chosen to ensure that the product (7.3.1) is a diagonal, 
or 'near-diagonal', matrix? 

Since the elements of (7.3.1) are of the form (7.3.3), this property would 
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be satisfied if X(a , b; c , d) vanished when a # c (or b # d). This require- 
ment is too strong: it cannot in general be satisfied. 

What can be satisfied is a weaker condition: namely that X(a , b; c , d )  
vanish if a # c and b = d. From (7.3.4) this is equivalent to the two 
equations 

cosh (L + K - K' + L') = 0 (7.3.10) 
c o s h ( L - K - K t - L 1 ) = O .  

These equations have no real solutions, but they do have the complex 
solution 

K t =  L +  f i n ,  L ' =  -K. (7.3.11) 

What is the effect of the requirement that X(a , b; c , d )  vanish if a # c 
and b = d? From (7.3.3) it implies that for non-zero elements of VW, if 
q and 0; are unlike, then q+l and a;+l must also be unlike. Since j = 
1,. . . , n, with cyclic boundary conditions, this implies that either all pairs 
(q ,  0;) are like, or they are all unlike. 

If they are like, then we are interested only in X(a , b; c , d) for a = c 
and b = d. From (7.3.4) and (7.3.11), all such values of X are 

Xlike = 2i sinh 2L . (7.3.12a) 

If they are unlike, then a # c and b # d, and 

Xunfike = -2i ab sinh 2K . (7.3.12b) 

Substituting these expressions into (7.3.3), it follows that (7.3.3) is now 
the same as the expression 

(2i sinh 2L)" d(q , 0;) 6(s, a;) . . . d(un, ah) (7.3.13) 

Thus V(K, L)  W(K1 , L') is the matrix with elements (7.3.13). Let I be 
the identity matrix of dimension 2", and R the matrix with elements 

Then we see that we have established the matrix identity 

V(K, L)  W(L + f i n ,  -K) 

= (2i sinh 2L)"I + (-2i sinh 2K)"R . (7.3.15) 

Since 
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the RHS of (7.3.15) is easily inverted, so (7.3.15) could be used to obtain 
the inverse of the matrix V(K, L). For this reason I shall sometimes call 
it the 'inversion identity'. 

7.4 Symmetry Relations 

In addition to the commutation and inversion properties established above, 
we shall need some simple symmetry properties of the transfer matrices. 

Interchanging K with L,  and each q with each a / ,  in (7.2.2) is equivalent 
to interchanging V and W. This means that 

W(K , L) = v ~ ( L ,  K) , (7.4.1) 
and 

V(K, L)  W(K , L) = [V(L , K) W(L , K)] T. (7.4.2) 

Also, negating K and L in (7.2.2) is equivalent to negating 
3,. . . , a,, or ai, . . . , a;. This implies 

and similarly for W. 
Finally, let r be the number of unlike pairs of spins ( q + l  , a / ) ,  and s the 

number of unlike pairs ( q  , a / ) .  Then r + s is the number of changes of 
sign in the sequence q, a i ,  q, a;, . . . , a;. This means that r + s must be 
even and, from (7.2.2), 

We are interested in the thermodynamic limit, when n is large. It should 
not matter how n becomes large, so we can restrict n to be even. This 
slightly simplifies the following discussion, so from now on in this chapter 
let us set 

n = 2 p ,  (7.4.5) 
where p is an integer. 

The equation (7.4.4) can now be written as 

V9,# = exp[+--2°K +- 2srL] , (7.4.6) 

where r' and s' are non-negative integers in the range (0, p). They are 
either both even or both odd, so that RHS is unchanged by negating both 
of exp (2K) and exp (2L). This means that the matrix V(K , L) satisfies 

V ( K + i m ' , L + f m ' ) = V ( K , L ) ,  (7.4.7) 
and similarly for W. 
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7.5 Commutation Relations for Transfer Matrices 

The relation (7.3.5) is true if the condition (7.3.9) is satisfied. It will now 
be shown that this implies that V(K, L), W(K, L), V(K' , L'), W(K' , L') 
all commute. 

Define C to be the 2" by 2" matrix with elements 

This operator C shifts the columns of the lattice to the left or the right: for 
instance, applying the transformation A -t CP1AC to any matrix A has the 
effect of replacing the spin labels 1, . . . , n by 2, . . . , n, 1 .  From (7.2.2) it 
is obvious that this leaves V(K , L) and W(K , L) unchanged, so 

V(K, L) = C-'v(K, L) c 
W(K, L) =C-'W(K, L ) C .  

Also, from (7.2.2), 

W(K,L) = V(K, L ) C .  

Thus C, V(K, L), W(K, L)  all commute with one another. 
Now substitute (7.5.3) into (7.3.5). We obtain at once 

provided (7.3.9) is satisfied, i.e. 

sinh 2K sinh 2L = sinh 2K' sinh 2L' . (7.5.4b) 

Thus V(K , L), V(K1 , L I), and hence W(K , L), W(Kr , L '), do all com- 
mute, as was asserted. 

Using (7.5.3), the matrix W can be eliminated from the identity (7.3.15) 
to give 

V(K, L)  V(L + 4 i n ,  -K) C 

= (2i sinh 2L)" I + (-2i sinh 2K)" R . (7.5.5) 

Finally, from (7.3.14) the transformation A -t R-'AR is equivalent to 
negating all spins q, . . . , a,, u f  , . . . , a;. This leaves (7.2.2) unchanged, 
SO 

V(K, L) =R-'v(K, L ) R .  (7.5.6) 

Thus V(K, L)  also commutes with R. So does W(K , L). 



7.6 Functional Relation for the Eigenvalues 

Let 
k = (sinh 2K sinh 2 ~ ) - '  

Suppose k is a given fixed real number, regard K and L as complex variables 
subject to the constraint (7.6.1). Then an infinite set of transfer matrices 
V(K , L) can be generated by so varying K and L. 

From (7.5.4), all such matrices commute. From (7.5.2) and (7.5.6) they 
also commute with C and R, and hence with W(K , L). It follows that all 
these matrices, for all values of K and L satisfying (7.6.1), have a common 
set of eigenvectors. 

Let x be one such eigenvector. It cannot depend on K or L, so long as 
(7.6.1) is satisfied. It can (and does) depend on k, so can be written as 
x(k). 

Let v(K, L), c, r be the corresponding eigenvalues of V(K, L), C, R. 
Then, for all K ,  L satisfying (7.6.1), 

Since Cn = R2 = I ,  the eigenvalues c, r are unimodular constants, 
satisfying 

c"=r2=1 .  (7.6.3) 

Note that if K, L satisfy (7.6.1) so do the K', L' defined by (7.3.11). 
Now pre-multiply x(k) by both sides of (7.5.5). It follows at once that 

v(K, L)v(L + t i n ,  -K)c 

= (2i sinh 2L)" + (-2i sinh 2K)" r . (7.6.4) 

The squares of the Ajs in Section 7.2 are the eigenvalues of 
V(K, L )  W(K, L). From (7.5.3) and (7.6.2), x(k) is also an eigenvector 
of this matrix. Let A(K , L) be the corresponding A,. Then 

Thus A(K, L)  can be defined to be 
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Since c, and hence ct, are constants, the relation (7.5.4) can therefore be 
written in the c-independent form 

A(K, L)  A(L + f i n ,  -K) 

= (2i sinh 2L)" + (-2i sinh 2K)" r . (7.6.7) 

7.7 Eigenvalues A for T = T, 

The equation (7.6.7) is a functional relation for the function A(K , L). This 
relation is very useful: together with some simple analytic properties of 
A(K, L), it determines A(K, L)  completely. There are of course many 
solutions, corresponding to the different eigenvalues. 

To see this, it is helpful to first consider the case k = 1. As was remarked 
in the previous chapter, and will later be shown in this chapter, this is the 
case when the temperature T has its critical value T,. 

Parametrization of K, L 

When k = 1, rather than working with K and L,  it is convenient to use a 
variable u defined by 

sinh 2K = tan u , (7.7.1) 

sinh 2L = cot u 

The condition (7.6.1) is then automatically satisfied. If K and L are real 
and positive, then u lies in the interval (0, tn). 

Clearly A(K, L)  can be thought of now as a function of u, so let us 
write it as A(u). Then (7.6.7) becomes 

A(u) A(u + in )  = (2i cot u)" + (-2i tanu)"r. (7.7.2) 

The usefulness of working with the variable u lies in the fact that not 
only is (7.6.1) satisfied, but also exp(k2K) and exp(&2L) are 'simple' 
functions of u. In fact 

exp(2K) = (1 + sin u)/cos u , 

exp(-2K) = (1 - sin u)lcos u , (7.7.3) 

exp(2L) = (1 + cos u)lsin u , 

exp(-2L) = (1 - cos u)lsin u . 
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To be more precise, these functions (regarding u as a complex variable) 
have the following properties: 

(a) They are single-valued. 
(b) 'They are meromorphic, i.e. their only singularities are poles (in fact 

simple poles). 
(c) They are periodic, of period 2n. 

The Form of the Function A(u) 

Substituting the forms (7.7.3) of exp(k2K) and exp(22L) into (7.4.6), it 
is obvious that every matrix element V+,# is of the form 

V+, , = t(u)l(sin u cos u)P , (7.7.4) 

where t(u) is a polynomial in sin u and cos u, of combined degree 2p. Thus 
for any particular element, t(u) can be written as 

Now consider the first vector equation in (7.6.2). This is really 2" scalar 
equations, any one of which can be regarded as expressing the eigenvalue 
v(K, L )  as a linear combination of the elements of the matrix V(K, L). 
The coefficients are ratios of the elements of x(k). The crucial point to 
remember is that (for the commutativity reasons discussed in Section 7.6) 
these ratios depend only on k. They are independent of u. 

Thus u(K, L)  is a linear combination of functions of the form (7.7.4), 
with constant coefficients. Clearly it also must be of this form. From (7.6.6), 
so must A(K , L), now called A(u), be of this form. 

This form can be simplified by using the symmetry relations. Suppose 
u is replaced by u + n. From (7.7.3) this is equivalent to replacing K and 
L by - K + ini and - L + fni. From (7.4.3) and (7.4.6), this is equivalent 
to multiplying V by R. Writing u(K , L) as v(u), the first of the equations 
(7.6.2) therefore becomes 

again using the u-independence of x(k). 
Using the first and the last of the equations (7.6.2), it follows at once 

that 
U(U + n )  = r U(U) , (7.7.7) 

and hence, from (7.6.6), 
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Thus A(u) is of the form given by (7.7.4), and satisfies the periodicity 
relation (7.7.8). The polynomial in (7.7.5) therefore only has non-zero 
even coefficients if r = + 1, odd ones if r = - 1. Factoring this polynomial, 
the resulting expression for A(u) is 

1 

A(u) = p (sin u cos u)-P sin (U - u,) , 
] = I  

where p, ul, . . . , ul are constants (as yet unknown) and 

1 = 2p i f r =  +1 (7.7.9b) 

= 2 p - 1  i f r = - 1 .  

Zeros of A(u) 

Now substitute this expression for A(u) into the relation (7.7.2). This gives, 
using (7.4.5) 

I 

n sin(u - u,) COS(U - uj) = 22p [cOsC u + r sin4P u] . (7.7.10) P j=1 

This must be an identity, true for all values of u. It is most easily 
understood by writing it in terms of the variables 

Then (7.7.10) becomes 

From (7.7.9b), both sides are polynomials of degree 1 in z2, so the 
constants p, zl, . . . ,zl can indeed be chosen to ensure that (7.7.12) is 
satisfied identically. Clearly z:, . . . , z? are the 1 distinct zeros of the RHS, 
which are readily found to be 

where, for j = 1, . . . , I, 

These 8, all lie within the interval (0 ,  n). Define $1, . . . , $1 by 
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Then, from (7.7.11) and (7.7.13), 

There are other solutions, but they correspond to incrementing ui by an 
integer multiple of n. From (7.7.9a), this leaves A(u) unchanged (to within 
an irrelevant sign), so the only truly distinct solutions are given by (7.7.16). 

Since the sign in (7.7.16) can be chosen independently for each value 
of j ,  we appear to have 2' possible solutions. However, not quite all of 
these are allowed. 

Suppose u+ ? i co. Then from (7.7.3), exp(2K) and exp(-2L) -, + i. 
However, from (7.4.7) the elements of the transfer matrices are unchanged 
by negating exp(2K) and exp(2L). Thus 

From (7.7.9), this condition is automatically satisfied if r = -1. If r = 
+ 1 it implies that 

(ul + . . . + uZp)ln = integer + i p  , (7.7.18) 

so only 2p - 1 of the signs in (7.7.16) can be chosen independently. For 
both r = +1 and r = -1 there are therefore 2'~-'  eigenvalues A, as 
expected. 

Substituting the values (7.7.16) of the ui, (7.7.9a) becomes 
I 

A(u) = p (sin u cos u ) - ~  n sin(u + i@i + iy,n) , (7.7.19) 
1=1 

where yl, . . . , yl have values 51,  and if r = +1, 

y~ + . . . . + yzp = 2p - 4 x integer. (7.7.20) 

Clearly the constant p can now be evaluated (to within an irrelevant 
sign) by substituting the expression (7.7.19) for A(u) into the identity 
(7.7.2). I shall not proceed further with this calculation, since it is a limiting 
case of that of the next section. The main point has been made: when 
k = 1 the eigenvalues of VW are determined by the commutation relations 
and the inversion identity (7.6.7), and can be calculated by ordinary 
algebra. 

7.8 Eigenvalues A for T < T,  

I have presented the solution for the case k = 1 in some detail because the 
derivation can then be carried out solely in tcrms of elementary functions. 
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There were three main steps: 

(i) For the given value of k, find a parametrization of (7.6.1) so that 
exp(k2K) and exp(k2L) are single-valued meromorphic functions 
of a variable u. 

(ii) Note that (7.4.6) implies that every element of V is also a single- 
valued meromorphic function of u. From (7.6.2), so therefore is 
any eigenvalue u(u), and hence A(u). 

(iii) The zeros of A(u) must be contained in the zeros of the known 
function on the RHS of (7.6.7). They can therefore be evaluated. 
There will be many choices of the zeros, corresponding to different 
eigenvalues. The normalization of A(u) can then be determined 
(to within a sign) from (7.6.7). 

Parametrization of K, L 

Can this programme be used when T # T,, i.e. k # I? From (7.6.1), an 
obvious first step is to introduce an intermediate variable x such that 

sinh 2K = x 

sinh 2L = (kx)-l . 

Solving these equations for exp(2K) and exp(2L) gives 

This is a parametrization of exp(2K) and exp(2L) satisfying (7.6.1), but 
it is not single-valued and meromorphic, due to the presence of the square 
roots of 1 + x2 and 1 + k2x2. 

When k = 1 these can be eliminated by setting x = tan u, as in Section 
7.7. Then 1 + x2 is a perfect square, and exp(2K), exp(2L) become mero- 
morphic functions of u. 

For general values of k there is no parametrization using elementary 
functions that simultaneously makes 1 + x2 and 1 + k2x2 perfect squares. 
However, such a parametrization can be made by using elliptic functions. 
In Chapter 15 the meromorphic functions sn u, cn u, dn u are defined and 
shown to satisfy the relations (15.4.4) and (15.4.5), i.e. 
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Comparing (7.8.2) and (7.8.3), it is obvious that if we set 

x =  - isn(iu),  (7.8.4) 

then 
exp(k2K) = cn iu 7 i sn iu , 
exp(+2L) = ik-' (dn iu + 1)lsn iu . (7.8.5) 

In (15.1.6) the functions sn, cn, dn are expressed in terms of the theta 
functions H, HI, 0 ,  el. From (7.8.5) and (7.8.3) it follows that 

exp(+2K) = [kl&Hl(iu) + i~( iu)] l [kb( iu)]  , 

exp(k2L) = i [k'hOl(iu) + O(iu)]l[khH(iu)] . (7.8.6) 

The theta functions are entire (i.e. analytic everywhere), so (7.8.6) 
explicitly gives exp(+2K) and exp(k2L) as ratios of entire functions of u, 
i.e. as meromorphic functions. 

These elliptic functions occur also in solving the six-vertex and eight- 
vertex models in the following chapters. Provided one has some knowledge 
of elementary complex variable theory they are not at all difficult to use: 
in fact they are delightfully easy. At this stage I suggest the reader looks 
through Chapter 15, paying particular attention to the three theorems in 
Sections 15.3. Once these are understood, all the various identities that 
follow are easily obtained. 

From (7.8.1) and (7.8.4), the relation between the interaction coefficient 
K and the parameter u can be written 

sn iu = sin 2iK. (7.8.7) 

From (15.5.7) and (15.5.8), setting a= i/3, it follows that 

so if K and L are real and positive, then u is real, and 0 < u < I'. 
If k = 1, the integral (7.8.8) can be evaluated, giving the first of the 

equations (7.7.3). In fact, (7.8.6) reduces to (7.7.3) when k = 1, and most 
of the equations of this section then become precisely those of Section 7.7. 
In making such comparisons, note that if k = 1, then I = w, I' = in, 
sn iu = i tan u, H(iu) a i sin u and 0(iu) a cos u. 

In Chapter 15 the elliptic functions are defined only for 

O c k c l ,  (7.8.9) 

so for definiteness it will be supposed in this section that this is so, i.e. that 
T < T,. In the next section this restriction will be removed. 
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The Form of the Function A(u) 

It is now quite straightforward to generalize the programme of Section 7.7, 
as outlined at the beginning of this section. Step (i) has been performed 
in equation (7.8.6). From this and (7.4.6) it is evident that every element 
of V is of the form 

where 
h(u) = H(u) O(u) 

and the . . . in (7.8.10) denotes an entire function of u. 
From (7.6.2) and (7.6.6), each eigenvalue A is a linear combination of 

elements of V, with coefficients that depend on k but not on u. Writing 
A as A(u), it follows from (7.8.10) that 

where again . . . stands for an entire function. 
Now consider the effect of incrementing u by 2Z', and -2iZ, where I ,  I' 

are the half-period magnitudes of the elliptic functions. (This unconven- 
tional notation, instead of K, K', is used to avoid confusion with the 
interaction coefficients.) From (15.2.5), incrementing u by 21' in (7.8.5) 
is equivalent to replacing K, L by -K * h i ,  - L 2)ni. As was shown in 
Section 7.7, this replaces A by rA where r (= + I )  is the corresponding 
eigenvalue of the spin-reversal matrix R. 

Thus 
A(u + 2Z') = rA(u) . (7.8.13) 

Also from (15.2.5), incrementing u by -2iZ in (7.8.5) is equivalent to 
replacing K, L by K 2 bni, L + )ni. Since r' + sf in (7.4.6) is even, this 
leaves the matrix elements of V unchanged, so 

Now we can use the vital theorem 1% of Section 15.3. From (7.8.13) 
and (7.8.14), A(u) is doubly periodic, while from (7.8.12) it has 2p poles 
per period rectangle. It follows that 

where ul, . . . , uzP are the zeros of A(u) within a period rectangle, p and 
A are constants, and A must be chosen to ensure (7.8.13) and (7.8.14). 



This expression (7.8.15) is the required generalization of (7.7.9). Step 
(ii) is completed. 

Zeros of M u )  

The next step is to determine the zeros ul,. . . ,242, of A(u) from the 
identity (7.6.7). 

First replace u by u + I' in (7.8.5). Using (15.2.6) this is found to be 
equivalent to replacing K, L by L + , - K. Using also (7.8.1) and 
(7.8.4), the identity (7.6.7) therefore becomes 

A(u) A(u + 1') = ( k  - 2u)n + (-2 sn iu)"r. (7.8.16) 

This is the generalization of (7.7.2). Using (7.4.9, (7.8.11), (7.8.15) 
and (l5.1.6), it becomes 

2p 

$ exp[l(2u + I f ) ]  n H(iu - iuj) H(iu - iu, + iIf) 
] = 1 

which is the generalization of (7.7.10). 
The zeros of the RHS of (7.8.17) occur when 

The expression on the LHS of (7.8.18) is a doubly periodic function of iu, 
with periods 21, 2iI'. It has one pole, of order 4p, per period rectangle, 
so from theorem 15b it has 4p zeros per period rectangle. 

To locate these zeros, set 

u = - J r - i @ .  (7.8.19) 

Then, using (l5.4.12), (7.8.18) becomes 

Define Oj as in (7.7.14). Then (7.8.20) will certainly be satisfied if @ = 
cpj, where 

As is shown in Section 15.4, the function Am(@) is real and increases 
monotonically from -Jn to Sn as @ increases from -I to I. Since 
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0 < Oi S n, (7.8.21) therefore has a unique real solution, with -I < 
Gi s I. Solutions with different values of j are distinct. 

From (15.2.6), if u is a solution of (7.8.18), then so is u + l'. Thus 
(7.8.18) has 4p solutions 

To moduli 211, 2iI these are distinct, so we have found the 4p zeros of the 
RHS of (7.8.17). Their locations in the iu-plane are shown in Fig. 7.3. 

Fig. 7.3. The locations in the complex iu-plane of the 4p zeros of the RHS of 
(7.8.17), namely iu =$, T fiZf. (Here p is 3.)  The crosses are the zeros for r = 
+ 1; the circles are the zeros for r = -1. The broken line is the perimeter of the 

period rectangle. 

The LHS of (7.8.17) has 4p zeros, in pairs u, and ui - 1'. Thus the general 
solution of (7.8.17) is 

ui= -4 y$' - i@j7 (7.8.23) 

where 

This is the generalization of (7.7.16). (The value j = 2p when r = -1 is 
excluded in Section 7.7, because when k-, 1, I and $Q, then tend to 
infinity. ) 

As in Section 7.7, not all solutions of (7.8.23) are allowed. The reason 
for this is actually easier to see now than it was then: theorem 15c imposes 
the restriction (15.3.7) on the locations of the zeros of a doubly periodic 



function. Applied to equations (7.8.12)-(7.8.15), this restriction becomes 

where 1 and I' are integers. 
If r = + 1, the 4,s occur in pairs (+ , - +). If r = - 1, they all do so except 

for +p = 0 and hP = I. Using (7.8.23), the imaginary part of (7.8.25) is 
therefore satisfied, while the real part gives, for r = + I ,  

yl + . . . + y* = 2p - 4 x integer, (7.8.26) 

as in (7.7.20). Thus r and all but one yi can be chosen independently, giving 
2% = 2" eigenvalues. This is the expected number, since V and W are 2" 
by 2" matrices. 

Substituting these results for ul, . . . , u* into (7.8.15), A can be chosen 
to ensure (7.8.13) and (7.8.14), giving 

This result can be slightly simplified by squaring both sides and using the 
relation (15.2.4) between H(u + il') and @(u), giving 

where p' is another constant. 
Using (15.1.6), this can in turn be written as 

where D is independent of yl, . . . , yzp, being given by 

From (15.2.4) and (15.2.3), D is a doubly periodic function of iu, with 
poles of order 2p at iu = 0 and I t ,  and 4p simple zeros, at iu = cPj + W ,  
j = 1, . . . ,2p . From (7.8.18)-(7.8.22), one such function is 

The ratio of D to the expression (7.8.31) is therefore an entire doubly 
periodic function of iu. From theorem 15a, it is therefore a constant. 
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To within a normalization constant, therefore, the term D in (7.8.29) 
can be replaced by the expression (7.8.31). The normalization constant 
can now easily be obtained from (7.8.16), giving 

where 

7.9 General Expressions for the Eigenvalues 

Having used elliptic functions, and in particular their factorisation theorem 
15c, to evaluate the eigenvalues A, we can now eliminate them. From 
(7.8.21), (15.4.12), (15.4.4) and (15.4.5), 

k511(@~ - f i I ' )  = -exp(iO,) , (7.9.1) 

~ n ( @ ~  - h i I ' )  dn(#, - f i 1') = -i kt exp(iOj)c,, (7.9.2) 
where 

C, = k-' (1 + k2 - 2k cos 20,)~. (7.9.3) 

Using the addition formula (15.4.21), it follows that 

k4 sn(iu - @, + 4 i I t )  

- - cniu dniu - ikc ,sn iu  
exp(-iOj) - k exp(iOj) sn2 (iu) ' 

Also, from (7.8.5), 

sinh 2K = -i sn iu 

cosh 2K = cn iu 

sinh 2L = il(k sn iu) 

cosh 2L = i dn iul(k sn iu) , (7.9.5) 

while from (15.2.6) 

k' sn(iu - qbj - f i 1') = [kt sn(iu - @j + f i z')] -' (7.9.6) 
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Using these relations, (7.8.32) can be written (dropping the explicit depend- 
ence of A on u)  as 

2p 

~ ' = r ( - . l ~ [ ( s i n h 2 ~ ) ~ + r ( s i n h 2 ~ ) ~ ~ ] ~ ( p ~ ) " j ,  ]=I (7.9.7) 

where 

cosh 2K cosh 2L + ci ' = exp(i0,) sinh 2K + exp (-it$) sinh 2L ' 
(7.9.8) 

Analytic Continuation to T 3 T,  

This result has only been obtained for k < 1, since only then can the elliptic 
function definitions of Chapter 15 be used. However, for finite p each 
eigenvalue must be an algebraic function of exp(2K) and exp(2L), so 
(7.9.7) can be analytically continued to k 2 1, i.e. to T 2  T,. 

In doing this, the only difficulty is the sign of each ci. Provided 
0 < Oi < rc there is no problem: (7.9.3) is positive for k < 1 and tends to 
a strictly positive limit as k-, 1, so the analytic continuation of (7.9.3) is 
the positive square root. 

On the other hand, if r = -1 and j = 2p, then 4 = rc and, for k < 1, 
(7.9.3) gives 

c2p=(l-k)lk i f r = - 1 .  (7.9.9) 

This tends to zero as k-, 1, and its analytic continuation is clearly negative 
for k >l. 

Thus the formulae (7.9.7), (7.9.8) and (7.9.3) apply not only for k < 
1, but also for k 3 1, provided that the positive sign is chosen in (7.9.3) 
except when r =  -1, j = 2 p  and k 3  1. 

Counting of the Eigenvalues 

One disadvantage of this method, as with any method that does not depend 
on an explicit representation of the transfer matrix, is that it only proves 
that any eigenvalue of VW must be of the form (7.9.7), with an appropriate 
choice of yl, . . . , y ~ .  It does not tell us how many eigenvalues there are 
for a particular choice of yl, . . . , y*, if indeed there are any. 

There are two ways round this problem: one can consider a low- or 
high-temperature limit, when at least some of the eigenvalues (notably the 
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largest) can easily be uniquely identified, or one can compare with a direct 
calculation using spinor operators (Kaufman, 1949). One does in fact find 
that for each choice of r and yl, . . . , y* satisfying (7.8.26), there is one 
and only one eigenvalue given by (7.9.7). 

Maximum Eigenvalue and the Free Energy 

In the thermodynamic limit the partition function Z is given by (7.2.5). 
Since the lattice has m rows of 2p sites, the total number N of sites is 2mp. 
From (1.7.6) and (7.2.5), the free energy f per site is therefore given by 

-flkBT = (2p)-'1n A,, , (7.9.10) 

where kB is Boltzmann's constant and A,, is the eigenvalue of greatest 
modulus. 

From (7.6.1), (7.9.3) and (7.9.8), for K and L real, 
cosh 2K cosh 2L + cj 

'j" = cosh 2K cosh 2L - c, ' 

while for K and L positive, 

0 a C, a cosh 2K cosh 2L. (7.9.12) 

It follows that 3 1, so the RHS of (7.9.7) is maximised by choosing 
yl =. . . = y, = + 1, which is allowed by (7.8.26). The product of the 
denominators of W, . . . , ~ 1 2 p  in (7.9.7), as given by (7.9.8), can then be 
calculated using (7.7.14). It exactly cancels with the leading factors in 
(7.9.7), except 4P, giving 

20 

A:, = n 2(cosh 2K cosh 2L + c,) . 
] = I  

This is true for either r = +1 or r = -1. However, from the Perron- 
Frobenius theorem (Gantmacher, 1959, p. 53) the maximum eigenvalue 
of a matrix with all positive entries corresponds to an eigenvector with all 
positive entries. From (7.6.2), this can only happen if r = +l. 

Define 

Then from (7.7.14), (7.9.3) and (7.9.13), setting r = +1, it follows that 
Zp 

In A,, = t C F[* - t)l2p] . 
j=1 

(7.9.15) 
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This is a sum over BF(q), where 81, . . . , 82, are uniformly distributed 
over the interval (0, n). In the limit of p large it therefore becomes the 
usual definition of the integral of fF(8), divided by the sub-interval length 
nl2p. Thus (7.9.10) becomes 

- f r k e ~  = ( 2 4  -l[ ~ ( 8 )  do. (7.9.16) 

This is the principal result of this chapter: the free energy of the square 
lattice Ising model in the thermodynamic limit. 

7.10 Next-Largest Eigenvalues: Interfacial Tension, Correlation Length 
and Magnetization for T < T, 

In this section it will usually be supposed that 0 4 k < 1. 

Asymptotic Degeneracy and Interfacial Tension 

What is the next-largest eigenvalue of the transfer matrix? Clearly one 
candidate is A1, the eigenvalue obtained by setting r = -1, yl = . . . 
= y, = + 1. From (7.9.13), (7.9.14), (7.9.3) and (7.7.14), this is given by 

2P 

ln Al = f 2 F(nj12p) if k < 1 . 
j =  1 

(7.10.1) 

The two sums in (7.9.15) and (7.10.1) differ only by terms that are 
exponentially small when p is large. To see this, Fourier analyse F(8): 

ca 

F(B) = 2 a m c o s 2 m ~ .  
m = O  

(7.10.2) 

Now substitute this expression for F(8) into (7.9.15) and (7.10.1) and 
interchange the j and m summations. The j summation is then easily 
performed, giving 

This transformation is a special case of the Poisson summation formula 
(Courant and Hilbert, 1953, Vol. 1, p. 76). It is ideally suited to evaluating 
Am, and A1 for large p ,  since the am usually tend exponentially to zero 
with increasing I m 1. 
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To see this, set 
z  = exp (2iO) (7.10.4) 

and consider F(O), given by (7.9.14), as a function of z.  It has branch 
points at z  = 0, k, k-' and a ,  and is analytic in 
k-' .  

The Fourier expansion (7.10.2) can be written 

the annulus k < 1 z 1 < 

(7.10.5) 

which is plainly a Laurent series. Since F is analytic on 1 z 1 = 1, this series 
converges. More strongly, since F is analytic in the annulus k < lz l  < 
k-', and singular at z = k, k-l, the series (7.10.5) must converge for k < 
J z l  <k-' and diverge when z = k or k-'. From the ratio test for series 
convergence, it follows at once that 

Since A, < A,,,, it now follows from (7.10.3) that when p is large 

For k < 1, the two largest eigenvalues A,,, and A1 are therefore asymp- 
totically degenerate, in that their ratio differs from unity by terms that 
vanish exponentially with the width of the lattice. 

The rate of this exponential decay is a measure of the interfacial tension 
s, as can be seen by the following argument (Fisher, 1969). 

Consider the quantity 

Zh = Trace (VW)""R , (7.10.8) 

where V, Ware the row-to-row transfer matrices and R is the spin reversal 
operator defined by (7.3.14). As in (7.2.3), this is the partition function 
of a lattice of m rows, but with the anti-cyclic condition that the spins in 
the top row are the reverse of those in the bottom row. 

In an ordered ferromagnetic state the spins are either all mostly up, or 
all mostly down, within a region. Suppose that near the bottom of the 
lattice they are mostly up. Then from the anti-cyclic boundary condition, 
near the top of the lattice they must be mostly down, as in Fig. 7.4. 

Somewhere in between, there must be a line running across the width 
of the lattice separating the domains of mostly up and mostly down spins. 
There are n sites per row, so this line will give an extra contribution ns to 
the free energy, where s is the interfacial tension per unit length. Thus 
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where f is the usual free energy per site of the lattice, given by (1.7.6). 
Thus 

Z ~ / Z N  = exp(-ndk~T) . (7.10.10a) 

This is not quite right: it is the correct contribution to the partition 
function of a separation line but there are many such lines, as can be seen 
by considering the zero-temperature limit. In this, all spins above the 
separation line must be down and spins below it must be up, and the line 
must be of length 2n lattice spaces, which is the minimum possible length. 

Fig. 7.4. The two domains induced at low temperatures by requiring that the spins 
in the top row be the reverse of those in the bottom row. Below the separation line 
(shown dotted), there is a 'sea' of up-spins containing 'islands' of down spins. 

Above the separation line the reverse is true. 

All such arrangements minimize the energy under the given boundary 
conditionq, so are eqyally likely. Given the face in which the left-hand 
en4 of the line lies, there are (2n)!l(n!)' such lines: this is the number of 
walks af equal length that one may take in a rectangular-grid city to get 
from 0th Street and Qth Avepue to nth Street and nth Avenue. The RHS 
sf f7.10.10a) should therefore be multiplied by this factor, but since for 
n large it is effectively an expanential, it can be absorbed into the definition 
af S. 

On the other hand, since fhere are m rows, there are 4m faces in which 
the left-hand end of the separation line may lie. Thus the RHS of (7.10.10a) 
should also be multiplied by this factor. This cannot be absorbed into s, 
and clearly persists for non-zero temperatures, so (7.10.10a) should be 
replaced by 

Zh/ZN = im exp(-nslk~T) . (7.10.10b) 

From (7.2.3) and (7.10.8), it follows that 

Trace (vw)"'R 
tm exp(-nslkBT) = (7.10.11) 

Trace (vw)"" ' 
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Since R commutes with V and W, this result can in turn be written as 

where the A; are the eigenvalues of VW, and the r, the corresponding 
eigenvalues of R. 

When m is large only the two largest eigenvalues A,,, and A, contribute 
to the sums in (7.10.12). The corresponding eigenvalues of R are + 1 and 
-1, so 

Set 
E = 1 - Al/Amax , 

then (7.10.13) becomes 

From (7.10.7), E vanishes exponentially with n. The definition (7.10.9) 
of s is sensible only if m and n are large and of the same order, in which 
case E is effectively small in (7.10.15), so 

From this and (7.10.14), it follows that 

This is a general result, applicable to any two-dimensional ferromagnetic 
system with T < T,. Comparing it with (7.10.7), we see that for the Ising 
model 

exp(-slk~T) = k . (7.10.18) 

Thus the interfacial tension s is large and positive at low temperatures 
(k 4 I ) ,  decreases with increasing temperature (increasing k), and vanishes 
at the critical temperature (k = 1). 

Correlation Length 

After A,, and A1, what is the next-largest eigenvalue of (vw)~? From 
(7.9.7) and (7.8.26), this is obtained by negating the two ns corresponding 
to the smallest I&. For r = +1, from (7.9.11), (7.9.3) and (7.7.14), the 
next-largest eigenvalues A2 therefore corresponds to 
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Since % = n- el, it follows from (7.9.8) that p2p =- pf ,  SO from 
(7.9.11)- , . 

A2 C O S ~  2K C O S ~  2L - CI -- - 
A,, cosh 2K cosh 2L + cl ' 

choosing for convenience the lower sign in (7.10.20). 
In the limit of p large, el tends to zero and cl to 11 - kllk, so 

A2/Am, = A  , 
where 

cosh 2K cosh 2L - 11 - kllk 
A  = 

cosh 2K cosh 2L + 11 - kJlk ' 

A similar argument applies for r = -1. If A2 is now taken to be the 
next-largest eigenvalue for r = -1, then when p is large we again obtain 
the result (7.10.22), to within an irrelevant sign. 

Thus all eigenvalues hi other then A,, and A1 satisfy the inequality (for 
P+ CQ) 

IAjI A  Amax (7.10.24) 

where 0 < A  < 1 provided k # 1. This result justifies the simplification of 
(7.10.12) to (7.10.13). 

Provided all the eigenvalues Aj are real, the ratio A21Am, is related to 
the correlation length g. To see this, let P and Q be two sites on the lattice, 
and up, UQ the corresponding spins. Then from (1.4.4) and (1.8.1) the 
expectation value of the product U ~ U Q  is 

where the outer sum is over all values of all spins, and the inner sums have 
the same meanings as in (6.2.1). 
Using the same argument that led to (7.2.1), (7.10.25) can be written 

Let $ be a set of n spins {q , . . . , a,) and let sl be the 2" by 2" diagonal 
matrix with entries 

(sl)+,@=O if$ '+$ (7.10.27) 

= q  i f $ ' = $ .  
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Then if P, Q are the first sites in rows x and y respectively, where x and 
y are odd, (7.10.26) can be written as 

(apaQ) = 2;;' Trace V W .  . . VWsl  V W .  . . 

X V W s 1 V W . .  . V W ,  (7.10.28) 

where sl occurs before the xth and yth matrices V. Thus 

(upaQ) = 2;' Trace ( ~ ) ~ ( * - ' ) s l  (vw)"-*) 

The argument now closely parallels that of Section 2.2 for the one- 
dimensional Ising model. Let U be the matrix of eigenvectors of VW, and 
D the corresponding diagonal matrix with diagonal elements D,, = Aj , 
j = l , 2 , 3 , .  . . . Then for all integersx, 

(VWY2 = U DX U-' . (7.10.30) 

Using this result, (7.10.29) can be written 

where 
tii = (U-I S I  U)i,. (7.10.32) 

Now let m+ m.  The i summation in (7.10.31) is then dominated by the 
value for which Ai = A,,,. Call this value 0 .  Using (7.2.5) it follows that 

From (7.3.14) and (7.10.27) it is apparent that 

so whereas the transfer matrix VW commutes with R, the spin operator 
sl anti-commutes with it. 

Since R2 = I ,  there is a representation in which 

Using the commutation and anti-commutation properties mentioned above, 
it follows that V, W and U are all block-diagonal, i.e. of the form 
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while sl, and hence ~ - ' s l  U, is of the form 

It follows at once that 

tii = 0 unless ri = -ri, (7.10.36) 

where ri and ri are the eigenvalues of R corresponding to Ai and A,, 
respectively. 

Since & = A,,, corresponds to ro = + 1, this implies that the toi and tjo 
in (7.10.33) vanish unless r, = -1. The summation can therefore be 
restricted to such values of j, giving 

In the limit n + m, A1 = A,,. Provided A2, A3, . . . are all real, it follows 
that for y - x large 

The correlation function g p ~  is defined in (1.7.21), which can normally 
be written in the form 

i.e. gpQ is the difference between (apse) and its limiting value for P ,  Q far 
apart. 

With this definition, (7.10.38) implies that for y - x large 

Since y - x is the distance between sites P and Q, the definition (1.7.24) 
of the correlation length 5 gives 

This is a quite general result, but it is not immediately applicable to the 
present problem. To see this, note that Q is vertically above P,  so ~ P Q  is 
the vertical correlation function on the diagonal square lattice. If K and 
L are interchanged, this must become the same as the horizontal correlation 
function. However, if P and Q lie in the same row, at positions 1 and j, 
then repeating the argument of (7.10.26)-(7.10.33) gives 
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Here U is the matrix of eigenvectors of VW, which we have seen depend 
on K and L only via k. Thus gpe and must also depend only on k, whereas 
from (7.10.22, 23) this is not true of A,,,/A2. 

The reason for this apparent contradiction is that the transfer matrix 
W is not in general symmetric, so its eigenvalues are not all real. The 
eigenvalue A2 is merely the largest of a band of complex eigenvalues, with 
different arguments. In the limit of n large this band becomes continuous 
and the j = 2 contribution to (7.10.33) can be cancelled by the contributions 
of eigenvalues arbitrarily close in modulus to A2, but with different argu- 
ments. Johnson et al. (1972a, 1973) have explicitly found such a phenom- 
enon for the eight-vertex model discussed in Chapter 10. 

Fortunately in this case it is easy to retrieve the situation, since ij can 
depend only on k. For a given value of k, consider the isotropic case 
K = L. From (7.4.2), the transfer matrix is then symmetric, so its eigen- 
values are real and the formula (7.10.41) is valid. Using (7.6.1) and 
(7.10.22,23), it follows that, for 0 < k < 1, 

Comparing this result with (7.10.18), we see that the interfacial tension 
s and the correlation length g satisfy the simple exact relation 

Spontaneous Magnetization 

From (1.7.22), the magnetization M is given by 

Care has to be taken in evaluating this average for T < T, and H = 0. 
For the finite zero-field system of this chapter, (up) must be zero, since for 
every state in which up = +1, there is an equally likely state (obtained by 
reversing all spins) in which up = - 1. 

What should be done is clear from Fig. 1.1: when H = 0 the magnetization 
can take any value between Mo and -Mo, where the spontaneous mag- 
netization Mo is defined by 

Mo = lim (up) ; 
H+O+ 

i.e. (ap) is to be evaluated for H > 0 in the thermodynamic limit, then H 
allowed to tepd to zero. 

Now for H > 0 it is certainly true that the correlation g p ~  defined by 
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(1.7.21) tends to zero as the P and Q become far apart. Since the system 
is translation invariant, (ap) = (aQ), so it follows that 

( 0 ~ ) ~  = lim (apaQ) 
y -x-+ m 

This can be taken as a definition of (ap) for H > 0. Letting H+ 0, it 
then provides a definition of Mo, so from (7.10.38), (7.10.46) and (7.10.47), 

The calculation of this quantity is quite technical and I refer the reader 
to the excellent book by McCoy and Wu (1973). One property, however, 
can readily be deduced from the above: the eigenvectors of W ,  and hence 
the matrix U, depend on K and L only via k. From (7.10.32) therefore, 
so do the ti,. Equation (7.10.48) therefore gives 

Mo = function of k only . (7.10.49) 

In fact, it was found by Onsager in 1949, and a proof published by Yang 
in 1952, that 

In view of the difficulty of the calculation, this is an amazingly simple 
result. It is curious that no simple way has been found to derive it. A 
derivation, using corner transfer matrices and applicable to the more 
general eight-vertex model, is given in Section 13.7. 

7.11 Next-Largest Eigenvalue and Correlation Length for T > T, 

As in the previous section, let Al be the maximum eigenvalue for 
r = -1, but now suppose that k > 1. 

From (7.9.9), c2, is now negative. The formula (7.10.1) would still be 
true if F(n) were defined by (7.9.14) with the square root negated, but it 
is more sensible to keep the square root positive for all 8, in which case 
the term j = 2p in (7.10.1) must be corrected to give 

2~ 

In A1 = f In A + f F(nj12p) , 
j =  1 

(7.11.1) 

using the definition (7.10.23) of A. 
The argument of equations (7.10.2)-(7.10.6) can again be used to show 

that for large p the summations in (7.9.15) and (7.11.1) differ by expo- 
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nentially small terms. The only difference is that now the annulus of 
analyticity of F(8) is k-' <lz 1 < k, so a, - k-". 

Subtracting (7.9.15) from (7.11.1), it follows that for p large 

Since A < 1, Al is therefore no longer asymptotically degenerate with 
A,,,,,, and from (7.10.13) there is no interfacial tension. 

It is still true that all other eigenvalues satisfy (7.10.24), so they are less 
than A1. If the eigenvalues of VW are all real, then the formula (7.10.33) 
gives, for y - x large, 

As in the previous section, this result can only be true for K = L,  since 
(ap oQ) is a function only of k. From (1.7.21) and (1.7.24) the correlation 
length E is therefore given by 

for all K, L such that k > 1. 
This is small at high temperatures (k large), increases with decreasing 

temperature (decreasing k), and becomes infinite at the critical temperature 
(k = 1). Note that the high-temperature formula (7.11.4) differs from the 
low-temperature one (7.10.43) in a factor of -2. There is no spontaneous 
magnetization. 

7.12 Critical Behaviour 

From (7.6.1) and (6.2.2), 

where J  and J' are the interaction energies of the Ising model in the two 
directions. Normally, J and J r  are regarded as fixed, and the temperature 
T as a variable. 

As T increases monotonically from 0 to m, so does k. Thus k is itself 
a measure of the temperature. 

Free Energy and the Exponent a 

The free energy f is given by (7.9.14) and (7.9.16). For positive k and real 
8, F(8) is an analytic function not only of 6, but also of cosh 2K cosh 2L 
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and k, except only when 6 = 0 and k = 1. Thus f is an analytic function of 
K and L,  except possibly when k = 1. 

Since the square root in (7.9.14) vanishes when 6 = 0 and k = 1, the 
dominant singular behaviour off is given by expanding F(6) in powers of 
this square root and retaining only the first two terms, i.e. setting 

F(0)  = ln(2 cosh 2K cosh 2L) 

+ k-' sech 2K sech 2L (1 + k2 - 2k cos 2 0 ) ~ .  (7.12.2) 

Substituting this into (7.9.16), the contribution of the first term to f is 
analytic even at k = 1, so the dominant singular part f, off  is given only 
by the second term. Using the relation cos 28 = 2 cos26 - 1 and changing 
the integration variable from 6 to in - 6, it is found that 

-f,/kBT = 
l + k  

nk cosh 2K cosh 2L E(kl). 

where 
kl = 2k4/(l + k) 

and E(k) is the complete elliptic integral of the second kind of modulus 

Near k = 1 this integral satisfies the approximate formula (Gradshteyn 
and Ryzhik, 1965, Paragraph 8.114.3) 

E(k) - 1 + 4 (1 - k2) ln[16/(1 - k2)] , (7.12.6) 

so from (7.12.3), again neglecting analytic contributions to f,  

(1 + k) (1 - k)2 
-fs'kBT = 2nk cosh 2K cosh 2L ln I I ' (7.12.7) 

Clearly, f is in fact singular at k = 1. 
A critical temperature can be defined either as a value of T for which 

f is a singular function, or one at which the spontaneous magnetization or 
interfacial tension vanishes, or one at which the correlation length 
becomes infinite. By any of these criteria, it is now evident that the square 
lattice Ising model has one and only one critical temperature T,, given by 
k = 1, i.e. 

sinh(UlkBTc) sinh(Uflk~Tc) = 1 . (7.12.8) 

Near T = T,, k - 1 is proportional to T - T,. Thus the definition (1.1.3) 
can be replaced by 

t = k - 1 ,  (7.12.9) 
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and (7.12.7) gives 
fs t2lnJtl.  

This result can be written as 

1 - ltl-" 
fs ? lim 

'2-0 a' 

Comparing this with the definitions (1.7.7)-(1.7.9) of u, C and the critical 
exponents lu and d ,  we see that in this limiting sense 

Other Exponents 

From (7.10.18), (7.10.50), (7.10.43) and (7.11.4), near T = T, the inter- 
facial tension s, the spontaneous magnetization Mo, and the correlation 
length 5 behave as 

Comparing these results with (1.7.34), (1 . lA) and (1.7.25), we see that 
the corresponding exponents ,u, /3, v, v' exist and are given by 

The scaling relations (1.2.15) and (1.2.16) are therefore satisfied. 
Since the two-dimensional Ising model has only been solved in zero field 

(H = 0), a complete test of scaling is not possible. Even so, there is a 
wealth of numerical results (e.g. Sykes et al., 1973b; Domb, 1974; Baxter 
and Enting, 1979) and of mathematical theorems applicable to the model 
in a field. For instance, Abraham (1973) has rigorously proved that 

in agreement with (1.2.14). There is no reason to suppose that the scaling 
hypothesis is not satisfied. In particular the exponent 6 defined by (1.1.5) 
is presumably given by 

6 = 1 5 .  (7.12.16) 

7.13 Parametrized Star - Triangle Relation 

In the above working I have delayed introducing elliptic functions for as 
long as possible: until Section 7.8. There they were needed in order to 



express exp(2K), exp(2L) as meromorphic functions of some variable u, 
while satisfying (7.6.1) for k independent of u. 

This equation (7.6.1) is the 'commutation condition': two transfer mat- 
rices with the same value of k, but different values of u, commute. This 
was established in the first part of Section 7.3, using the star - triangle 
relation (6.4.4), (6.4.5). In fact (7.6.1) is merely a re-interpretation of 
(6.4.13). 

Thus it would have been perfectly natural to have introduced elliptic 
functions as early as Section 6.4, so as to obtain a parametrization of 
(6.4.13), and indeed of the full star - triangle relations (6.4.8). 

Onsager (1944, pp. 135 and 144) noted that this was an obvious thing 
to do: in Section 6.4 the K1, K2, K3, L1, L2, L3 satisfy relations similar to 
those of hyperbolic trigonometry (Coxeter, 1947). It is well known that 
these can be simplified by using elliptic functions (Greenhill, 1892, Para- 
graph 129): Onsager calls this a 'uniformizing substitution'. The resulting 
identities are very simple and have analogues in other models: let us 
therefore not leave the Ising model without noting them. 

For j = 1, 2, 3, let K,, Lj in Section 6.4 be given by (7.8.5), with K, L, 
u replaced by K,, L,, u,. Then (6.4.13) is automatically satisfied. 

Substituting these expressions for K1,. . . , L3 into (6.4.14) and (6.4.15) 
gives 

R2 = -2i/(k2 sn iul sn iu2 sn iu3) , (7.13.1) 

From (15.2.5), the functions sn u, cn u, dn u are all strictly periodic, of 
periods 41 and 4iZ'. Comparing (7.13.2) with the formula (15.4.22), it 
follows that one set of solutions of (7.13.2) is 

for all integers m, n. 
From (15.2.5), (7.13.2) is unchanged by negating u2 and u3, or by 

negating u2 and incrementing u3 by 21' + 2i1, or by interchanging u2 and 
u3. From (7.13.3a), (7.13.2) is therefore also satisfied by 

The difference between the RHS and LHS of (7.13.2) is a periodic 
function of iul, with periods 41,4il1. Within each period rectangle it has 
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four poles, at iul = +iZr, +iZ' + 21. From the theorem 15b it therefore has 
just four zeros per such period rectangle. These are all accounted for by 
(7.13.3), so this is the complete set of solutions of (7.13.2). 

In addition to (6.4.15), there are two other relations obtained by per- 
muting the suffixes 1 ,2 ,3 ,  i.e. permuting ul, u2, ug in (7.13.2). The solution 
(7.13.3a) is unchanged by this, but those in (7.13.3b) are not. The correct 
solution is therefore (7.13.3a). 

From (7.8.5), incrementing ul by 41' or 4iI leaves K1, L1 unchanged. 
Without loss of generality one can therefore take the solution of (7.13.2) 
to be 

u1+ uz + ug = 1 ' .  (7.13.4) 

The relations (6.4.8) are now satisfied. 

Operator Form 

Now let us look at the operator form (6.4.25) of the star - triangle relation. 
The operators U; are functions of K, L,  and, from (6.4.13), every operator 
has the same value k-l of sinh K sinh L. Regarding k as constant, they are 
therefore functions of the single variable u in (7.8.5). 

The middle operator has arguments L2, K2, rather than K2, L2. From 
(15.2.6) and (15.2.5), interchanging K and L is equivalent to replacing u 
by I' - u. Thus u2 should be replaced by I' - u2, which from (7.13.4) is 
ul + u3. Writing Ui as a function of u, rather than K and L,  the equation 
(6.4.25) therefore takes the simple form 

This is an operator identity, true for i = 1, . . . , 2N - 2 and all complex 
numbers ul, u3. In particular, it is true when ul, u3 take their 'physical' 
values 0 < ul < Z', 0 < u3 < I f ,  corresponding to K1, L1, Kg, L3 being real. 

7.14 The Dimer Problem 

Before moving on to the next chapter, it is appropriate to mention the 
planar dimer problem. This is because its solution by Kasteleyn (1961) and 
by Temperley and Fisher (1961) was the next major advance in exact 



statistical mechanics after Onsager's solution of the Ising model; and 
because the zero-field Ising model partition function can itself be expressed 
as a dimer problem. 

A 'dimer' is an object that occupies two adjacent lattice sites, e.g. a 
dumb-bell shaped molecule. The 'dimer problem' is to determine the 
number of ways of covering a given lattice with dimers, so that all sites are 
occupied and no two dimers overlap. If there are N sites, then N must be 
even and there must be Nl2 dimers. 

A simple illustration is to ask the number of ways of covering a chess- 
board with dominoes, each domino filling two squares. Fisher (1961) used 
his result to work this number out: it is 12988 816. 

For any lattice, the number of dimer coverings is clearly 

where m = JN, the sum is over all permutations P ={pl , . . . ,PN) of the 
integers 1, . . . , N, and 

b(i , j) = 1 if sites i and j are adjacent , (7.14.2) 
= 0 otherwise. 

This expression counts the number of ways of grouping the N sites in m 
nearest-neighbour pairs, which is the same thing as covering them with 
dimers. The factor llm! allows for the fact that no distinction is made 
between pairs, and the factor 2-" is because no distinction is made between 
a pair (i , j) and a pair ( j , i). 

Unfortunately there is in general no easy way to calculate the sum in 
(7.14.1). 

However, what one can make progress with is the expression 

f'f(A) = (m!2")-'? & p a ( p i , p i ) a ( ~ 3 , ~ d .  . . ~ ( P N - I , P N ) ,  (7.14.3) 

where 

a(i , j) = -a(], i) , (7.14.4) 

and E~ is the signature of the permutation P,  being + 1 for even permutations 
and -1 for odd ones. 

If A is the N by N matrix with elements a(i , j) (i.e. aij), then (7.14.3) 
is known as the 'Pfaffian' of A (Muir, 1882). It is simply the square root 
of the determinant of A: 

Pf(A) = (det A ) ~ ,  (7.14.5) 

and determinants are comparitively simple to calculate, mainly because the 
determinant of a product of matrices is the product of the determinants. 
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Kasteleyn (1961) and Temperley and Fisher (1961), therefore asked the 
question: can (7.14.1) be put into the form (7.14.3) by a judicious choice 
of the signs of the a(i , j)? In general the answer is no, but for any planar 
lattice (i.e. ones with no crossing edges) it turns out to be yes. Further, 
for a regular lattice the resulting matrix A is effectively cyclic, so its 
determinant can be calculated. 

Following this solution of the planar dimer problem, Kasteleyn (1963) 
showed that the square-lattice zero-field Ising model partition function can 
be expressed as a dimer problem on a decorated lattice, and was therefore 
able to re-derive Onsager's solution. As was mentioned in Section 7.1, this 
Pfaffian method has proved very useful for calculating Ising model proper- 
ties (Montroll et al., 1963; McCoy and Wu, 1973; Thompson, 1972). 



ICE-TYPE MODELS 

8.1 Introduction 

Following the solution of the Ising model and the dimer problem, the next 
class of statistical mechanical models to prove tractable was that of the 
'ice-type' models, which was solved by Lieb (1967a, b, c) for three arche- 
typal cases, then more generally by Sutherland (1967). 

There exist in nature a number of crystals with hydrogen bonding. The 
most familiar example is ice, where the oxygen atoms form a lattice of 
coordination number four, and between each adjacent pair of atoms is an 
hydrogen ion. Each ion is located near one or other end of the bond in 
which it lies. Slater (1941) proposed (on the basis of local electric neutrality) 
that the ions should satisfy the ice rule: 

Of the four ions surrounding each atom, two are close to it, and two are 
removed from it, on their respective bonds. 

This means that the partition function is given by (1.4.1), i.e. 

Z = exp(-%lkeT) , (8.1.1) 

where the sum is now over all arrangements of the hydrogen ions that are 
allowed by the ice rule, and 8 is the energy of the arrangement. 

For ice itself, C& is the same for all allowed arrangements. With a suitable 
choice of the zero of the energy scale, 8 can therefore be taken to be zero. 
Z then becomes simply the number of allowed arrangements, and the 
residual entropy is 

This is non-zero, since there are many arrangements allowed by the ice 
rule. One of them is shown in Fig. 8.l(a) for the square lattice. 
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Fig. 8.1. An arrangement of hydrogen ions on a 3 by 3 square lattice (with cyclic 
boundary conditions), satisfying the ice rule: (a) the positions of the hydrogen ions 
on the bonds, (b) the corresponding electric dipoles, (c) the corresponding line 

representation. 

Of course real ice, and other crystals, are three-dimensional, but unfor- 
tunately the only exact solutions we have for three-dimensional ice-type 
models are for very special 'frozen' states (Nagle, 1969b). 

In this chapter only ice-type models on the square lattice will be con- 
sidered. They exhibit similar behaviour to three-dimensional reality, and 
have the enormous advantage of being solvable! (In particular, square ice 
is really quite a good approximation to real ice, since the residual entropy 
is only weakly sensitive to the structure of the lattice.) 

The hydrogen-ion bonds between atoms form electric dipoles, so can 
conveniently be represented by arrows placed on the bonds pointing toward 
the end occupied by the ion, as in Fig. 8.l(b). The ice rule is then equivalent 
to stating that at each site (or vertex) of the lattice there are two arrows 
in, and two arrows out. There are just six such ways of arranging the 
arrows, as shown in Fig. 8.2. (For this reason the ice-type models are 
sometimes known as 'six-vertex' models, as opposed to the 'eight-vertex' 
model of Chapter 10.) 

In general, each of these six local arrangements will have a distinct 
energy: let us call them &I, . . . , c6, using the ordering of Fig. 8.2. Then the 
partition function is given by (8.1. I ) ,  where 

and n, is the number of vertices in the lattice of type j .  

Fig. 8.2. The six arrow configurations allowed at a vertex, and the corresponding 
line configurations. 
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We now have a very general model that includes three important models 
as special cases. 

Ice 

As was remarked above, the ice model is obtained by taking all energies 
to be zero, i.e. 

E I = E ~ =  . . . =  e,j=O. (8.1.4) 

KDP 

Potassium dihydrogen phosphate, KH2P04 (referred to hereafter as KDP), 
forms a hydrogen-bonded crystal of coordination number four, and orders 
ferroelectrically at low temperatures (i.e. all dipoles tend to point in the 
same general direction). Slater (1941) argued that it could be represented 
by an ice-type model with an appropriate choice of el, . . . , .c6. For the 
square lattice such a choice is 

The ground state is then either the one with all arrows pointing up and to 
the right, or all pointing down and to the left. Either state is typical of 
an ordered ferroelectric. 

F Model 

Rys (1963) suggested that a model of anti-ferroelectrics could be obtained 
by choosing 

E, = ~2 = ~3 = ~4 > 0, ES = ~6 = 0 . (8.1.6) 

The ground state is then one in which only vertex arrangements 5 and 6 
occur. There are only two ways of doing this. One is shown in Fig. 8.3, 

Fig. 8.3. One of the two ground-state energy configurations of the anti-ferroelectric 
ice-type model. Only vertex configurations 5 and 6 occur. 
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and the other is obtained by reversing all arrows. Note that arrows alternate 
in direction, as would be expected in an ordered antiferroelectric (Nagle, 
l969a). 

Restrictions 

In this chapter the following restrictions will be imposed on . . . , E~ : 

These ensure that the model is unchanged by reversing all dipole arrows, 
which one would expect to be the situation for a model in zero external 
electric field. Thus this is a 'zero-field' model which includes the ice, KDP 
and F models as special cases. 

In fact the third condition zj = Q is no restriction at all. From Fig. 8.2 
it is obvious that vertex arrangement 5 is a 'sink' of horizontal arrows, 
whereas 6 is a 'source'. If cylindrical or toroidal boundary conditions are 
imposed, then there must be as many sinks as sources, so n5 = ns. From 
(8.1.3) it follows that ~5 and &6 only enter the partition function in the 
combination ~5 + Q, SO there is no loss of generality in choosing ES = E ~ .  

The other two conditions = ~ 2  and e3 = E ~ )  are more ones of con- 
venience than necessity, since the working of Sections 8.2-8.7 can easily 
be generalized to the unrestricted case (so long as each of the six energies, 
e.g. E , ,  is the same for all sites of the square lattice). The effect of relaxing 
them (i.e. introducing electric fields) will be discussed in Section 8.12. 

8.2 The Transfer Matrix 

Yet another way of representing the hydrogen-ion dipoles is to draw a line 
on an edge if the corresponding arrow points down or to the left, otherwise 
to leave the edge empty. A typical arrangement of lines is shown in Fig. 
8.l(c), and the six allowed line arrangements at a vertex are shown in Fig. 
8.2. 

Suppose the lattice has M rows and N columns, and impose cyclic (i.e. 
toroidal) boundary conditions. Consider a row of N vertical edges (between 
two adjacent rows of sites). There are M such rows: label them r = 1, 2, 
. . . , M sequentially upwards. Let g?, denote the 'state' of row r: i.e. the 
arrangement of lines on the N vertical edges. Since each edge may or may 
not be occupied by a line, 47, has 2N possible values. Then as usual we can 
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write the partition function as 

= Trace v", (8.2.1) 

where V is the 2N by 2N transfer matrix, with elements 

V(q, q ' )  = C exp[ - (mlel + m2E2 + . . . + m6~6) /kBT] .  (8.2.2) 

In (8.2.2), q is the arrangement of lines on one row of vertical edges, and 
q' is the arrangement on the row above, as in Fig. 8.4. The summation is 
over all allowed arrangements of lines on the intervening horizontal edges. 

(a) ( b  1 
Fig. 8.4. The two typical arrangements of lines in adjacent rows (for n = 2). The 

y l ,  . . . , y,  must interlace X I ,  . . . , x,. 

These arrangements must satisfy the ice rule at each vertex: if there is no 
such arrangement, then V(q, q ' )  is zero. There are at most two such 
arrangements. The ml,  . . . , m6 are the numbers of intervening vertices of 
types 1, . . . , 6 .  

Let A be an eigenvalue of V, and g the corresponding eigenvector. Then 

Ag = Vg. (8.2.3) 

As in Sections 2.1 and 7.2, when M is large it follows from (8.2.3) that 

where A,,, is the largest of the 2N eigenvalues of V. 

8.3 Line-Conservation 

In Fig. 8.2 and 8.l(c) the four lines in vertex arrangement 2 are divided 
into two pairs. This makes it clear that the lines link together to form 
continuous non-crossing paths through the lattice. If one starts by following 
a path upwards, or to the right, then one will always be travelling in one 
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or other of these two directions, never down or to the left. The cyclic 
boundary conditions ensure that a path never ends. 

Suppose there are n such paths from the bottom of the lattice to the top. 
Each path will go through a row of vertical edges once and only once. It 
follows that: 

if there are n lines on the bottom row of vertical edges, then there are n 
lines on every row. 

In particular, there must be n lines on the second row, which means that 
V(q, q') is zero unless q and q' contain the same number of lines. 

The matrix V therefore breaks up into N + 1 diagonal blocks, one 
between the state with no lines, another between states with one line, and 
so on up to the state with N lines. Thus n, the number of lines per row, 
is a 'quantum number' of the matrix V. We can restrict our attention to 
states with a given value of n. 

The obvious way to identify such a state is to specify the positions 
xl, . . . , x, of the lines, ordered so that 

Let X ={xl, . . . , x,) be such a specification, and let g(X) be the corre- 
sponding element of the eigenvector g. Then (8.2.3) can be written 

where V(X, Y) is the element of V between states X and Y, and is still 
given by (8.2.2). Using (8.1.7)' it is convenient to set 

(Thus 0 1  , . . . , 0 6  are the Boltzmann weights of vertex arrange- 
ments 1, . . . ,6.)  Then (8.2.2) becomes 

where X, Y replace 4 ,  4'; again the summation is over the allowed arrange- 
ments of lines on the intervening row of horizontal edges; and 
ml, . . . , m6 are the numbers of intervening vertices of types 1, . . . ,6 .  Two 
typical cases are shown in Fig. 8.4 (with n = 2). 

The problem now is to solve the eigenvalue equation (8.3.1) for a given 
value of n. It is very helpful to begin by considering the simple cases 
n = 0 , l  and 2. 



The Case n = 0 

If n = 0, then there are no vertical lines in the two successive rows. There 
are two possible arrangements of lines on the intervening horizontal row 
of edges: either all the edges are empty, or they all contain a line. In the 
first instance, all vertices are of type 1; in the second they are all of type 
4. Thus the n = 0 block of V is a one-by-one matrix, with value 

The Case n = 1 

If n = 1, we can write g(X) as g(x), where x is the position of the vertical 
line in the row. This x can take the values 1, . . . , N, so this block of V is 
an N by N matrix, with elements V(x , y). 

If x is less than y, then all horizontal edges between x and y must contain 
a line, all others must be empty (as in the first half of Fig. 8.4a). If it is 
greater than y, the reverse is true. If x = y, then either all horizontal edges 
are empty, or all are full. Counting ml, . . . , ms for the various cases, the 
equation (8.3.2) becomes 

N 

&(x) = aN-1 b g(x) + aNf"-~- '  by-x-1 
y = x + l  c2gW 

We look for a solution of the form 

where z is a complex number. Substituting this form for g(x) into (8.3.6), 
and summing some elementary geometric series, the equation becomes 

AzX = aN ~ ( z )  zX - ax-' bN-" c2 zN+'l(a - bz) 

+ bN M(z) zX + ax-' bN-" c2 z/(a - bz) , (8.3.8) 

where 

L(z) = [ab + (c2 - b2)z]l(a2 - abz) , (8.3.9) 

M(z) = [a2 - c2 - abz]l(ab - b2z). 

The second and fourth terms on the RHS of (8.3.8) are 'boundary terms', 
coming from they = Nand y = 1 summation limits in (8.3.6), respectively. 
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They differ only by a factor (-zN), so their sum can be made to cancel by 
choosing 

The remaining first and third terms on the RHS are 'wanted terms', in 
that they have the same form as the LHS (constant x zx). Thus (8.3.8) is 
now satisfied if 

A = aN ~ ( z )  + bN ~ ( z )  . (8.3.11) 

There are N solutions of (8.3.10) for the complex number z. With 
(8.3.7), these give the N expected eigenvectors of this block of the matrix 
V. The corresponding eigenvalues are given by (8.3.11). 

The equations (8.3.7) and (8.3.10) could have been predicted on trans- 
lation invariance grounds, but it turns out to be a mistake in this problem 
to introduce this consideration too early: for n > 1 it obscures the structure 
of g(X). 

The Case n = 2 

When n = 2, g(X) becomes g(x1 , x2), where xl and x2 are the positions 
of the two lines. The summation in (8.3.1) is over all allowed line-positions 
yl and y2 in the upper row of vertical edges, given that there are lines in 
positions xl and x2 in the lower row. 

The two archetypal cases are shown in Fig. 8.4. There are special cases 
when yl or y2 equals xl or x2, but the ice rule ensures that yl and y2 must 
always satisfy either 

Thus yl and y2 must interlace xl and x2. 
Counting ml, . . . , m6, allowing for the special cases, (8.3.2) becomes 



where 
DO,, x) = alc ifx = y  , 

= C u x - ~ - l  ifx > y ,  
(8.3.13) 

E(x , y) = blc ify = x ,  

The * in the summations means that any terms with yl = y2 are to be 
excluded. In each case there is only one such term: yl =x2 = y2 in the first 
sum, yl =XI = y2 in the second. 

The first step in solving (8.3.12) is an obvious generalisation of (8.3.7): 
try 

g(xl , ~ 2 )  = A12 zI' ~5~ , (8.3.14) 

where Alz, 21, 2 2  are complex numbers. 
The summations in (8.3.12) are now straightforward, if rather tedious, 

to perform. The easiest way is to first ignore the *, then subtract off the 
contribution of the terms spuriously included. The first double summation 
in (8.3.12) then gives 

and the second gives 

Here L, = L(q) , M, = M(zj), and 

Expanding the products in (8.3.15a), or (8.3.15b), gives a total of five 
terms. These can be grouped into three classes. 

Wanted terms 

These are terms that have the same form as g(xl , x2) itself, i.e. they are 
proportional to ,"i' d2. There is one each in (8.3.15a) and (8.3.l5b), and 
their sum is 

AI2 (aN L 1 ~ 2  + bN M1M2) 2f1 29. (8.3.17) 
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Using (8.3.14), they cancel with the LHS of (8.3.12) if 

A = aN L ~ L ~  + bN M1M2. (8.3.18) 

Unwanted internal terms 

These have the form (z1z2)"2, or (z1z2)X1, and include the final correction 
terms in (8.3.15a and b). Their sum in (8.3.15a) is 

A12 aN+X1-X2 b -  x2 ( MIL2 - 1) (Z 1 ~ 2 ) ~ ~ ,  (8.3.19a) 

and in (8.3.15b) it is 
a ~ ~ - ~ ~  ~ N + x I  -x2 (M1L2 - 1) ( ~ 1 2 2 ) ~ ~  . (8.3.19b) 

Using (8.3.9), one can verify that 

MIL2 - 1 = -c2s12/[(a - bzl) (a - bz2)] , (8.3.20) 

where if 

A = (a2 + b2 - c2)/2ab , (8.3.21) 

then 

~ 1 2  = 1 - 2A 2 2  + 21.22. (8.3.22) 

Boundary terms 

These come from either the y2 = N or the yl = 1 summation limits in 
(8.3.12), and are characterized in (8.3.15) by the fact that they contain a 
factor pz or pl. Define 

Ri(x , x ' )  = ~ ~ a ~ ' - ~ z ~  + ~ , b * ' - ~ z ~ ' .  (8.3.23) 

Then the sum of the boundary terms in (8.3.15a) is 

- A ~ ~ ~ ~ ~ ~ ~ - ~ ~ R ~ ( x ~  , x2) p g 4 ,  (8.3.24a) 

and in (8.3.15b) it is 

A12aX1bN-x2~2(~I , x2) p1 . (8.3.24b) 

Elimination of unwanted terms 

To satisfy (8.3.12), the unwanted terms (8.3.19) and (8.3.24) must be 
eliminated. How can this be done? A fairly obvious idea is to generalize 



the ansatz (8.3.14) and to try a linear superposition of such terms, i.e. 

g(xl, ~ 2 )  = E A!!! zf'rz$?r. (8.3.25) 

Put another way, we try summing over various choices of zl and z2, with 
appropriate coefficients A12. 

The wanted terms will certainly cancel if they do so for each value of 
r, i.e. if (8.3.18) is satisfied for every choice of zl and z2. Since A is 
independent of r, the RHS of (8.3.18) must therefore be the same for all 
choices of zl and 22. 

Also, it may be possible to cancel the unwanted internal terms (8.3.19) 
if for every choice of z1 and 2 2  there is another choice zi and zi with the 
same value of 2 1 ~ 2 .  Together with the previous remark, this means that 
zi and zi must satisfy 

~ i ~ i  = 21 

Eliminating zi and using (8.3.9), this gives a quadratic equation for 
zi. There are therefore just two solutions for zi and zi, and it is obvious 
that they are: 

since interchanging zi and zi leaves (8.3.26) unchanged. 
(For more complicated problems, notably staggered ice-type models with 

different weights on the two sub-lattices, there are additional solutions for 
zi and 24. Regarding (8.3.14) as a 'plane wave' trial function, these zi and 
zi can be regarded as 'scattered waves', the two equations (8.3.26) playing 
the role of total momentum and total energy conservation. For n = 2, such 
problems can be solved by using these scattered waves, but unfortunately 
the working does not then generalize in any apparently useful way to 
n > 2.) 

From (8.3.27), it follows that in addition to the choice (zl , z2), we should 
also include the choice (z2, zl). Thus there are just two terms in (8.3.25), 
and the resulting ansatz for g(xl , x2) can be written 

Summing (8.3.19) over these two choices (the second choice is obtained 
by interchanging the suffixes 1 and 2, except in xl and x2), it is obvious that 
the unwanted terms cancel if 
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Using (8.3.20), this condition simplifies to 

~1zAiz + sziA2i = 0 .  

Finally, summing the boundary terms (8.3.24a) and (8.3.24b) together 
over the two choices, we obtain 

Clearly this will vanish for all xl and x2 iff 

Solving (8.3.30) for A12/A21, (8.3.32) then gives two equations for zl and 
z2. These can in principle be solved (there are many solutions, correspond- 
ing to the different eigenvectors of V). To within a normalization constant, 
the elements of the eigenvector g are then given by (8.3.28), and the 
eigenvalue A by (8.3.18). 

8.4 Eigenvalues for Arbitrary n 

The solution of the eigenvalue problem for arbitrary n is a straightforward 
generalization of that for n = 2. The appropriate generalizations will be 
briefly indicated in this section. A fuller description (for the ice model) is 
given by Lieb (1967a). 

The eigenvalue equation (8.3.12) becomes 

where 1 S xl < x2 < . . . < x, C N, the * means that no two of yl, . . . , y, 
can be equal, and Di, = DOi , xi), Eii = E(xi , y,). 

One first tries taking 

where Al ,  . ., is a constant coefficient. 



The first n-fold summation on the RHS of (8.4.1) then gives 

A l . . . n { ~ l R 1 ( ~ l  , ~ 2 )  . . . Rn-l(xn-1, xn) 

X ( ~ , a ~ - ' ~ z ?  - p n b N - X n ~ t )  - correction terms), (8.4.3a) 

and the second gives 

A1,,  . .{(plaxl + M1bX1zl')R2(xl , x2) . . . R,(x, -1 , x,)b N-xn 

- correction terms} . (8.4.3b) 

Here the 'correction terms' arise from explicitly subtracting off spurious 
contributions from yl = y2, y2 = y3 , . . . , or y n - ~  = y,. 

From (8.3.23), each R,(x, x') is a sum of two terms. Expanding the 
products of the n - 1 Rs therefore gives 2"-' terms. In each of (8.4.3a) 
and (8.4.3b), only one of these is 'wanted' (i.e. has the same form as 
f (XI ,  . . . , x,).  Equating these wanted terms on both sides of (8.4.1) gives 

A = a N ~ 1 .  . . L, + b N ~ l .  . . M,. (8.4.4) 

Apart from the 'boundary terms' containing a factor p,, or pl, all other 
terms contain at least one factor of the form 

(z.z. I 1 + 1  )']+I or ( Z ~ Z , + ~ ) ~ L  (8.4.5) 

They can be made to cancel by adding terms in (8.4.2) with z, and z , + ~  
interchanged. Doing this for all j, and all initial choices of 21,. . . , z, 
thereby generated, one is led to replacing (8.4.2) by 

where the sum is over all n! permutations P = (pl, . . . , p,) of the integers 
1, . . . , n. 

This trial form for the eigenfunction is the same as that used by Bethe 
(1931) for diagonalizing the quantum-mechanical Hamiltonian of the 
one-dimensional Heisenberg model. For that reason it is known as the 
Bethe ansatz. 

Evaluating the internal unwanted terms containing the factors (8.4.5) 
(these include contributions from the 'correction terms'), one finds they 
cancel provided the following generalization of (8.3.30) is satisfied, for all 
permutations P and j = 1, . . . , n - 1: 

This leaves only the boundary terms, containing a factor p, for some 
value of j. Replacing zl, . . . , 2, in (8.4.3a) by 22, . . . , z,, zl, it becomes 
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obvious that the boundary terms therein will cancel with those in (8.4.3b) 
if 

- $A2 .... I + AI..  .. = 0 . (8.4.8) 

Making all possible permutations of 21,. . . , z,, all boundary terms will 
therefore cancel if 

2; = API,. ..,pJApz ,..., P,,PI , (8.4.9) 

for all permutations P. 
These conditions (8.4.4), (8.4.7) and (8.4.9) do in fact ensure that the 

eigenvalue equation (8.4.1) is satisfied (see Lieb, 1967a, for a full treatment 
of the sufficiency of these conditions for the ice model). It is not immediately 
obvious that they can all be satisfied, since there are many more equations 
than unknowns. However, it is easy to verify that (8.4.7) has the solution 
(to within a normalization factor): 

where ~p is the signature (+  1 for even permutations, - 1 for odd ones) 
of the permutation P. Substituting this into (8.4.9) then gives, for all P ,  

The RHS of this equation is symmetric in p2, . . . , p,, so there are only n 
such distinct equations, namely 

n 

+ I  

f o r j = l , .  . . , n .  
Thus we have n equations for 21, . . . , 2,. These can in principle be 

solved, and the coefficients Ap calculated from (8.4.10). The eigenfunction 
g is then given by (8.4.6), the eigenvalue A by (8.4.4). 

8.5 Maximum Eigenvalue; Location of zl ,  . . . , z, 

Unfortunately the equations (8.4.12) have not in general been solved for 
finite n and N. (This contrasts with the Ising model, where all eigenvalues 
can be explicitly obtained for finite N.) It turns out that they can be solved 
for the maximum eigenvalue in the thermodynamic limit (N large), but 



reasonable care is necessary to ensure it is the maximum eigenvalue that 
is obtained. 

A remarkable feature of the equations (8.4.2), (8.4.10), (8.4.12) and 
(8.3.22) is that they are not merely of the same form as Bethe's ansatz for 
the Heisenberg model: they are exactly the same! Thus the eigenvectors 
of this model are those of our transfer matrix V. This meant that Lieb 
(1967a, b, c) was able to use the known properties of the Heisenberg 
model, in particular the work of Yang and Yang (1966) to identify and 
evaluate the maximum eigenvalue in the limit N+ m. This work is quite 
rigorous, and the interested reader is referred to it. Here I shall merely 
give some plausible arguments to locate the solution of (8.4.12) corre- 
sponding to the maximum eigenvalue, and to evaluate it for N large. 

The Case n = 2 

Again it is instructive to consider the case n = 2, when (8.4.12) becomes 
(8.3.32). Multiplying the two equations (8.3.32) together gives 

(21 z2IN = 1 , (8.5.1) 

which implies that 

where t is an Nth root of unity. 
This relation is a simple consequence of the translation invariance of V, 

since from (8.3.28) it implies that 

From the Perron - Frobenius theorem (Frobenius, 1908), the eigenvector 
corresponding to the maximum eigenvalue must have all its entries non- 
negative. From (8.5.3), this can only be so if t = 1, so we must choose the 
solution 

of (8.5.1) (i.e. g(xl , x2) is itself translation invariant, as we would expect). 
Also, from (8.3.28) and (8.3.32), 

so, using (8.5.4) and setting 

zl = exp(ik) , r = 4N - 1 , (8.5.6) 
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we have 

g(xi , ~ 2 )  Cc cos k ( ~ 1  - ~2 + iN) . (8.5.7) 

Now, xl - x2 + BN can take all integer (or half integer) values from 
-r to r. To ensure that all values of g(xl , x2) be non-negative, it is therefore 
sufficient that k should either be real and lie in the interval [-nl2r , n/2r], 
or that k should be pure imaginary. 

Further, negating k merely interchanges zl and 22, leaving the eigenvector 
g unchanged. Thus we can just as well limit our search to real values of 
k in the interval [0 , n/2r], or positive pure imaginary values. 

Now use (8.3.22), (8.3.30) and (8.3.32) to write zy as a rational function 
of zl and 22,  and use (8.5.4) to eliminate 22. The resulting equation for zl 
is 

or using (8.5.6), 

A = cos(r+ l)k/cos rk . 

Plotting the RHS of (8.5.9) as a function of k for k real, and for k pure 
imaginary, it is easily seen that: 

if A < 1, (8.5.9) has one real solution in the interval (0 ,  nl2r), and no 
pure imaginary solution; 
if A > 1, (8.5.9) has no real solution in (0 ,  n/2r), but has a single 
positive imaginary solution. 

In both cases it is evident from (8.5.7) that all values of g(xl ,x2) are 
strictly positive so, from the Perron - Frobenius theorem, we have located 
the solution corresponding to the maximum eigenvalue of V in the n = 2 
sub-block. 

When n = 1, it is obvious from (8.3.7) and (8.3.10) that the eigenvector 
with all positive entries is given by z = 1. 

Admittedly these n = 2 and n = 1 results provide very slender evidence, 
but they do in fact point in the right direction: when A < 1 (and n 6 iN) 
the solution of (8.4.12) that maximizes A is such that zl, . . . , z, are distinct, 
lie on the unit circle, are distributed symmetrically about unity, and are 
packed as closely as possible. The equation (8.4.12) does admit solutions 
with two or more of zl, . . . , z, equal, but these must be discarded since 
from (8.4.6) and (8.4.10) all elements of g then vanish identically. 

The n = 2 and n = 1 results also suggest that for A > 1 the zl, . . . , z, 
are all positive real, but we shall not need this hypothesis. 



8.6 THE CASE A > 1 

8.6 The Case A > 1 

The case A > 1 is trivial. Let A, be the maximum eigenvalue for a given 
value of n. Then from the above results it can be verified that, for N 
sufficiently large, 

Ao > A1 and A 0 > A 2 .  (8.6.1) 

In fact, it can be shown that (Lieb, 1967c) 

Thus the maximum eigenvalue is simply Ao, i.e. from (8.3.5), 

Amax = aN + b N .  (8.6.3) 

From (1.7.6), (8.2.4) and (8.3.3), remembering that the lattice has MN 
sites, the free energy is therefore given for N large by 

The system is 'frozen' in the sense that if one vertical arrow is fixed to be 
up, then the probability of any other arrow being up is unity, no matter 
how far it is from the first. (Providing of course that the proper thermo- 
dynamic limit is taken; both arrows must be deep within an infinite lattice.) 
This is complete ferroelectric order. 

Such frozen solutions exist for three dimensional ice-type models (Nagle, 
1969b): one of the very few exact results in three dimensional statistical 
mechanics. 

8.7 Thermodynamic Limit for A < 1 

If zl, . . . , z, lie on the unit circle, then the equations (8.4.12) involve 
complex numbers. They can be reduced to a set of real equations as follows. 

Define the 'wave numbers' kl, . . . , k,, and the function O(p , q )  by 

zj = exp(ikj), S~,,/S,,~ = exp[-iO(kj , kl)] . (8.7.1) 

From (8.3.22) it follows that 
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and hence that 

O@ , q) = 2 tan-'{A sin f@ - q)/[cos 4(p + q) - A cos B@ - q)]) ,  (8.7.3) 

so O@ , q) is a real function. 
The product in (8.4.12) is unchanged by including the term 1 = j, so 

(8.4.12) can now be written n 

Both sides of this equation are unimodular, i.e. of the form exp(iO), so it 
is natural to take logarithms and divide by i, giving (for j = 1 , . . . , n) 

where each I, is an integer if tz is odd, and half an odd integer if n is even. 
The equation (8.7.5) is cdnsistent with the hypothesis that kl, . . . , kn 

are real, since so then are both sides of (8.7.5). 
We want kl, . . . , kn to be distinct, symmetrically distributed about the 

origin, and packed as closely as possible. This suggests choosing 

Yang and Yang (1966) proved that (8.7.5) then has a unique real solution 
for kl, . . . , k,. 

The ratio nlN is the proportion of up arrows in each row of the lattice, 
so it is the probability of finding a vertical arrow to be up. When N is large 
we expect this probability to tend to its appropriate thermodynamic limit. 
This means that we are interested in solving (8.7.5) in the limit of N and 
n large, nlN remaining fixed. 

In this limit kl, . . . , kn become densely packed in some fixed interval 
( -Q,  Q), so they effectively form a continuous distribution. Let the 
number of k,s lying between k and k + dk be Np(k) dk. Then in the limit 
of N large, p(k) is the distribution function. Since the total number of kjs 
is n,  p(k) must satisfy I-: d k )  dk = "IN. (8.7.7) 

For a given value k of k,, I, + B (n + 1) is the number of kls with I < j. 
Thus (8.7.5) becomes 

Q 
Nk = -n(n+ 1) + 2nN p(kl) dk' - N I O(k , k') p(kl) dk' 

- Q  



Differentiating with respect to k, dividing by N and rearranging, this gives 

This is a linear integral equation for p(k). For a given ratio nlN, Q is 
determined by (8.7.7). 

The eigenvalue A is given by (8.4.4). In the limit of N large both terms 
on the RHS grow exponentially, the larger completely dominating the 
smaller. From (1.7.6), (8.2.4) and (8.3.3), the free energy f is therefore 
given by 

f = min(a1 - kBT [ln L(z,)]lN. h - kBT f: [ln M ( ~ ~ ) ] / N ] .  (8.7.10) 
j =  1 j =  1 

In the limit of N, n large, these sums become integrals, giving 

Since p(k) is an even function, these integrals are real. 

8.8 Free Energy for -1 < A < 1 

The problem now is to solve the linear integral equation (8.7.9). For the 
case A = -1 HulthCn (1938) noted that by making an appropriate change 
of the variable k, the equation can be transformed to one with a difference 
kernel. Walker (1959) generalized this to A < -1, and Yang and Yang 
(1966) to A < 1. There are more complicated models that can be solved 
by the Bethe ansatz method (Lieb and Wu, 1968; Baxter, 1969, 1970b, c, 
1973a; Baxter and Wu, 1974; Kelland, 1974a). In every case such a trans- 
formation to a difference kernel exists. (See also the remarks following 
(8.13.77) and (10.4.31), remembering that trigonometric functions are 
special cases of elliptic functions.) 

For -1 < A < 1 the appropriate transformation is to replace k by a ,  
where if 

A = - c o s y ,  O < y < n ,  (8.8.1) 

then 

exp(ik) = [exp(iy) - exp(a)]/[exp(iy + a )  - 11 . (8.8.2) 
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Differentiating logarithmically gives 

dk - - - sin p 
d a  cosh a - cos p ' 

so k is a real monotonic increasing function of a, odd, going from p - n 
to JC - p as a increases from - w  to m. 

In (8.7.2), let p = k(a) and q = k(P). Then the equation simplifies to 

exp(cu - /3) - exp(2ip) 
exp[-iO(p , q)] = 

exp(p - ,a) - exp(2ip) 
(8.8.4) 

so O(p , q) is a function only of a - /3 (and the constant p). 
Let (2n)-l R(a) be the transformed distribution function, defined by 

Making the substitutions (8.8.2), (8.8.4) and (8.8.5) in (8.7.8), differen- 
tiating with respect to a and using (8.8.3), the integral equation becomes 

sin p sin 2p 
R(a) = 

cosh(a - p) - COS 2p R(P) dP,  (8.8.6) 

where (-Ql , Ql) is the interval on the CY line corresponding to (-Q , Q) 
on the k line. The side condition (8.7.7) becomes simply 

The free energy is given by (8.7.11) and (8.3.9). On making the sub- 
stitutions (8.8.2) and (8.8.5) it becomes natural to define another constant, 
w, by 

alb = [exp(ip) - exp(iw)]/[exp(ip + iw) - 11, -p < w < p . (8.8.8) 

From (8.3.21) and (8.8.1) it then follows that 

and from (8.8.2) that 
exp(iw + ip) - exp(a - ip) 

~ ( e ' ~ )  = 
exp(a) - exp(iw) ' 

ik - exp(iw - ip) - exp(a + ip) 
M(e ) - exp(a) - exp(iw) 
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Using (8.8.5), the formula (8.7.11) for the free energy now becomes 

QI 

e3 - (kBT/2n) lQ, [In ~ ( e ~ ) ]  R(w) da}. 

Solution by Fourier Integrals 

Since (8.8.6) is a linear integral equation with a difference kernel, it can 
be solved by Fourier integrals if Ql = m. 

Suppose this is so. Let 
- 
R(x) = (2n)-' Im R(a) eep(ixn) dm. (8.8.12) 

- m  

Multiplying both sides of (8.8.6) by exp(ixa) and integrating over a ,  we 
obtain 

- sinh ( n  - p)x sinh ( n  - 2p)x - 
R(x) = - 

sinh nx sinh nx R(x). (8.8.13) 

It immediately follows that - 
R(x) = i sech ,m 

From (8.8.12), the LHS of (8.8.7) is simply R(o), which from (8.8.14) 
is 4. Thus if Q1 = a ,  then 

n = $ N .  (8.8.15) 

We want to choose n so as to maximize A, or equivalently to minimize 
the expression (8.8.11) for f. It makes very good sense to assume that 
(8.8.15) is the correct value of n, since it corresponds to the symmetric 
situation when there are as many down arrows as up ones in each row of 
the lattice. Further justification of this argument is given by Lieb (1967). 

We could also have predicted that Ql = a by arguing that if the first 
term dominates in (8.4.4), then A is maximized by choosing n as large as 
possible so that L1,. . . , L, all have modulus greater than unity. (If the 
second term, then M1, . . . , M,.) Thus if there is a real value of k for which 
L [exp(ik)], or M [exp(ik)], is unimodular, then this should correspond 
to k = ?Q.  For -1 < A < 1 there are two such values, and from (8.8.10) 
they obviously correspond to a = + w ,  i.e. Ql = 03,  Q = n - p. 

Thus we are in the fortunate position that we can calculate R(a) ana- 
lytically when, and usually only when, n = $N, and this is precisely the 
desired value to obtain A,,. Nature can be kind! 
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If w = 0, then a = b, = ~ 3  and 1 Ll = [MI, so the two terms in (8.8.11) 
are equal. If w < 0, then the first term is the smaller; if w > 0, the second 
term. 

Consider first the case w < 0. Since R(a) is even, the function 
in L[exp(ik)] in (8.8.11) can be replaced by its even part, which is also its 
real part. The Fourier transform of this is 

m 

(24-I  exp(ixa) in I L(eik) I d a  

- - sinh (p + w)x sinh ( n  - p)x . (8.8.16) 
x sinh JCX 

The Fourier transform of R(a) is given by (8.8.12) and (8.8.14). Using 
these results, (8.8.11) becomes, for w < 0, 

" sinh (p + W)X sinh ( n  - p)x 
f =  E ~ - ~ B T  dx. (8.8.17) 1. 2xsinhmcoshpx 

Using (8.8.3), (8.8.9) and the formula 

sinh (p + w)x = sinh (p - W)X + 2 coshpx sinhwx , (8.8.18) 

this result can be written as 

" sinh (p - w)x sinh ( n  - p)x 
f = ~ 3 -  k,T dx. (8.8.19) 1, 2xsinhmcoshpx 

However, this is precisely the result obtained for w > 0. Thus both 
(8.8.17) and (8.8.19) are valid throughout the interval -p < w < p. There 
is no singularity at w = 0. 

In general these integral expressions for the free energy cannot be 
analytically evaluated. An exception is when p is a rational fraction of 
n. For instance, for the ice model (8.1.4), a = b = c = 1, w = 0 and p = 

2n13. The integral in (8.8.17) can then be evaluated by summing over 
residues in the upper half-plane, giving 

which is Lieb's (1967a) result for the residual entropy of square ice. 

8.9 Free Energy for A < - 1 

If A < - 1, the parameters p,  a defined by (8.8.2) are purely imaginary, 
so can be replaced by - iA, -ia, where A and the new a are real. Then 
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(8.8.1) and (8.8.2) become 

As a increases from - n to n ,  k also increases from - n to n. 
The integral equation (8.8.6) now becomes 

sinh A sinh 2A 
R(a) = 

cosh 2A - cos(a - P) R(P) dP , (8.9.3) 

and the side condition (8.8.7) remains unchanged. 
Whereas (8.8.6) was solvable by Fourier integrals if Q1 = m, the cor- 

responding equation (8.9.3) is solvable by Fourier series if Ql = n. Set, 
for all integers m, 

- 
R, = (24-'/-:~(a) exp(ima) d a .  (8.9.4) 

Multiplying (8.9.3) by exp(ima) and integrating, we obtain 

From (8.9.4), the LHS of (8.9.7) is simply Ro, so again we have 
n = 4N. This is the value of n for which we expect A to obtain its maximum 
value. 

The free energy is still given by (8.8.10) and (8.8.11), but now w (like 
p and the old a )  is pure imaginary, so we replace it by - iu, where 
- A < u < A. Then (8.8.9) and (8.8.10) become 

exp(u + A) - exp( - A - ia) 
L (eik) = 

exp( - ia) - exp(u) , 

ik - exp(u - A) - exp(A - ia) 
(e ) - exp( - ia) - exp(u) ' 

If u < 0, then the first term in (8.8.11) is the lesser, and In L[exp(ik)] 
can easily be Taylor expanded in powers of exp(ia). Doing this, then using 
(8.9.6), gives 

m 

f = h - k ~ ~ [ t ( A + v ) +  ,=l Z exp( - mA) sinh m(A + u) 
m cosh mA 

} (8.9.9) 
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This expression can be re-arranged as 
m 

exp(-mA) sinh m(A - u) 
m =  1 m cosh mA 

} (8.9.10) 

but this is precisely the result obtained when u > 0. Thus both (8.9.9) and 
(8.9.10) are valid throughout the interval -A < u < A. 

Equations for Finite n 

Instead of taking the limit N, n +  w and then making the change of 
variables in (8.9. I) ,  we could equally well have made the change of variables 
first. The intermediate equations will be needed in the next two chapters, 
so it is convenient to give them here. 

Let q be the value of a when k = k,. Then from (8.7.1) and (8.9.1) 

z, = exp(ik,) = sinh f(A + iaj)lsinh f(A - i q )  , (8.9.11) 

for j = I , .  . . , n. Using this, (8.7.1) and (8.7.2), the original finite-n equa- 
tions (8.4.12), (8.4.4) can be written 

[sinh 1(A + ia,)]N = - n  " sinh[fi(al- a,) - A'] 
(8.9.12) 

sinh &(A - ia,) sinh[fi(al - a,) + A'] ' 

" sinh f(u + i q  + 2A') + b N i  
sinh +(u + i q  - 2A') 

~ = a ~ n  ,= sinh 1(u + iq) j=  sinh 4(u + icy) ' 

where 

A1=A-in .  

As n * ~ ,  al, . . . , a;, tend to a continuous distribution on the line 
interval (-n, n). The number of q s  in the interval ( a ,  a + da)  is then 
(24-I  NR(a) da. In this limit the equations (8.9.12) for al,  . . . , an reduce 
to the integral equation (8.9.3) for R(a). 

8.10 Classification of Phases 

We have seen that the free energy takes a different analytic form depending 
on whether A > 1, 1 > A > -1, or -1 > A. In terms of the Boltzmann 
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weights a, b, c, it follows from (8.3.21) that there are four cases to consider, 
the four regimes being shown in Fig. 8.5. 

I. Ferroelectric Phase: a > b + c 

In this case A > 1 and, from (8.3.2) and (8.3.3), < E ~ ,  ES. Thus the lowest 
energy state is one in which all vertices are of type 1, or all of type 2. 
Either all arrows point up or to the right, or all point down or to the left. 

Fig. 8.5. The phase diagram of the zero field ice-type model, in terms of the 
Boltzmann weights a, b, c. The dotted circular quadrant corresponds to t h ~ ,  free- 

fermion case, when A = 0 and the model can be solved by Pfaffians. 

Thus at very low temperatures the system is ferroelectrically ordered (all 
parallel arrows point the same way), and the free energy f is equal to 

However, from Section 8.6, this is the value off throughout the regime 
I. This means that excited states give a negligible contribution to the 
partition function and throughout the regime I the system is frozen in one 
or other of the two ground states. As explained in Section 8.6, there is 
complete ferroelectric order. 

11. Ferroelectric Phase: b > a + c 

This is the same as case I, except that now it is vertex types 3 and 4 that 
are dominant. There is complete ferroelectric order: effectively all arrows 
either point up and to the left, or they all point down and to the right. 

111. Disordered Phase: a, b, c < $(a + b + c )  

This is the case when - 1 < A < 1. It includes the infinite temperature case 
a = b  = c = 1, so one might expect the system to be disordered. This is 
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true in the sense that all correlations decay to zero with increasing distance 
r. 

However, if a2 +b2 = c2 (when the weights must lie in this regime 111), 
then from (8.3.21,22) it follows that A = 0 and s, = s,,. The equations 
(8.4.12) then simplify dramatically, Ap is proportional to EP, and the 
eigenfunction (8.4.6) is simply a determinant. 

In this case the problem can be solved by the Pfaffian method mentioned 
at the end of the last chapter (Fan and Wu, 1970; Wu and Lin, 1975) and 
the correlations calculated. It is found (Baxter, 1970a) that they decay as 
an inverse power law in r, rather than an exponential. From (1.7.24), the 
correlation length is therefore infinite, so the system is not disordered 
in the usual sense. 

As will be shown in Chapter 10, the ice-type model is a special case of 
the eight-vertex model, which can also be solved. In this regime 111, the 
ice-type model corresponds to the eight-vertex model being at a critical 
temperature. There are infinitely many eigenvalues of the transfer matrix 
which are degenerate with the maximum one. There is no spontaneous 
order or interfacial tension, but the correlation length is infinite. 

The ice-type model therefore has a very unusual property: it is critical 
for all a, b, c in the regime 111. 

IV. Anti-Ferroelectric Phase c > a + b 

In this case A < -1 and ~g <E,, ~ 3 .  The lowest energy state is either that 
shown in Fig. 8.3, or the one obtained from it by reversing all arrows. In 
either case the arrows alternate in direction. 

At sufficiently low temperatures we therefore expect the system to be 
in an ordered state with this anti-ferroelectric ordering. Since the free 
energy is analytic throughout the regime IV, we expect this to be the 
anti-ferroelectric ordered regime. This is confirmed by the following results 
for A < -1, i.e. for c > a + b. 

Interfacial Tension 

For A < -1, Q1 = Q = n, SO the maximum eigenvalue corresponds to 
21, .  . . , z, being distributed round the whole of the unit circle. A more 
careful analysis (Baxter, 1973b) reveals that for N even there are actually 
two such solutions in the n = iN sub-space. The numerically larger of the 
two eigenvalues (Ao) corresponds to an eigenvector which is symmetric 
with respect to reversing all arrows; the smaller (Al) is negative, and 
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corresponds to an anti-symmetric eigenvector. The zl, . . . , z, of one sol- 
ution interlace the 21,. . . ,z, of the other, and for N large 

A1/Ao = - 1 + 0 {exp(- NslkBT)) , (8.10.1) 
where if 

x = exp(-A) , (8.10.2) 
then 

(This result is derived in Section 10.10 for the more general eight-vertex 
model.) 

Thus & and Al are asymptotically degenerate. From an argument parallel 
to that of Section 7.10, s is the interfacial tension between the two ordered 
anti-ferroelectric phases. 

Spontaneous Staggered Polarization 

Regard the ground state arrow arrangement shown in Fig. 8.3 as a 'standard' 
configuration. For any arrow configuration, assign a parameter zi to each 
i according to the rule: 

zi = + 1 if the arrow on edge ipoints in the same 
direction as the arrow in edge iin Fig. 8.3, 

zi = - 1 if the arrow points in the opposite direction. 

Then (zi) is the mean 'polarization' of the electric dipole on edge i, 
normalized to lie between -1 and 1. It is defined with respect to the 
alternating arrow pattern of Fig. 8.3, so is a 'staggered' polarization. 

We have exactly the same problem defining it that we had for the Ising 
model spontaneous magnetization in Section 7.10. If we define it as in 
(1.4.4), then it must be zero, since for every state with an up (or right) 
arrow on edge i, there is another state (obtained by reversing all arrows) 
with the same energy and a down (or left) arrow on edge i. 

However, by using only symmetries which leave the standard configur- 
ation of Fig. 8.3 unchanged (arrow reversal plus translation, and mirror 
reversal plus rotation plus arrow reversal) one can show that (zi) must have 
the same value for all edges i, horizontal or vertical. If Po is this common 
value, then by analogy with (7.10.47) we can define it by 

where the limit is that in which edges i and j are infinitely far apart. This 
Po is the spontaneous staggered polarization. (Just as Mo is the limit of M 
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when H - t  O', so is Po the limit of (2;:) obtained by applying a staggered 
electric field to the ice-type model, then turning it off.) 

We now use an argument similar to that of (7.10.25)-(7.10.37). Consider 
a particular column C of the lattice. Let ti) = + 1 if the vertical arrow in 
row i of this column points up, -1 if it points down. Let s be the 2N by 2N 
diagonal matrix with entries +1 (-1) for row-states with an up (down) 
arrow in column C. Then, for j > 1, 

where if U is the matrix of eigenvectors of the transfer matrix V, then tol 
is the element (0 , l )  of U-'s U, i.e. 

and similarly for tlo, t02, etc. The summation in (8.10.5) is over all eigen- 
values A1, A2, . . . that correspond to eigenvectors which are anti-symmetric 
with respect to reversing all arrows. Thus A. (=A,,,) is not included, but 
A1 is. 

First take the limit N - t  co in (8.10.5). From (8.10.1), All&+ -1. All 
the other eigenvalues remain strictly less than A. in modulus. Thus if we 
now let j - i become large, we obtain 

The t[ are defined relative to a regular configuration (all arrows up), 
while the q are defined relative to the staggered configuration of Fig. 8.3. 
It follows that Zi)$ =(- l)i+jtiq, SO from (8.10.4) and (8.10.7) 

The matrix elements tol and tlo have been calculated (Baxter, 1973c: the 
calculation is quite intricate and complicated). The result is 

Correlation Length 

After A. and Al, the next-largest eigenvalue A2 is the maximum eigenvalue 
in the n = f N  - 1 (or n = B N  + 1) subspace, for N  even. Again 
21,. . . , z, are distributed round the unit circle, but there is a hole in the 
distribution at z = - 1. Such incomplete distributions can be handled (Yang 
and Yang, 1968; Gaudin, 1971; Takahshi and Suzuki, 1972; Johnson and 
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McCoy, 1972). Specializing the more general eight-vertex result of Johnson 
et al. (1972a, 1973), we obtain that for N infinite 

2 

( ~ 1 ) ~  sinh m(A + u) 
ln(AdA2) = A + v + 2 . (8.10.10) 

m = l  mcoshmA 

This expression is valid only for -A < u < 0, since for v 3 U the 
summation diverges. However, expanding the summand in powers of 
exp(-2A) and summing term-by-term gives 

where z = exp(u). This product formula is convergent and valid throughout 
the allowed interval -A < u < A. 

The correlation length f can now be obtained by reasoning similar to 
that of Section 7.10. The formula (7.10.41) only necessarily holds if the 
transfer matrix V is symmetric, which is true only if a = b and v = 0. 
Indeed, Johnson, Krinsky and McCoy argued that E must be the same as 
the decay length of the correlation between two vertical arrows in the same 
row (instead of the same column). Like (opus) in (7.10.42), this correlation 
depends on the Boltzmann weights a, b, c only via the eigenvector matrix 
U. From (8.4.6), (8.4. lo) ,  (8.4.12) and (8.3.22), these eigenvectors depend 
only on A .  From (8.9.1) and (8.9.7), this means that U is a function of 
A, but not of v. (This point will be taken up in the next chapter.) Thus 
f must also be independent of v, in contradiction to (7.10.41) and (8.10.11). 

As with the Ising model, this argument demolishes one derivation, but 
provides another. The equations (7.10.41) and (8.10.11) are valid for 
v = 0, when V is symmetric and its eigenvalues are real. Since E is inde- 
pendent of u ,  the resulting expression for 5 must be valid throughout the 
allowed range -A < v < A. It is 

S 

Johnson et al, (1973) verified this explicitly by properly summing (8.10.5) 
over all relevant eigenvalues. Comparing this result with (8.10.3), we see 
that the interfacial tension s and the correlation length 6 satisfy the exact 
relation 

This is the same as the corresponding Ising model relation (7.10.44). 
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8.11 Critical Singularities 

Consider a given set of values of the interaction energies el, . . . , E ~ ,  

satisfying (8.1.7). For a temperature T, the Boltzmann weights a ,  b, c are 
given by (8.3.3). they correspond to a point in the (alc, blc) plane of Fig. 
8.5. 

As T increases from 0 to co, this point traces out a path in the plane, 
always ending at the point (1 , 1) in regime 111. Depending on the values 
of EI, ~ 3 ,  ES, this path may or may not cross from one regime into another. 

If the lowest two of EI, ~ 3 ,  ES are equal, then the path always lies inside 
regime 111. The free energy is analytic for all temperatures T. 

If one of EI, ~ 3 ,  ES is less than both the others, then at sufficiently low 
temperatures the path will be in regime I, I1 or IV. As T increases it will 
cross into regime 111, at a 'transition temperature' T,. There can only be 
one such transition temperature. 

The free energy has a singularity at T = T,, so in this sense this is a 
critical point. It is, however, a very unusual critical point since, as was 
remarked in the previous section, the correlation length is infinite through- 
out regime 111. 

There are three cases to consider. 

Ferroelectric: q < EJ, cs 

In this case, at sufficiently low temperatures, the weights a, b, c lie in 
regime I of Fig. 8.5. The model then has complete ferroelectric order. A 
typical example is the KDP model discussed in Section 8.1. 

The transition temperature T, is given by the condition 

For T > T,, f is given by (8.8.9) and (8.8.17); for T < T,, f is simply equal 
to El. 

As T + c ,  it follows from (8.3.21), (8.8.1) and (8.8.8) that p+n,  
w + -n. Thus it is useful to define 6, E by 

p = n - 6 ,  W =  - n + + .  (8.11.2) 
Then (8.8.9) becomes 

a : b : c = sin i (6  + E): sin f ( ~  - 6): sin 6 .  (8.11.3) 

As T + c ,  6 and E tend through positive values to zero, their ratio 
remaining non-zero and finite. The temperature difference T - T, is pro- 
portional to 

t = (b + c - a)la , (8.11.4) 
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provided t is small. We can therefore use this as our definition of the 
deviation of T from T,, instead of (1.1.3). From (8.11.3), t is related to 
6 and E by 

t = 2 sin 16 (COS 16 - cos &&)/sin t(6 + E) , (8.11.5) 

and for 6 and E small this gives 

Thus both 6 and e vanish as t4 when t+ O+. 
Now make the substitutions (8.11.2) into (8.8.17) and let t become small. 

We obtain, using (8.11.6), 

" x d x  
f = &1 - kBTC6(& - 6) - + ~ ( t ' )  = E l  - fkBT,t + 6'(tg) . 

- , sinh 2 m  f (8.11.7) 

This is the result for t > 0. For t < 0, f is simply EI. Clearly f is continuous 
at t = 0, its first derivative (the internal energy) has a step-discontinuity, 
and its second derivative (the specific heat) diverges as t-l for t > 0. Using 
the definition (1.7.10) of the critical exponent a ,  it follows (because of the 
step-discontinuity) that 

a =  1 ,  (8.11.8) 

corresponding to a first-order transition. 
For T < T, the system is completely ordered, so the spontaneous polar- 

ization Po is 
P o = l .  (8.11.9) 

Just as we defined in (1.1.4) a critical exponent P for a magnetization 
Mo, so can we define an exponent P, for an electrical polarization Po. In 
this case it follows that 

p e = O .  (8.11.10) 

Above T, the correlation length is always infinite, whereas below T, it 
is zero and the interfacial tension is infinite. The exponents v, v' and p 
cannot therefore be sensibly defined. Despite this pathological behaviour, 
the model is interesting in that it is one of the very few that can be solved 
in the presence of a symmetry-breaking field (in this case a direct electric 
field). This calculation will be outlined in the next section and the critical 
equation of state obtained. 

Ferroelectric: EJ < &I, ES 

Exactly the same results hold for this case as for the previous case, provided 
is interchanged with ~ 3 ,  a with b,  and regime I with regime 11. Indeed, 
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this corresponds merely to mirror-reversing the lattice, or rotating it through 
90". 

Anti-Ferroelectric: ES < EI ,  e3 

At sufficiently low temperatures the weights lie in regime IV of Fig. 8.5. 
The transition from regime IV to regime I11 occurs at a critical temperature 
T, given by 

c = a + b  (8.11.11) 

For T > T,, f is given by (8.8.9) and (8.8.17); for T < T, it is given by 
(8.9.7) and (8.9.9). 

This case is quite different from the previous two, because the ordered 
state is one of partial anti-ferroelectric order, rather than complete fer- 
roelectric order. 

The 'singular part' f,i,, of the free energy can be defined by (1.7.10a). 
Comparing (8.8.1) with (8.9.1), and (8.8.9) with (8.9.7), we see that the 
analytic continuations from T > T, to T < T, of p and w are -iA and -iv, 
respectively. In both cases wlp is real and -1 < wlp < 1. Near T,, 
A = - 1 and p is small. 

We therefore want to continue analytically the integral in (8.8.17) from 
small real positive values of y and p + w to small negative imaginary values. 
To do this, we first use the evenness of the integrand to write (8.8.17) as 

sinh (p + w)x exp[(n - p)x] 
f = - kBT9 1. 2x sinh m cosh p 

d x ,  (8.11.12) 

where 8 denotes the principal-value integral. If p, w have negative ima- 
ginary parts, this integral can be closed round the upper half of the complex 
x-plane. Summing over residues then gives, setting p = -iA and w = -iv: 

m 

exp(-mA) sinh m(A + v) 
m = l  m cosh mA 

(for the F-model, when v = 0, this result is given in eqn. A13 of Glasser 
et al. (1972).) 

Clearly the real part (for A, v real) of this expression is the same as 
(8.9.9). Thus hi,, is the imaginary part of (8.11.13). Near T,, A is small, 
SO 

fsing - 4ikBTc exp(- ~c~ l i l )  cosh(nuI2A) . (8.11.14) 
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Analogously to (8.11.4), let us define the deviation of T from Tc to be 

Then, from (8.9.7), VIA remains finite and non-zero as t-, 0, while for A 
and v small 

t = - 4 (A2 - v2) . (8.11.16) 

Thus near Tc both A and v are proportional to (-t)*. 
It follows that the free energy has an unusual singularity at T = Tc, 

namely 
f,i,, exp [-constant/(- t)l] . (8.11.17) 

This is a very weak singularity. It and all its derivatives tend to zero as 
t+  0-. In fact, all temperature derivatives of the free energy exist and are 
the same on both sides of the transition (Glasser et al., 1972; Lieb and 
Wu, 1972, pp. 392-407). The transition is of infinite order. 

Clearly (8.11.17) is not of the usually postulated form (1.7.10b), so the 
exponent a does not properly exist. If one insists on giving it a value, the 
only sensible choice is 

For T < T,, the correlation length E, the interfacial tension s, and the 
spontaneous staggered polarization PO are given by (8.10.3), (8.10.9) and 
(8.10.12). Their critical behaviour is most easily obtained by noting that 
these infinite product expressions are precisely those that relate elliptic 
moduli and integrals to their corresponding nome. In fact, from 
(15.1.1)-(15.1.4): 

where k, k', I are the modulus, conjugate modulus and elliptic integral 
corresponding to the nome 

Near T,, A becomes small so x and k approach one. Then I' +in, so 
from (15.1.3) 

I = - $&ln = n?/4A. (8.11.21) 

Also, replacing k and q in (15.1.4) by their conjugates k' and q', where 
q' = exp(-nIII'), we obtain 



Using these formulae in (8.11.19), it follows that near T, 

Thus E-',  s and Po all tend rapidly to zero as A+ 0, i.e. as T+ T,. They 
each have an essential singularity similar to that of fsi,,, i.e. of the form 
(8.11.17). They do not vanish as simple power laws. The definitions (1.7.9), 
(1.7.34) and (1.1.4) of their critical exponents v, p and P, therefore fail. 

On the other hand, from (8.11.14) and (8.11.24) it is apparent that the 
proportionality relations 

5-' cz s (-t)' P; cc fin, (8.11.25) 

are satisfied. If these quantities did vanish as power laws, then (8.11.25) 
would imply the exponent relations 

In this sense we can therefore say that these exponent relations are satisfied. 
In particular, the scaling relations (1.2.15) and (1.2.16) hold true. 

Unfortunately, applying a direct electric field does not break the degener- 
acy of the anti-ferroelectric ground states. To do this it is necessary to 
apply a staggered electric field, alternating in direction on successive edges. 
The model has not been solved in the presence of such a field, so we are 
unable to apply any further tests of the scaling hypothesis in this case. 

8.12 Ferroelectric Model in a Field 

In the absence of fields the partition function Z is given by (8.1.1) and 
(8.1.3), and the vertex energies .q, . . . , E~ satisfy the arrow-reversal sym- 
metry relations (8.1.7). 

The arrow-reversal symmetry can be broken by applying vertical and 
horizontal fields E and E r  , respectively. These give each vertical up-pointing 
(down-pointing) arrow an extra energy -E (+E),  and horizontal right- 
pointing (left-pointing) arrows an energy - E' (+ Er).  

If desired, these energies can be incorporated into the vertex energies 
by sharing out the energy of each arrow between its end-point vertices. If 
E I ,  . . . , ~g are the original zero-field vertex energies, satisfying (8. I.?'), 
then from Fig. 8.2(a) the six resulting vertex energies are 
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As was remarked in Section 8.1, there is no loss of generality in choosing 
&g = &6, SO any six energies can be fitted to (8.12.1), using (8.1.7). This is 
therefore the general six-vertex model. 

This can be solved (Yang, 1967; Lieb and Wu, 1972): the working of 
Sections 8.2-8.7 can be appropriately generalized, leading to a linear 
integral equation of the form (8.7.9). In general this equation can no longer 
be solved analytically, but its properties can be studied and it can of course 
be solved numerically. 

The generalization is particularly simple if E' = 0, i.e. only the vertical 
electric field E is applied, so from now on let us consider this case. Rather 
than incorporating the vertical field into the vertex energies, let us keep 

. . . , %as the vertex energies, still satisfying (8.1.7). Then (8.1.3) must 
be replaced by 

% = nl&l + . . . + n6E6 - E(Nt - 2Nd) , (8.12.2) 

where N, is the total number of vertical edges and Nd the number of 
down-pointing arrows. (Thus N, - 2Nd is the number of up arrows minus 
the number of down ones.) 

The vital point to remember is that of Section 8.3: there are exactly n 
down arrows in each row. Since there are M rows of N columns, it follows 
that 

N, - 2Nd = M(N - 212). (8.12.3) 

Replacing (8.1.3) by (8.12.2), and noting that the transfer matrix V 
breaks up into N + 1 diagonal blocks, each with its own value of n, the 
equation (8.2.1) therefore becomes 

N 

Z = x exp[EM(N - 2n)lkBT] Trace v;, 
n = O  

(8.12.4) 

where Vn is the nth diagonal block of the original transfer matrix V. If 
A, is the maximum eigenvalue in this block, then when M is large 

N 

Z - x A? exp[EM(N - 2n)/kBT] . (8.12.5) 
n = O  

Further, for M large the summation in (8.12.5) will be dominated by the 
value of n which maximizes the summand. From (1.7.6) the free energy 
per site is therefore 

f = fn - E(l  - 2nlN) , (8.12.6) 
where 

f ,  = - N-' kBT In A, (8.12.7) 

and n must be chosen to minimize the RHS of (8.12.6). 
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Since V is the original zero-field transfer matrix, for a given value of n 
this fn is precisely the f given by (8.7.7), (8.7.9) and (8.7.11). The only 
difference between the previous working and that of this section is that 
originally we chose n to minimize fn itself (the appropriate value being 
n = !EN). Now we must minimize (8.12.6). 

More explicitly, for each value of n we must solve (8.7.7) and (8.7.9) 
for Q and p(k), using the definition (8.7.3) of O .  Then we must calculate 
fn from (8.7.11), and finally choose n to minimize (8.12.6). 

The polarization P is the expectation value of (N, - 2 Nd)IN,, and since 
the summation in (8.12.5) is dominated by the appropriate value of n, this 
is simply given by 

As E varies, so may n; but since n is chosen so that (8.12.6) is stationary 
with respect to variations in n (for given E), it follows at once that 

This equation is the expected analogue for electrical systems of (1.7.14). 

Critical Equation of State 

Let us suppose that is less than ~3 and ES. Then in zero field there is a 
transition at a temperature Tc given by (8.11.1). Close to this temperature, 
the above programme can be carried out to first order in the temperature 
variable t of (8.11.4). 

The easiest way to do this is to go back to the equations (8.4.12), (8.3.22) 
for zl, . . . , 2,. Defining kl, . . . , kn by (8.7.1) these equations give 

f o r j = l , .  . . ,n. 
Define t, 6 as in Section 8.11. Then from (8.8.1) and (8.11.2), 

A = cos 6 , (8.12.11) 

and t, 6 + 0 as T -* Tc. 
In Section 8.8 it was shown that if n = 4 N, then Q = n - ,u = 6. Thus 

kl, . . . , kn are distributed over the interval (-6,S). For n < 4 N we expect 
them to be distributed over some smaller interval centred on the origin. 
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If 6 is small, it follows that kl, . . . , kn are of order 6. Expanding both 
sides of (8.12.10) to order 6, and taking logarithms, it follows that 

n 

Nk, = 2 2 (a2 - k,kl)/(k, - kl) . (8.12.12) 
I = 1  

+I  

Now let n, N tend to infinity, keeping n/N fixed. As in Section 8.7, 
kl, . . . , kn effectively form a continuous distribution over some interval 
(-Q , Q). Again let Np(k) dk be the number of k,s between k and k + dk. 
Then (8.12.12) becomes the integral equation 

where -Q < k < Q and 9 means that the principal-value integral must be 
used. Again Q is related to nlN by the condition (8.7.7). Using the definition 
(8.12.8) of the polarization P,  this condition is 

Writing kk' in (8.12.13) as k2 - k(k - kt) ,  and using (8.12.14), the 
integral equation becomes 

Pk Q p(k') dk' 
2 ( 8  - k2) = k - k' 

This is a singular integral equation with a Cauchy kernel (Muskhelishvili, 
1953), and can be solved exactly. (One brute-force way is to transform 
from k, kt to a ,  d, where k = Q tanh a ,  and then use Fourier integrals.) 
The solution is, for Q S 6, 

Substituting this into (8.12.14) and using the formula 

we find that Q is given by 

Q =  d(1- p2)f  (8.12.18) 

Since 0 s n s N, P lies in the interval (-1 , 1); so Q is always less than 
6 and the above solution is valid for all allowed values of nlN. 

For a given value of n, the free energy fn is given by (8.7.11). Since 



E, < ~ 3 ,  the first term is the smaller, so we must expand L [exp(ik)] about 
6 = 0 and k = 0. 

Using (8.3.9) and (8.11.4), noting that k - 6 and t - d2, we obtain 

Substituting tnis expression into (8.7.11), and using (8.12.16) and (8.12.18), 
then gives 

However, from (8.11.3) and (8.11.6), in the limit of 6 small, 

so, neglecting terms small compared with t, (8.12.20) simplifies to 

Now we choose n to minimize (8.12.6), remembering that n must lie 
between 0 and N, and is related to P by (8.12.8). This gives - 

= sign(E) otherwise . (8.12.23b) 

The resulting division of the (t , E )  plane is shown in Fig. 8.6. In Region 
A the system is disordered, with polarization P given by (8.12.23a). In 
regions B, C it is completely ordered, with P = +1, -1, respectively. 

Fig. 8.6. Phase diagram of the ferroelectric model near its critical point t = E = 
0. The boundaries of the disordered phase A are the lines E = + - ~ B T ,  t. 



Scaling Hypothesis 

Equation (8.12.23) is the critical equation of state, valid for all negative 
t, and for small positive t. In view of its quite complicated derivation, it 
is amazingly simple. 

Remembering that P is the electrical analogue of M, and E of H, we can 
compare (8.12.23) with the form (1.2.1) predicted by the scaling hypothesis, 
namely 

EIkBTc = P IPI"- '~,(~~PI-"~) . (8.12.24) 

A little thought shows that if h,(x) is of the general form shown in Fig. 
1.4, and if 

lim x-' h,(x) = 1 , 6 = 1 + p-' , (8.12.25) 
x- +m 

then (8.12.24) reduces to (8.12.23) in the limit p+ 0'. Thus the scaling 
hypothesis is satisfied in this limiting sense, and the critical exponents are 

using the suffix e to denote 'electrical' exponents. These results of course 
agree with our previous observations (8.11.8) and (8.11.10). 

Apart from the restriction in (8.12.25), h,(x) is undetermined. This is 
a pity, since of the two-dimensional Ising, ice-type and eight-vertex models, 
only this ferroelectric model has been solved in a symmetry-breaking field. 
It would be extremely interesting to obtain an exact two-dimensional scaling 
function. 

8.13 Three-Colourings of the Square Lattice 

The ice model is a special case of the 'six-vertex' or 'ice-type' model in 
which Q, . . . , ~g are all zero, as in (8.1.4). Lenard (Lieb, 1967a) has 
pointed out that the model is equivalent to counting the number of ways 
of colouring the faces of the square lattice with three colours, so that no 
two adjacent faces are coloured alike. 

To see this, consider some such colouring of the lattice, and label the 
colours 1, 2, 3. Place arrows on the edges of the lattice according to the 
rule: 

if an observer in one face, with colour a ,  looks across an edge to a 
neighbouring face which has colour a + 1 (mod 3), then place an arrow 
in the intervening edge pointing to the observer's left; if the neighbouring 
face has colour a - 1 (mod 3), point the arrow to the right. 
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Now imagine the observer walking once round a site. Let I be the number 
of increases in colour (left-pointing arrows) that he sees, and D the number 
of decreases (right-pointing arrows). Since he returns to the original colour, 
it must be true that I - D = 0 (mod 3). Since there are four faces round 
each site, it is also true that I + D = 4. The only non-negative solution of 
these equations is I = D = 2, so there are two arrows into the site, and two 
out. The ice rule (Section 8.1) is therefore satisfied at this and every site 
of the lattice. 

To every three-colouring of the lattice there therefore corresponds an 
arrow covering of the edges that satisfies the ice rule. Conversely, to every 
such arrow covering there correspond three allowed colourings of the 
lattice (one square can be coloured arbitrarily; the colours of the rest are 
then uniquely determined). Thus the number of ways of colouring the 
lattice is 3Zi,, where Zi,, is the ice-model partition function. It is also equal 
to 

where G(Nl , N2, N3) is the number of allowed ways of colouring the faces 
so that N1 have colour 1, N2 have colour 2, and N3 have colour 3. If there 
are Nt faces altogether, then plainly 

The summation in (8.13.1) is over all non-negative integers Nl, N2, N3 
satisfying (8.13.2). 

An obvious generalization of the colouring problem is to calculate the 
G(Nl , N2 , N3) individually, instead of just their sum. Equivalently, we can 
attempt to calculate the generating function 

for arbitrary values of zl, 22, 23. 

A more obviously statistical-mechanical way of looking at this problem 
is to regard the colours 1, 2, 3 as three species of particles. Each face of 
the lattice contains just one particle, adjacent particles must be of different 
species. Then ZG in (8.13.3) is the grand-partition function of this 
close-packed lattice gas; zl, z2, 23  are the three activities. 

It turns out that this problem can be solved (Baxter, 1970c, 1972a). 
More precisely, one can calculate the limiting 'partition function per site' 

where as usual the limit Nt -+ co means the thermodynamic limit in which 
both the height and the width of the lattice become large. 



The method is again that of the Bethe ansatz. Here I shall give the 
required modifications of Sections 8.2 to 8.8. 

Another problem that can be solved is that of four-colouring the sites 
of the triangular lattice (Baxter, 1970b). As I point out in Sections 12.1 
and 12.2, both these colouring problems (with unit activities) are special 
cases of the Potts model. 

Transfer Matrix 

Let M be the number of rows of the lattice, and N the number of columns. 
Impose cyclic (i.e. toroidal) boundary conditions. Then 

N , =  MN. (8.13.5) 

Consider a row of the lattice. Let q, . . . , a, be the colours of the N 
faces, as in Fig. 8.7. Place arrows on the intervening vertical edges according 
to the above rule. Then there is an up arrow in position j if q +  = q  + 1, 
a down arrow if q-1 = q - 1. 

Fig. 8.7. A row of faces of the square lattice, coloured s, . . . , UN. Arrows are 
placed on the intervening edges according to the rule given in Section 8.13. The 
particular configuration shown corresponds to 02 = fi + 1, u3 = fi - 1, . . . , fi = 

UN-1. 

Let there be n down arrrows in the row, in positions xl, x*, . . . , x,, 
where 1 s x l  < x2 < . . . < X, s N. Then the colours q, . . . , a, are 
uniquely determined by specifying q and xl, . . . , x,. Let us refer to q 
simply as a.  Then the product of the activities for this row is 

where 
C(a) = z,z,+ I / ( z I z ~ z ~ ) ~ / ~ .  (8.13.7) 

Here X denotes the set {xl , . . . , x,} and we use the r.lodulo 3 conventions 
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We also note that for the colouring to be consistent with the cyclic boundary 
condition a ~ + ~  = q, N and n must be such that 

We now need both a and X to specify the state of a row. Let @ denote 
both a and X. Then again we have (8.2.1), where Z = ZG and V is the 
transfer matrix. The elements of V can now be taken to be 

V(@ , @') = D,(X) if @, @' consistent , 

= 0 otherwise. (8.13.10) 

Here @ = {a, X) is the colouring on one row of faces, and @' = {a' , Y) is 
the colouring on the row above. Thus D,(X) is the activity product for the 
lower row. 

X denotes the positions of the down arrows in the lower row, Y the 
positions of those in the upper row. We still have the ice rule (two arrows 
into each site, and two out), so it is still true that all rows of the lattice 
have the same number of down arrows, and we can regard this number 
(n) as fixed. Further if X ={xl , . . . ,x,) and Y ={yl , . . . ,y,) then 
yl , . . . , y, must interlace XI, .  . . , x,. Altogether, it follows that @ and 
@' are consistent if either: 

We still have (8.2.3) and (8.2.4), where g is an eigenvector of the transfer 
matrix V. Let gdX) be the element of g corresponding to the row-state 
@ = { a ,  X). Then the eigenvalue equation (8.3.2) becomes 

Here L denotes a summation over yl, . . . , y, subject to the restrictions 
(8.13.10a); R denotes a summation subject to (8.13.10b). We adopt the 
modulo 3 convention 

go+ 3(X) = g d 9  . (8.13.12) 

Bethe Ansatz 

As in Section 8.3, we can successively consider the cases n = 0, 1, 2 , .  . . 
This leads us to modify (8.4.6), and instead to try the Bethe-type ansatz 
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Here P =(pl , .  . . ,p , }  is a permutation of the integers (1 , . . . , n), the 
sum is over all n! such permutations, the coefficientsAb and the functions 
@j(x) are at our disposal. 

We can ensure that the condition (8.13.12) is satisfied by requiring that 
there exist wave numbers kl, . . . , k, such that 

and 

Thus @,(x) can be regarded as a plane wave modulo 3. The condition 
(8.13.15) implies that we are seeking a translational invariant eigenvector 
of the transfer matrix: this must include the eigenvector corresponding to 
the maximum eigenvalue A,,. 

When 21 =22 = 23 = 1 we regain the ice model and expect the functions 
r$j(x) to be pure plane waves. To maintain the analogy with Section 8.4, 
we must use not the coefficients Ah, but the related set 

When zl =22  = 23, these should reduce to the coefficients Ap of the ice 
model. 

Substituting the form (8.13.13) of gdX) into the eigenvalue equation 
(8.13.11), we find as in Section 8.4 that there are 'wanted terms', 'internal 
unwanted terms' and 'boundary terms'. The wanted terms give (for n even) 

A = 2 (~l2223)~'~ yl. . . yn , (8.13.17) 

where 

for j = 1, . . . , n and all integers x. 
The equations (8.13.14) and (8.13.18) form a cubic eigenvalue equation 

for y in terms of kj, the solution of which can be written as yi = y(kj), where 

y(k) = i exp(3ik/2)lg(k) (8.13.19) 

and the function g = g(k) (not to be confused with the eigenvector g) is 
defined by 

$ - 3Bg + 2 sin(3kl2) = 0 .  (8.13.20) 

The constant B is given by 
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We still get the equations (8.4.7) from the vanishing of the internal 
unwanted terms. In fact at first sight we appear to get three such equations, 
each with its own function s,,. However, closer examination shows that all 
three are in fact the same. (If they were not, then the Bethe ansatz would 
fail.) It turns out that 

The coefficients Ap are therefore again given by (8.4.10). Further, (8.4.8) 
and (8.4.9), with zj therein replaced by exp(iki), are still the conditions for 
the boundary terms to vanish. Thus again we obtain (8.4.12). i.e. 

+I 

f o r j =  1 , .  . . , n .  
These equations (8.13.23), together with (8.13.20) and (8.13.22), deter- 

mine kl, . . . , k,; yl, . . . , y, are then given by (8.13.19). Note that these 
equations involve the activities 21, 22, 23  only via the single dimensionless 
parameter B. Why this should be so is not clear. 

When 21 = 2 2  = 23, then B = 1 and (8.13.20) has the solution g(k) = 
2 sin(kl2). Substituting this into the above equations, the ice model results 
of Section 8.4 are regained. 

Of course (8.13.23) has many solutions for kl, . . . , k,, corresponding 
to the various eigenvalues of V. We are interested in the solution corre- 
sponding to the maximum eigenvalue. From (8.2.4), with Z = ZG, and 
from (8.13.4) and (8.13.5), we then have 

K = lim A ~ Z  ; (8.13.24) 
N+ m 

or, using (8.13.19) and (8.13.15), and writing gi for g(kj), 

The Limit N -, UJ 

I expect the analysis of Section 8.7 to apply also to the three-colouring 
problem: in the limit of n and N large, kl,.  . . , k, form a continuous 
distribution over some interval (-Q , Q), with distribution function p(k) 
satisfying 



the function O ( k  , k t )  being defined by (8.7.1). From (8.13.22) it follows 
that 

The gl ,  . . . , g, occur in pairs of opposite sign, so from (8.13.25) 

Transformation to an Integral Equation with a Difference Kernel 

An important step in the solution of the ice-type models is the transfor- 
mation (8.8.2) from the variable k to a new variable a. Using this trans- 
formation to go from the variables p ,  q to new variables a, P, we found in 
(8.8.4) that exp[-i O(p , q ) ]  becomes a function only of a - P. The integral 
equation (8.13.26) then has a difference kernel: for the required value of 
Q it can be solved by Fourier transformation. 

Can this procedure be repeated for the present case, i.e. does there exist 
a function k ( a )  such that if 

P = k ( f f ) ,  9 = k(P)  , (8.13.30) 

then 
O(p , q )  = function only of a - P ? (8.13.31) 

If so, then 

From (8.13.20) and (8.13.28) we can verify that 

O(p , 9 )  = p  - dl  - g2(p)lBl + 6 (q2 ) .  (8.13.33) 

Taking the limit q -  0 in (8.13.32), and choosing cu = 0 to be a zero of 
k ( a ) ,  it follows that 

kt(ol) = k t ( 0 )  [ I  - ~ - ' g ~ ( k ) ]  . (8.13.34) 

Substituting this result back into (8.13.32), we obtain 



Using (8.13.28) and (8.13.20), we can verify directly that this needed 
identity is indeed satisfied, for all complex numbers p and q.  This in turn 
means that (8.13.31) is correct; there is indeed a transformation that 
reduces (8.13.26) to an integral equation with a difference kernel! 

The function on the RHS of (8.13.31) is readily evaluated by setting 
= 0.  Then q = 0 ,  so from (8.13.33) and (8.13.30) we obtain 

W p ,  9 )  = k ( a -  B ) .  (8.13.36) 

Change variables in (8.13.26) from k ,  k' to a, B, where k = k ( a )  and 
k' = k@).  Define R ( a )  as in (8.8.5). Then we obtain the integral equation 

where Q = k(Q1). (The function k ( a )  is monotonic increasing and odd.) 
The side condition (8.13.27) and the equation (8.13.29) for K become 

(regarding g now as a function of a, rather than k . )  

The Functions g(a) ,  k(a )  

The functions g (a ) ,  k ( a )  are defined by (8.13.20) and (8.13.34). We want 
to solve (8.13.37) for R ( a ) ,  and then evaluate K from (8.13.39). 

Eliminating k between (8.13.20) and (8.13.34), we obtain the relation 

between a and g. 
This equation can be integrated using elliptic integrals (Gradshteyn and 

Ryzhik, 1965, Paragraph 3.147.2). Let u ,  v ,  w be the three values of x 
which satisfy the cubic equation 

and let k,, t be the constants 

k ,  = [ (u  - v)wI(u - w)v I4 ,  (8.13.42) 



From (8.13.21), B a 1. It follows that u, u, w are real and positive. Let 
us choose them so that 

Then k, is real, satisfying 

Now introduce a new variable s, related to g by 

Substituting this expression for g into (8.13.40), the differential equation 
becomes 

Integrating, remembering that k = g = s = 0 when a = 0, we obtain 

This gives a as a function of s (it is actually an elliptic integral). We are 
interested in s as a function of a. From (15.5.6) we see that 

s = sn(t-'a, k,) , (8.13.49) 

where sn(u , k) is the elliptic sn function of argument u and modulus k, 
defined by (15.1.1)-(15.1.6). 

From now on let us regard the elliptic modulus k, (not to be confused 
with the wave numbers kl, . . . , k,, above) as understood. Also, we are 
free to choose the scale of a in any convenient way: let us do so so that 

Then kr(0) is defined by (8.13.43), and s is simply sn a. 
As is shown in Section 15.2, the function sn a is meromorphic (i.e. its 

only singularities are poles). Since u, u, w are constants, it follows from 
(8.13.46) that 8 is also a meromorphic function of a. 

Let q be one of the poles of g2(a). Then from (8.13.46), 

As in Chapter 15, let Z and I' be the complete elliptic integrals of the 
first kind of moduli k,, kA =(1 - k2,)f , respectively. From now on let q 
be the 'nome', defined by (15.1.1)-(15.1.4), i.e. 

q = exp(- nZ1/Z) . (8.13.52) 



As a moves along the imaginary axis in the complex plane, from 0 to 
il', sn a is also pure imaginary, and goes from 0 to +iw. The RHS of 
(8.13.51) is negative, so we can choose q to lie in the interval (0 ,  il') of 
the imaginary axis. 

Using (15.4.4), (15.4.5), (8.13.42) and (8.13.51), we have that 

Taking square roots of (8.13.41), we obtain a cubic equation for xt. By 
considering the sum of the roots of this equation (taking proper account 
of their sign), we obtain the homogeneous relation 

Squaring, this implies that 

Multiplying both sides by ul(vw) and using (8.13.53) and (8.13.54), we 
obtain 

1 - k i s n 4 q =  -2cnq d n q .  (8.13.57) 

Using (15.4.21) with u = -u  = q, it follows that 

sn2q= -snq,  

i.e., using (15.2.5), 

This equation has just one solution in the interval (0 , il'), namely 

q = 2iI'/3 (8.13.60) 

Thus q is this simple fraction of il'. 
Using (8.13.51), remembering that we now regard g as a function of 

a, we can write (8.13.46) as 

We can express the constant u in terms of q. From (8.13.41), the product 
of the three roots is 4, so uuw = 4. Using (8.13.53), it follows that 

Using (15.1.6) and (15.4.30), this can be written as 



where H(u), Hl(u), O(u), Ol(u) are the elliptic theta functions defined in 
(15.1.5). 

From (15.2.3b) (with u therein replaced by -q), 

and from (15.4.17) (with u, u replaced by q, -q), 

Eliminating H(2q)IH(q) and Hl(q) @(q) between these last three equa- 
tions, we obtain 

Using this in (8.13.61), together with (15.1.6) and (15.4.19), we find that 

g 2 ( 4  = qTu9 H 2 ( a ) / [ ~ ( a  - q) H ( a  + q)] . (8.13.67) 

Now consider the function k(a). From (8.13.34) and (8.13.43), using 
t =  1, 

kl(a) = [UW/(U - w)]~[B - gym)]. (8.13.68) 

The RHS of this equation is a meromorphic function of a ;  like g2(a), it 
has simple poles when the denominator in (8.13.61) vanishes, i.e. when 

for all integers m, n. The residue at such a pole can be obtained in the 
usual way by differentiating the denominator. Using (15.5. la)  and (15.5.5), 
this gives 

Substituting the values (8.13.69) of a ,  using the periodicity relations 
(15.2.5), together with (8.13.51) and (8.13.62), we find that 

the upper (lower) sign being used if the upper (lower) one is used in 
(8.13.69). 

A function of a that has precisely these poles and residues is 

The difference between this and kf(a) is therefore a meromorphic function 
with no poles, i.e. an entire function. Further, it is doubly periodic, with 
periods 21 and 2iZ1, so it must be bounded. By Liouville's theorem it is 
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therefore a constant. (This is an example of the use of theorem 15a in 
Section 15.3.) Integrating (8.13.68) and using k(0) = 0, we therefore obtain 

where C is some constant. 
Since g2(a) is periodic, with periods 21 and 2iZt, so from (8.13.20) is 

sin2(3k/2). Using (15.2.3), this fixes C to be 

This completes the derivation of the functions g(n) and k(n). We shall 
need the Fourier expansion of k(n), and the Fourier integrals 

I 

G = ( 2  exp(imxa1Z) ln[g2(n)] d n ,  (8.13.74) 
- I  

where m is an integer. From (8.13.61), (8.13.73), (8.13.60) and the product 
expansion (15.1.5) of the elliptic theta function H(u), it is straightforward 
to establish that 

G, = (?" - l)/[m(l + rm + r2")], m # 0 ,  (8.13.75) 
and that 

Here n is real and 
r = qU3 = exp(-2xI'/31). (8.13.77) 

Elliptic functions occur very frequently in the exactly solved two-dimen- 
sional models in statistical mechanics. This model is interesting in that they 
are needed to transform (8.13.26) to an integral equation with a difference 
kernel. They also occur in this way in the original method of solving the 
three-spin model (Baxter and Wu, 1973, 1974). As I remark at the end of 
Section 10.4, I suspect that the 'difference kernel' transformation is closely 
related to the elliptic function parametrization of the generalized 
star - triangle relation. 

Solution of the Integral Equation 

We can solve the integral equation (8.13.37) by Fourier series, provided 
2Q1 is a period of the elliptic functions, i.e. if 
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Substituting the form (8.13.76) for k(a), and setting 
m 

~ ( a )  = (Ro + 2 m = l  c R, cos(mnoril)], 

it is easy to find that 

Rm = J"l(1 + r2") . 

From (8.13.38), it follows that 

n = i N ,  

so there are as many up arrows as down ones. As in Section 8.8, we expect 
this case to give the maximum eigenvalue of the transfer matrix V. 

From (8.13.78) and (8.13.76), k(a) increases monotonically from -xi3 
to n13 as a increases from -Ql to Ql. Thus Q = n13 in (8.13.26): the 
wave-numbers kl, . . . , k, fill the interval (-n13, n13). This is the same 
interval as for the original ice model, though of course the distribution is 
in general different. 

Substituting into (8.13.39) the Fourier series (8.13.79) for R(a), we 
obtain 

(taking R-, = R,). Using (8.13.75) and (8.13.80), it follows that 

This gives ~ l ( z ~ z ~ z ~ ) ' ~  as a function of r. We can regard r as defined by 
(8.13.77) and (8.13.66). Using (15.1.5), these give 

To summarize: given zl, 22, 23, define B by (8.13.21) and let u be the 
largest root of (8.13.41). Define r (0 < r < 1) by (8.13.84). Then K, the 
partition-function-per-site of the weighted three-colouring problem, is 
given by (8.13.83). Note that K / ( Z ~ Z ~ Z ~ ) ' / ~  depends on zl, z2, 23 only via B. 

This form of the result is convenient when B is large, which is when one 
of zl, 22, 23  is large, or small, compared with the others. Then r is small 
and the infinite series and product are rapidly convergent. 



Critical Behaviour 

Considered as a function of the positive real variables zl, z2, z3, the 
partition-function-per-site K is analytic except when zl = z2 = z3. In this 
case B =  1, u = 2  and r =  1. 

It follows that r is just less than one if zl, z2, z3 are nearly equal. The 
expressions (8.13.83), (8.13.84) are no longer convenient, since the series 
and product converge only slowly. It is then useful to apply the Poisson 
summation formula of Section 15.8 to (8.13.83), and the conjugate modulus 
formula (15.7.2b) to (8.13.84). This converts the equations to the form: 

Here s = exp(-33tZ121'), but we can regard it as defined by (8.13.86). It 
is small when B is close to one. In particular, when zl =z2 = z3 = 1, then 
B = 1, u = 2, s = 0 and we regain the ice-model result (8.8.20), namely 
K = (4/3)312 (Lieb, 1976a). 

We can also examine the way in which the ice-model limit is approached. 
Let zl, 22, z3 differ from unity by terms of order E. Then B exceeds unity 
by terms of order 2. By scaling E appropriately, we can choose 

where I EI 4 1. From (8.13.41) it follows that 

so from (8.13.86) 

and from (8.13.85) 

K = (413)~'~ (z1z2z3)113 (1 + 4 1 d 3  13n + O(2)). (8.13.90) 

Thus K has a 'singular part' proportional to 2". In this sense we can say 
that the three-colouring problem has a critical point at zl = z2 = z3. Defining 
the critical exponent a analogously to (1.7.10), we have 



It is possible to explicitly eliminate the variable r between (8.13.83) and 
(8.13.84) (Baxter, lWOc), giving 

4uvwh 
K = (2,2223)' 3 1 '  (8.13.92) 

[(u - w ) ~ u ] ~  - [(u - w) v ]  

This makes it clear that ~ l ( z ~ z ~ z ~ ) ' '  is an algebraic function of B. 



ALTERNATIVE WAY OF SOLVING THE ICE- 
TYPE MODELS 

9.1 Introduction 

In Chapter 8 the ice-type models have been solved by using a Bethe ansatz 
for the eigenvectors of the transfer matrix. This method depends heavily 
on the fact that the number of 'lines', or down arrows, is conserved from 
row to row. It is not clear how to generalize the method to models without 
such conservation. 

The purpose of this chapter is to examine the results of Chapter 8, and 
to show how they suggest an alternative route by which they can be derived. 
This alternative route can be called the 'commuting transfer matrices' 
method: it will be used in Chapter 10 to solve the eight-vertex model. 

9.2 Commuting Transfer Matrices 

Let V be the row-to-row transfer matrix of an ice-type model. From (8.3.3) 
and (8.3.4), it is a function of the Boltzmann weights a, b, c. 

Let g be an eigenvector of V, as in (8.2.3). Then the elements of g are 
given by (8.4.6), (8.4.10) and (8.3.22), where zl, . . . , z, are solutions of 
the equations (8.4.12). 

However, these equations for g involve a, b, c only via the combination 

Thus if we consider two transfer matrices, with different values of a ,  b, c 
but the same value of A ,  then they have common eigenvectors. 

If all eigenvectors are given by the Bethe ansatz and span the 2N dimen- 
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sional vector space (which is the case), and if P is the matrix of eigenvectors, 
then it follows that 

where Vd is diagonal, V and Vd are functions of a, b, c, but P is a function 
only of A. 

In Chapter 8 we were led to the parametrization (8.9.7) (or (8.8.9)), 
namely 

a, b, c = p sinh B(A - u), p sinh B(A + u), p sinh A , (9.2.3) 

where p is a normalization factor. 
Regard p, A and u as variables, not necessarily real. Then (9.2.3) defines 

a, b, c. The matrices V, Vd and P are now functions of p, A and u. 
However, from (8.9.1) 

A = -cosh A. (9.2.4) 

Thus P is a function only of A: it is independent of u and p. 
We can regard A and p as fixed constants, and u as a (complex) variable, 

and exhibit the dependence of V on u by writing it as V(u). Then (9.2.2) 
implies that 

v(u) V(U) = V(U) V u ) ,  (9.2.5) 

for all complex numbers u, u; i.e. the transfer matrices V(u) and V(u) 
commute. 

9.3 Equations for the Eigenvalues 

Now consider the equations (8.4.4) and (8.4.12), which exactly define the 
eigenvalues A of V for finite n and N. By analogy with (8.7.1) and (8.9.1) 
(replacing a;. by iuj), let us transform from 21,. . . , z, to 

Then from (8.3.22), (8.3.9) and (9.2.3), 

sinh A sinh i(2h + u, - uk) 
s,k = (9.3.2) 

sinh B(A - uj) sinh i(A - uk) ' 
sinh f (v  - u, + 2h) 

L(z,) = - 
sinh &(u - u,) ' 

sinh $(u - u, - 2A) 
M(z,) = - 

sinh i(u - uj) 
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For given values of p and v l ,  . . . , v ,  let us define functions @(u) ,  q ( u )  
by 

@ ( u )  = pN sinhN(u/2) (9 .3 .4)  

Then (8 .4 .4)  can be written 

A = [@(A - V )  q(u + 2A') + @ ( A  + u )  q ( v  - W ' ) ] l q ( u ) ,  (9 .3 .6)  

where 

At = A - in. (9 .3 .7)  

From (8.4.12),  (9.3.1) and (9 .3 .2)  the ul, . . . , v, are given by the n 
equations 

9.4 Matrix Function Relation that Defines the Eigenvalues 

In the Bethe ansatz method, a considerable amount of work is needed to 
establish the equations (8.4.12),  i.e. (9 .3 .8) .  We can now observe that they 
are a simple corollary of the commutation relations and (9 .3 .6) .  

To do this, we use a similar argument to that of Section 7.7 for the 
Ising model. From (9 .2 .2) ,  if A is the eigenvalue of V corresponding to 
column r of P,  then 

A = (P-' V P) , ,  . (9 .4 .1)  

Regard p and A as fixed, u as a variable. The the RHS of (9 .4 .1)  is a sum 
over elements of V, with coefficients from P that are independent of u. 
From (8 .3 .4)  and (9.2.3),  each element of V is an entire function of u. 
Thus 

A = A ( u ) ,  (9 .4 .2)  

is also an entire function. 
Now look at (9 .3 .6) .  The RHS is the ratio of two entire functions, and 

the denominator q ( u )  vanishes when v = u l , .  . . , u, . Since the ratio must 
be entire, the numerator must also vanish at these values. The equations 
(9 .3 .8)  follow immediately. 



Thus (9.3.6), considered as a relation between the functions A(u) and 
q(u), defines A(u). 

Every allowed solution of (9.3.8) defines ul,. . . , v,, and hence an 
eigenvalue A(v) and a function q(u). This is true for each value of n. 
Altogether there must be 2N such eigenvalues A(u) and associated functions 
4(u). 

Let us label these A,(u), q,(u), r = 1, . . . , 2N . The matrix Vd in (9.2.2) 
is a diagonal matrix with entries Al, . . . , &N. Similarly, let Qd be the 
diagonal matrix with entries ql, . . . , 92N. Then the full set of equations 
(9.3.6) (one for each eigenvalue) can be written as the single matrix 
equation 

V ~ ( U )  Q ~ ( u )  = @(A - U) Qd(v + 2Ar) + $(A + u) Qd(v - 2Ar). (9.4.3) 

(The factors $(A - v), $(A + v) are the same for each eigenvalue, so are 
simple scalar coefficients). 

Now define the non-diagonal matrix function 

and again exhibit the dependence of the transfer matrix on u by writing 
it as V(u). Pre-multiplying (9.4.3) by P,  post-multiplying by P-l, using 
(9.2.2), (9.4.4) and the fact that P is independent of u, (9.4.3) becomes 

V(V) Q(U) = - U) Q(U + 2 ~ 7  + + U) Q(U - 2nr) , (9.4.5) 

which is a relation between the matrix functions V(v), Q(u). 
Since Vd(v), Qd(u) are diagonal for all u, Q(v) commutes with V(u) and 

Q(u) for all complex numbers u and v. 
It was shown in Section 8.3 that V(v) breaks up into N + 1 diagonal 

blocks, one for each value of n. It therefore certainly breaks up into two 
blocks, one with n even and the other with n odd. This is simply a 
consequence of the commutation relation 

where S is the diagonal operator that has entries + 1 (-1) for row-states 
with an even (odd) number of down arrows. 

The matrix P can therefore also be chosen to commute with S. 
From ( 9 . 3 9 ,  since n < N, all the diagonal elements of Qd(u) are of the 

form 

d,  exp(rd2) , (9.4.7) 

where for n even (odd) the sum is over all even (odd) values of r in the 
interval - N  < r < N. The coefficients d, are independent of u; some may 
be zero. 
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From (9.4.4), each element of Q(u) is a sum of expressions of the form 
(9.4.7), either all with n even, or all with n odd.' Thus each element of 
Q(u) is itself of the form (9.4.7). 

9.5 Summary of the Relevant Matrix Properties 

To summarize: we have used the results of the Bethe ansatz calculation 
of Chapter 8 to establish the following properties: 

(i) Given a transfer matrix V for a particular set of values of a, b, c;  
there are infinitely many other transfer matrices (with different a, 
b, c but the same A)  that commute with V. 

(ii) If a ,  b, c are defined in terms of p, A, u by (9.2.3), and if p, A are 
regarded as constants and u as a complex variable, then matrices 
V(u), V(u) commute for all values of u, u. 

(iii) All elements of V(u) are entire functions of u. 
(iv) There exists a matrix function Q(u) such that the matrix relation 

(9.4.5) is satisfied for all complex numbers u. 
(v) The determinant of Q(u) is not identically zero, and matrices Q(u), 

Q(u), V(u) commute for all values of u, u. 
(vi) The matrices Q(v), V(u) commute with the diagonal operator S that 

has entries +1 (-1) for row-states with an even (odd) number of 
down arrows. They therefore break up into two diagonal blocks. 
Within each block all elements of Q(u) are of the form (9.4.7), 
where -N < r < N and r takes even (odd) values. 

Sufficiency 

These properties (i)-(vi) are in fact sufficient to define the eigenvalues of 
V(u). All we have to do is to reason backwards to (9.3.6) and (9.3.8) as 
follows. 

From the commutation properties (ii) and (v), there exists a matrix P 
(independent of u) such that 

where Vd(u) and Qd(u) are diagonal. From (iv), (9.4.5) is satisfied and can 
therefore be put into the diagonal form (9.4.3). Let A(u) be a particular 
eigenvalue of V(u), and q(u) the corresponding eigenvalue of Q(u). Then 
the corresponding entry in (9.4.3) is the function relation (9.3.6). 
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From (9.5.1), A(u) and q(v) are sums over elements of V(u), Q(v), 
respectively, weighted by coefficients (from P-' and P)  that are independent 
of u. From (iii) it follows that A(v) is entire. From (vi) it follows that q(u) 
is entire and of the form (9.4.7), where r takes either all even or all odd 
values. 

If q(v) were indentically zero for all u, then so would be the determinant 
of Q(u). Provided this does not occur, it must be possible to write q(v) 
in the form (9.3.5) (where 0 6 n s N), together with a non-zero factor that 
cancels out of (9.3.6). As shown at the beginning of Section 9.4, the 
relation (9.3.6) now implies the equations (9.3.8). These define ul, . . . , 
v,. From (9.3.5), q(v) is now known, so (9.3.6) gives A(u). 

These equations are exact for finite n and N. Of course it still remains 
to solve (9.3.8), and in general this can only be done analytically in the 
limit n, N+ m, using methods such as those of Sections 8.68.9. Even so, 
the equations (9.3.8) are an enormous simplification of the original eigen- 
value problem: they could for instance be solved rapidly on a computer 
even for moderately large values of n and N. In this sense they are a 
'solution' of the eigenvalue problem. 

Note that n does not occur in the properties (i)-(vi). Thus one may hope 
to generalize them to models where there is no line conservation. This will 
be done in Chapter 10. 

9.6 Direct Derivation of the Matrix Properties: Commutation 

Can the properties (i)-(vi) be established without using the Bethe ansatz, 
hence giving an alternative way of diagonalizing V(v)? They can, as will 
be shown in this and the next two sections. 

Consider a horizontal row of the lattice and the adjacent vertical edges. 
With each edge i associate a 'spin' pi such that p., = + 1 if the corresponding 
arrow points up or to the right, and pi = - 1 if the arrow points down or 
to the left. 

Let al,  . . . , a~ be the spins on the lower row of vertical edges: 
PI , .  . . , P,, the spins on the upper row; and pl , .  . . , the spins on the 
horizontal edges; as indicated in Fig. 9.1. Denoting the set {al , . . . , aN} 
by a; and {PI , . . . , ON} by P;  it is obvious that a (P) specifies the spins in 
the lower (upper) row. Thus the transfer matrix V has elements Vap, and 
these are given by 
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Here w(p , a l p ,  p ' )  is the Boltzmann weight of the vertex configuration 
specified by the spins p, a ,  P, p'. From Fig. 8.2 and (8.3.3) it follows that 

w ( + , + I + , + ) = w ( - , - I - , - ) = a ,  

w ( + , - 1 - , + ) = w ( - , + I + , - ) = b ,  (9.6.2) 

w ( + , - I +  , - ) =  w ( - , + I - ,  + ) = c ,  

and w(p , a l p ,  p ' )  is zero for all other values of p, a ,  P, p'. 

Fig. 9.1. A row of the square lattice, showing the 'spins' associated with the various 
edges. The cyclic boundary condition is that P N +  1 =: p1. 

Let V' be another transfer matrix, defined by (9.6.1) and (9.6.2), but 
with a ,  b ,  c replaced by a: b: c( Denote the corresponding vertex weight 
function w by w'. Then from (9.6.1) 

where 
S(P,  VIP', v ' l a ,P )  = C w ( p ,  ~ I Y  , p r ) w ' ( v ,  Y I P ,  J ) .  (9.6.4) 

Y 

This S is simply the Boltzmann weight of a pair of sites, one above the 
other, as indicated in Fig. 9.2, summed over the possible arrow configur- 
ations on the intervening edge. 

Let S ( a ,  P) be the four-by-four matrix with rows labelled by ( p ,  v), 
columns labelled by (p', v'), and elementsS(p , v(pl,  vl(cu, P). Then (9.6.3) 
can be written more compactly as 
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where S' is defined in the same way as S, but with w, w' interchanged in 
(9.6.4). 

To establish property (i), we want to find a V' that commutes with V, 
i.e. the right hand sides of (9.6.5) and (9.6.6) are the same. Clearly this 
will be so if there exists a four-by-four non-singular matrix M such that 

for a =  +-I and p =  +-I. 

Fig. 9.2. The lattice segment whose weight (summed over the internal edge spin 
y) is the S(p , v(p '  , v ' la ,  0)  of eq. (9.6.4). 

Star - Triangle Relation 

The matrix M has rows labelled by (p , v); columns by (p', v'). If we write 
the elements as wU(v , pl v', p ') ,  post-multiply (9.6.7) by M and write the 
matrix products explicitly, using (9.6.4), we obtain 

for a ,  B, p, v, pi v' = k1.  
We can regard w"(v, plv', p') as a 'Boltzmann weight function' for a 

vertex with surrounding edge spins v, p, v: p'. Then (9.6.8) can be given 
the simple graphical interpretation indicated in Fig. 9.3: the combined 
weight of the left-hand trilateral (summed over spins on internal edges) 
must be the same as that of the right-hand trilateral. This must be true for 
all values of the six exterior spins. 

One figure can be obtained from the other by shifting a line across the 
intersection of the other two. In both figures the lines ( p ,  v'), ( a ,  /?I) 
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intersect at the vertex with weight function w. Similarly ( a ,  P), (v , p') 
intersect with function w'; (V  , p'), (p , v') with w". 

This picture of the equation (9.6.8) can be very illuminating, as will be 
shown in Chapter 11. 

The equation (9.6.8) can also be written in terms of operators: let Ui be 
the matrix with elements 

Thus Ui acts on the spins in position i and i + 1, leaving the rest unchanged. 
It can be interpreted as a vertex operator. 

Fig. 9.3. The lattice segments whose weights (summed over the internal edge spins 
y ,  p" , J') are the left- and right-hand sides of eq. (9.6.8). This relation is the 

'star - triangle' relation of the vertex models. 

Similar, define U; and c by (9.6.9), with w replaced by w, w", respec- 
tively. Then (9.6.8) implies that 

Ui+lU;U:I+l = cU,!+lUi, (9.6.10) 

and it is obvious from (9.6.9.) that 

UiU/ = q U i ,  (9.6.11) 
if Ji - jl L 2. 

This equation (9.6.10) is the same as (6.4.27). Thus the present operators 
Ui satisfy the same star - triangle property as the corresponding Ising model 
operators of Section 6.4. Since (9.6.10) is a direct corollary of (9.6.8), I 
shall therefore call (9.6.8) the 'star-triangle' relation for the ice-type 
models. (Strictly speaking, a more accurate name would be 'trilateral-to- 
trilateral'.) 
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From (9.6.11), the Ui operators also satisfy (6.4.28). Further, if N is 
replaced by N + 1 in (9.6.9), then the element 

of UN is the weight of the extreme-right vertex in Fig. 9.1. Thus UN can 
be thought of as the operator which adds this vertex, going from edge spins 
PN, PN+I to spins p ~ ,  a ~ .  

Similarly, the product Ul . . . UN adds the row of vertices in Fig. 9.1, 
going from P1, . . . . , PN, /AN+, to pl, al ,  . . . . , a ~ .  Apart from boundary 
conditions and a shift of spin indices, it is therefore the transfer matrix and 
the partial commutation argument of (6.4.30)-(6.4.31) applies. In all these 
respects the Ui operators of this chapter therefore correspond to those of 
Section 6.4. 

To summarize: the transfer matrix V commutes with another transfer 
matrix V' if w" can be chosen to satisfy (9.6.8). This is analogous to the 
star - triangle relation of the Ising model. 

Solution of the Star - Triangle Relation 

Given w, we want to find w', w" so that (9.6.8) is satisfied. One trivial 
solution is w' cc w, w"(v, plv' , p') =d(u, v') d(p, p') ; but this is not 
interesting since it implies only that V commutes with a scalar multiple of 
itself. We want solutions in which w' is not simply proportional to w. 

From Fig. 9.3 it is obvious that w" plays a very similar role to w and w'. 
Thus it is natural to take w" also to be given by (9.6.2), but with a, b, c 
replaced by a", b", c". 

If a ,  b, c are given, then a: b: c' and a", b", c" are at our disposal. Since 
(9.6.8) is homogeneous in w' and w", this leaves us four disposable 
parameters. 

On the other hand, a ,  P, p, v, p', v' in (9.6.8) can each independently 
take the values + I ,  so (9.6.8) represents 64 scalar equations. At first sight 
the task of satisfying all of them seems hopeless! 

Fortunately there are many simplifications. From (9.6.2), 
w(p , a lp ,  V) = 0 unless p + a = /3 + v, an'd similarly for w: w". It follows 
that both sides of (9.6.8) are zero unless v + p  + a = /3 + v' + p'. This 
leaves only 20 non-trivial equations. 

Negating all spins leaves w, w: w" and (9.6.8) unchanged, so these 20 
occur in 10 identical pairs. 

Further, interchanging the pairs, ( a ,  P), (p , v'), (p', v), (p", d') merely 
interchanges the two sides of (9.6.8). This implies that 4 of the remaining 
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10 equations are satisfied identically, while the rest occur in three equivalent 
pairs. Thus (9.6.8) finally reduces to just three equations, namely 

ac'a" = bc'b + ca'c" , 

ab'c" = ba'c" + cc'b" , (9.6.12) 

Eliminating a", b", c" leaves the single equation 

(a2 + b2 - c2)l(ab) = (a" + b" - ~ ' ~ ) l ( a ' b ' ) .  (9.6.13) 

Defining A as in (8.3.21) and (9.2.1), it follows that w" can be chosen 
to satisfy the star - triangle relation (9.6.8) provided that 

Thus if V and V' have different values of a, b, c, but the same value of 
A; then they commute. We have therefore directly established the com- 
mutation property observed in Section 9.2. This completes step (i) of 
Section 9.5. 

9.7 Parametrization id Terms of Entire Functions 

To establish the properties (ii) and (iii) of Section 9.5, we need to para- 
metrize a, b, c in terms of three other variables, say p, A and u ,  so that a, 
b,  c are entire functions of u, but A is independent of u. 

An obvious parametrization is to regard a, A as 'constants7 and to 
introduce a variable x = bla. Then from (9.21), 

a = a, b = ax, c = a(l + x2 -  AX)^. (9.7.1) 

However, c is not an entire function of x: it is the square root of a quadratic 
polynomial in x. 

There is a simple way of parametrizing a function F =[(x - xl)(x - 
x2)li, namely to define 

t2 = (x - x#(x - x2) , 
i.e. to set 

x = (XI - t2x2)l(1 - t2) . 
Then the sign of t can be chosen so that 

so both x and F are rational functions of t. 
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In our case xl and x2 are the zeros of 1 + x2 - 2Ax. Thus 

and (9.7.1) becomes 

a = a, b = a(xl - t2x;')l(1 - t2), (9.7.6) 

We can 're-normalize' to remove the denominators by setting 
a = p' xl(l - t2) .  Then 

a = p' xl(l - t2) ,  b = p' (x: - t2), (9.7.7) 

c = ~ ' ( x : -  1 ) t .  

With this parametrization, a, b, c are entire functions of pi x1 and t, but 
A depends only on xl. Varying t changes a : b : c, but leaves A unaltered. 

This completes the derivation of (ii) and (iii), and we could continue to 
use this parametrization, regarding p: xl as constants and t as a variable. 
However, to regain contact with the results of the Bethe ansatz (and to 
make the subsequent generalization to the eight-vertex model more 
straightforward) it is useful to finally transform from p', xl, t to p, A, u by 
setting 

We then regain (9.2.1), (9.2.3) and the properties (ii) and (iii) of Section 
9.5. 

Parametrized Star - Triangle Operator Relation 

So far we have used only the corollary (9.6.14) of the star - triangle relations 
(9.6.12). Since (9.6.12) is unchanged by interchanging the twice-primed 
and unprimed weights a, b, c; another obvious corollary is A" = A'. Thus 
(a' , b' , c') and (a" , b , c") can also be parametrized in the form (9.2.3), 
all sets having the same value of A. 

They have different values of u; let us call them u '  and u", respectively 
[and similarly for p, but these normalization factors cancel trivially out of 
(9.6.12)]. Substituting the resulting expressions (9.2.3) for a ,  . . . . , c" into 
(9.6.12), all three equations are satisfied if 

sinh $(A + u - U' + u") = 0 .  (9.7.9) 
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Incrementing v' by 4~t-i leaves a', b', c' unchanged, so without loss of 
generality we can take the solution of (9.7.9) to be 

For some purposes it is convenient to use 

as a variable, instead of v. Then (9.2.3) becomes 

and if u' =+(A + v'), u" = &(A + u"), then (9.7.10) becomes 

The vertex operators Ui defined by (9.6.9) and (9.6.2) are functions of 
a, b, c. From (9.7.12) they therefore depend on p, A, u. Regarding p, A 
as constants, we can regard Ui as a function of u and write it as Ui(u). 
Then the U; and t!f in (9.6.10) are Ui(ul) and Ui(uU), respectively. Using 
(9.7.13), the star - triangle operator relation (9.6.10) becomes 

This is an identity, true for i = l , .  . . . , N - 2 ,  and for all complex 
numbers u and u". In particular, it is true for 0 <u/A < 1 ,0  < ul'lA < 1 : for 
A < 1 these are the 'physical' values of u, u"; corresponding to positive 
Boltzmann weights a, b, c, a", b", c". 

Comparing (9.7.14) with (7.13.5), we again see a very close analogy 
between the 'star - triangle' relations of the ice-type and Ising models. 

9.8 The Matrix Q(u) 

Column Vectors y 

The next step is to obtain property (iv), i.e. to construct the matrix Q(v) 
that satisfies (9.4.5). 

Let y be a particular column of Q(v). Then (9.4.5) implies that 

where y' and y" are proportional to y, with v replaced by u + 2A' and 
u - 2Af, respectively. 

Let us try to construct y, y', y" directly, and lety(al , .  . . . , w) be the 
element (al , . . . . , a ~ )  of the vector y. Then the product V(v) y simplifies 



if y(cq,. . . . , w) has the product form 

i.e. y is a direct product of the two-dimensional vectors gl, . . . . , gN. In 
fact, from (9.6.1), the element (al , . . . . , aN) of V(u) y is 

where Gi(+) and Gi(-) are two-by-two matrices with (y , y') elements 

Explicitly, using (9.6.2), 

We want the RHS of (9.8.3a) to decompose into the sum of two terms, 
each like (9.8.2). This will be so if there exist two-by-two matrices 
PI , .  . . . , PN such that 

where each Hi(a) is upper-right triangular, and P N + ~  = PI. 
To see this, substitute the form (9.8.5) of each Gi(a) into (9.8.3a). The 

Pis cancel, so the effect is to replace each Gi(a) by Hi(a). If Hi(a) has the 
form 

Pair Propagation Through a Vertex 

Can (9.8.5) and (93.6) be satisfied, i.e. can we choose the Pi so that the 
the bottom-left element of P;' Gi(a) Pi+l vanishes for both a =  +1 and 
a = -l? If pi is the first column of Pi, this is equivalent to requiring that 

for a =  21. Here Gi(+) and Gi(-) are two-by-two matrices; the pi are 
two-dimensional vectors; gl (+ ) and gl(- ) are scalars. 
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Let the elements of pi be pi(+) and pi(-). Using (9.8.3b), the condition 
(9.8.8) can be written explicitly as 

C ~ ( P , ~ I P , P O ~ ~ ( P ) P ~ + ~ ( P ~ )  = g i ' ( a ) ~ i ( ~ )  (9.8.9) 
P>P' 

for cu, p =  1-1. 
This equation can be interpreted graphically as in Fig. 9.4. Let p, a, 

p, pf be the edge spins round a vertex, as shown. With the upper and 
right-hand edges associate weights gi(P), ~ ~ + ~ ( p ' ) .  Sum over all values of 
p, pf ,  weighted by the vertex weight w. This gives a function of p and a .  

Fig. 9.4. Pair-propagation through a vertex: graphical representation of 
eq. (9.8.9). 

The condition (9.8.9) implies that this function factors into a weight 
g/(a) for the lower edge, pi@) for the left-hand one. 

Thus we can think of (9.8.9) as saying that the vertical and horizontal 
functions (or vectors) gi, p i+l  'propagate' through the vertex to become 
gJ ,p i .  Indeed, using (9.6.9), (9.8.9) can be written in fairly obvious 
operator notation as 

Since y,  a = 1- 1, (9.8.9) represents four scalar equations. Explicitly they 
are 

These equations are homogeneous and linear in gi(+ ), gi(- ), g/(+), 
gf(-), so these variables can be eliminated (by taking the determinant of 
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coefficients), leaving 

where 
ri =pi(-)/pi(+) for i = 1,. . . , N .  (9.8.13) 

This is a quadratic recurrence relation between ri and ri+l. There are 
two interesting things about it: firstly, it involves a, b, c only via the A 
defined by (9.2.1) ; secondly, from (9.2.4) it explicitly factors into the 
simple form 

- -riexp(+A). ri+l - (9.8.14) 

Column Vectors y(v)  and the Matrix QR(v) 

The relation (9.8.14) must hold for i = 1 , .  . . , N ;  but the choice of sign 
can be made independently for each i. Thus the most general solution for 
rl, . . . , is 

ri = (-)'r exp[A(ul + . . . + , (9.8.15) 

where r is arbitrary and each ui has value -t- 1. The cyclic boundary condition 
rN+1 = rl is satisfied if 

u l + . . . + u ~ = O ,  (9.8.16) 

which implies that N must be even. 
(If \ A (  <1, then A is pure imaginary. If A equals 2Jn'mln, where m and 

n are integers, then it is sufficient that q + . . . + ON be a multiple of n. 
Such cases are often of particular interest, e.g. the pure ice model has 
A = 2 d 3 ) .  

We can choose all pi(+), gi(+ ) to be unity, sopi(-) = ri. Solving (9.8.11), 
using (9.8.15) and (9.2.3), then gives 

The equation (9.8.8) is now satisfied, where pi is the first column of Pi. 
It follows that the matrix Hi(a) defined by (9.8.5) must be of the form 
(9.8.6), whatever the choice of the second column of Pi (so long as no Pi 
is singular). The elementsgy(a) can be obtained by taking the determinant 
of both sides of (9.8.5) and using (9.8.4) and (9.8.6). This gives 
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Substituting this expression into the last term in (9.8.7), the Pi-deter- 
minants cancel out, so we can ignore them in (9.8.18) (or we could require 
them to be unity). From (9.8.17) it then follows that 

For a given i, let us define a two-dimensional vector function hi(v) of 
v by 

where we take r in (9.8.15), and hence all rl, . . . , TN, to be independent 
of v. Let gi be the two-dimensional vector 

and similarly for gi, g:' . 
Then the equations (9.8.17), (9.8.19) can be written very neatly as 

where A' = A + in, as in (9.3.7). If we also define a 2N-dimensional vector 
function y(u) of v by 

then, using (9.8.2), the equation (9.8.7) can be written 

From (9.2.3) and (9.3.4), aN = @(A - v) and bN = @(A + u). There are 
many choices of the y(v), corresponding to different choices of r, 
q, . . . , ON in (9.8.15), subject only to the restriction (9.8.16). Let QR(v) 
be a 2N by 2N matrix whose columns are linear combinations (with coef- 
ficients that are independent of v) of such vectors y(v). Then it follows 
immediately from (9.8.24) that 

which is basically the equation (9.4.5) required by property (iv) of Section 
9.5. 

Row Vectors y T ( - ~ )  and Matrix QL(v) 

We still have to satisfy (v) and (vi). From (9.6.1) and (9.6.2) (by inter- 
changing ai and Pi, and negating all pi) it can be seen that interchanging 
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a with b is equivalent to transposing the transfer matrix V. Thus, from 
(9.2.3), 

V(-u) = vT(u) . 
If we define 

QL<v> = Qi(-v> , 

then transposing (9.8.25) and negating u gives 

so QL(v) plays a similar role to QR(v), except that it pre-multiplies the 
transfer matrix, instead of post-multiplying. 

The vector y(u) is defined by (9.8.23), (9.8.20) and (9.8.15), so depends 
on r and q, . . . , ON, as well as u. This can be exhibited by writing it as 
y(u J r  , a). Consider the scalar product 

of two such vectors. This is readily evaluated as 

In particular, this expression depends on q,  . . . , ON, u and v so let us 
call it J(u , v 1 q , . . . , ON), and consider the ratio 

the numerator differing from the denominator only in the interchange of 
q and q+?. Since all but the i = j and i = j + 1 terms in (9.8.30) are 
symmetric in q ,  q + l ,  this ratio simplifies, leaving only these terms in the 
numerator and denominator. A simple direct calculation (using the fact 
that q ,  q + l ,  4 ,  4+1 only take the values + I )  then reveals that the ratio 
(9.8.31) is a symmetric function of u and v. 

However, it is obvious from (9.8.30) that J(u , u 1 q , . . . , oN) is sym- 
metric in u and v if q=c$ for i = l , .  . . , N .  Since all values of 
q, . . . , aN allowed by (9.8.16) are permutations of this particular set of 
values, and since all such permutations can be obtained by successive 
interchanges of pairs ( q  , q+ 1), it follows that (9.8.30) is always a symmetric 
function of u and v. Thus 
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Now consider the matrix product QL(u) QR(v). Since any column of 
QR(u) is a linear combination of vectors y(vlr, a), and any row of QL(u) 
is a linear combination of vectors yT(-ulr' , d), it follows immediately 
from (9.8.32) that 

Q L ( ~ >  QR(v) = QL(v) &R(u) ,  (9.8.33) 

for all complex numbers u, v. 

QR(v) a Non-Singular Matrix 

Consider now the set of vectors y(ulr, a )  formed by letting r take all 
possible complex number values, and a = { q  , . . . , aN} taking all the 
(fi) values allowed by (9.8.16). I want to assert that there are values of 
v for which these vectors span all 2N-dimensional space, so that QR(u) and 
QL(-v) can then be chosen non-singular. Unfortunately I know of no 
simple way to completely prove this, but it is almost certainly correct and 
the following argument supports the assertion. 

From (9.8.23), (9.8.20) and (9.8.15), the element (al , . . . , aN) of 
y(ulr , a)  contains a factor 

+(N - C q  - . . . . - (YN) 
> (9.8.34) 

the other terms being independent of r. Thus 
N 

y ( ~ I r ,  a) = E rnyn(vIa) , (9.8.35) 
n = O  

where each yn(vla) has non-zero elements only when al +. . . + WN = 

N  -2n , i.e. when there are n down arrow spins. 
Let 'V, be the (:)-dimensional space of vectors whose elements are zero 

unless cq +. . . + a~ = N - 2n. Then it would be sufficient to show (for 
n = 0 , . . . , N) that 'Vn is spanned by the vectors yn(v I a) obtained by letting 
a take all possible values. 

Since there are (&) such values of a permitted by (9.8.16), there are at 
least as many vectors yn(ul a) as the dimensionality of 'V,. The most delicate 
case is n = i N ,  when there are just enough vectors. 

Each element (al , . . . , aN) of y,(ula) contains a factor 

exp fv q(l - ai) , [ l = l  I 
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all other terms being independent of u and non-zero. From (9.8.16), this 
factor simplifies to 

If n = $N and v is large and negative, then there is a single dominant 
element of y,(ul a)  given by al ,  . . . , aN = q, . . . , : this maximizes 
(9.8.37) and is consistent with (9.8.16). Thus there are (r) column vectors, 
each with its dominant element in a different row. These vectors clearly 
form a basis of T,. 

The assertion is therefore certainly true for n = iN. Since this subspace 
contains the maximum eigenvalue of V, this eigenvalue can certainly be 
obtained by the present methods. More generally, for n # dN, there are 
more vectors y,(ul a)  than necessary and there is no reason to suppose they 
do not (for general values of v) span Q,. 

Q(u) and its Commutation Relations 

From now on let us therefore suppose that the determinant of QR(u), and 
hence QL(u), does not vanish identically (it may of course vanish for a 
finite number of complex values of v). Let vo be a value for which it is 
non-zero and define 

Taking u = vo in (9.8.33), it follows that 

Post-multiplying (9.8.25) by Qil(vo), and pre-multiplying (9.8.28) by 
Qi1(uo), therefore gives 

V(u) Q<u) = Q(u) v<v> 
= $(A - u) Q(u + 2h1) + $(A + U) Q(u - 2h') . (9.8.40) 

Also, from (9.8.39) and (9.8.'38), 

From (9.8.33), this is unaltered by interchanging u with u, so 

Q<u) Q<u) = Q(u) Q<u> (9.8.42) 

Thus this matrix function Q(u) satisfies (9.4.5) and all the properties 
(iv) and (v) of Section 9.5. 
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Commutation Relations Involving S 

Finally, the diagonal operator S in (vi) is 

From (9.8.20) and (9.8.23) it follows that 

and, since all columns of QR(v) are linear combinations of vectors y(v), 

S QR(v) = QR(U + 2xi) . (9.8.45) 

Transposing, negating v, using (9.8.27) and the fact that 
QR(v + 4xi) = QR(u), gives 

QL(v) S = QL(U + 2jdi). (9.8.46) 

Post-multiplying (9.8.45) by Qil(vo), pre-multiplying (9.8.46) by 
Qtl(vo), and using (9.8.38) and (9.8.39), it follows that 

Also, since w(p , a l p ,  p') is unchanged by multiplication by papp', it 
follows from (9.6.1) that 

S V(u) = V(v) S . (9.8.47b) 

From (9.8.20) and (9.8.23), as v + 2 w any element of y(v), and hence 
Q(v), grows at most as fast as exp(8Nu). The properties (vi) of Section 9.5 
now follow immediately from (9.8.47). 

As was shown in Section 9.5, the properties (i)-(vi) imply the equations 
(9.3.6), (9.3.8) for the eigenvalues A of V(v). Thus we have derived these 
equations without using the Bethe ansatz. There are two key steps in the 
working: the star triangle relation (9.6.8) and the vertex propagation 
relation (9.8.9). It is worth noting that both of these are local properties, 
the first of a triangle of three vertices, the second of a single vertex. 

9.9 Values of p, A, v 

All the equations of this chapter are algebraic identities, so they are true 
for all values of a, b ,  c and p, A, u, real or complex. It is not necessary to 
locate their values in the complex plane until one starts the analysis of the 
solution of (9.3.8), letting N+ co and choosing the solution corresponding 
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to the maximum eigenvalue A. (This analysis was performed in Sections 
8.5-8.9.) 

If the vertex interaction energies &I, . . . , ~g are real [and satisfy (8.1.7)], 
then the Boltzmann weights a ,  b, c given by (8.3.3) are real and positive. 
When locating p, A, v there are four cases to consider, being the four 
phases shown in Fig. 8.5. The p, A, v can be chosen so that: 

(I) A > 1, a  > b + c: 
p = -pl, A = in + A', u = -in - u', 
where p', A', v' are real and p' > 0, u' > A' > 0 . 

(11) A > 1, b > a  + c: 
p = -pl, A = in + A',  v = in + u: 
where p', A', u' are real and p' > 0, v '  > A' > 0 . 

(111) -1 < A  < 1 , a  + b > c > la - b(: 
p = -@', A = ip, v = iw, 
where p', p, ware real and p' > 0, n >  p > >wI . 
(These are the p, w of Section 8.8.) 

(IV) A < -1, c > a + b: 
p, A, u are real, p > 0, A > JuJ  . 



SQUARE LATTICE EIGHT-VERTEX MODEL 

10.1 Introduction 

Lieb's (1967a, b, c) solution of the ice-type, or six-vertex, models was the 
most significant new exact result since the work of Berlin and Kac (1952) 
on the spherical model, and the pioneering work of Onsager (1944) on the 
Ising model. 

Even so, as models of critical phenomena the ice-type models have some 
unsatisfactory pathological behaviour: the ferroelectric ordered state is 
'frozen' (i.e. the ordering is complete even at non-zero temperatures), and 
the anti-ferroelectric critical properties do not diverge or vanish as simple 
powers of T - T, (see Section 8.11). 

The first of these unusual properties is certainly connected with the 
ice-rule: starting from a configuration with all arrows pointing up or to the 
right, the simplest deformation that can be made is to draw a line right 
through the lattice (going generally in the SW - NE direction) and reverse 
all arrows on this line. For an infinite lattice with ferroelectric ordering, 
this costs an infinite amount of energy, so gives an infinitesimal contribution 
to the partition. function. 

Sutherland (1970), and Fan and Wu (1970), therefore suggested gener- 
alizing the ice-type models as follows: 

On every edge of the square lattice place an arrow; 
Allow only configurations such that there are an even number of 

arrows into (and out of) each site; 
There are eight possible arrangements of arrows at a site, or 'vertex', 

as shown in Fig. 10.1 (hence the name of the model). To arrangement 
j assign an energy &,(j =1 , . . . ,8). Then the partition function is 

202 
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where the sum is over all allowed configurations C of arrows on the 
lattice, ni is the number of vertex arrangements of type j in configuration 
C, kB is Boltzmann's constant, T is the temperature. 

The first six vertex arrow arrangements in Fig. 10.1 are those permitted 
by the ice rule (Fig. 8.2). The last two (all arrows in, or all out) are new. 
Starting from the lattice state with all arrows pointing up or to the right, 
one can now make local deformations (e.g. reverse all arrows round a 
square) that cost only a finite energy, so one no longer expects the ferro 
electric state to be completely ordered, and may hope that the model will 
be in other respects also less pathological. 

Fig. 10.1. The eight arrow configurations allowed at a vertex. 

It is clear from (10.1.1) that Z is a function of the eight Boltzmann 
weights 

mj= e x p ( - ~ ~ / k ~ T ) ,  j =  1 , .  . . , 8 .  (10.1.2) 

From Fig. 10.1, vertex 7 is a sink of arrows, 8 is a source. If toroidal 
boundary conditions are imposed on the lattice, it follows that 

Similarly, reversing all vertical arrows gives vertex 5 to be a sink, 6 a 
source, so 

ng = 116. (10.1.4) 

Thus ES,. . . , eg in (10.1.1) occur only in the combinations .z5 + ~ g ,  

E~ + E ~ ,  SO without loss of generality we can choose 

A particularly interesting situation is when we also have 

The model is then unchanged by reversing all arrows. Regarding the arrows 
as electric dipoles, this means that no external electric fields are applied, 
so this specialized model is known as the 'zero-field' eight-vertex model. 
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The solution of the zero-field eight-vertex model will be given in this 
chapter. The full model has not been solved. In this respect the six- and 
eight-vertex models differ: the former can be solved even in electric fields 
(Section 8.12). 

10.2 Symmetries 

Consider the zero-field model and set 

a = wl = w2, b  = w3 = w 4 ,  

C=w5=w6, d=w7=Ws.  

Then from (10.1.1) and (10.1.2) 

2 = zaw+m bn3+"4 p + n 6  p + n a  , 
so clearly Z is a function Z(a , b;  c  , d )  of a,  b ,  c,  d. 

Fig. 10.2. The four arrow spins p, a, /3, v on the edges at a vertex. The vertex 
configuration ( p  , a ,  /3, v) has weight w ( p  , alp, v) given by (10.2.3). 

Fan and Wu (1970) showed that this function has several symmetries. 
Let p, a, v, p be the 'arrow-spins' associated with the four edges round a 
vertex, as in Fig. 10.2. They have value +1  (-1) if the corresponding 
arrow points up or to the right (down or to the left). Then the Boltzmann 
weight of the vertex in Fig. 10.2 is w(p , alp, v), where 
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and w(p , alp, v )  is zero for all other values of p, a, P, v. (This is the 
generalization of (9.6.2).) This definition can be written more neatly as 

~ ( p ,  alp, V )  = t { a f ( l  + @ ~ v )  + bf(c$ + pv) + cf(cuv+ pp) 

+ d'(pv + (10.2.4) 

for all p, a; /?, v,  where 

a' = &(a + b + c + d ) ,  b' = ;(a + b - c - d )  , (10.2.5) 
c f = 4 ( a - b + c - d ) ,  d f = f ( a - b - c + d ) .  

Suppose the lattice has M rows (labelled i =1 , . . . , M )  and N columns 
( j  =1 , . . . , N ) .  Then with this definition of w, 

where 

and the summation in (10.2.6) can be extended over all values (k 1 )  of the 
edge arrow spins a l l , .  . . , ~ M N ,  p11,. . . , ~ M N .  

Using the expression (10.2.4) for the function w, (10.2.7) becomes 

where whk) corresponds to the kth additive term on the RHS of (10.2.4), 
and is a simple product of a weight and arrow spins, e.g. wL3) = 
fb'aijai+l,j. 

Substituting the form (10.2.8) of wii into (10.2.6), the summand can be 
expanded into gMN terms of the form 

WII)  ( ~ M N )  
wii . . . W M N  , (10.2.9) 

where each kij is an integer between 1 and 8. Each such term (10.2.9) can 
be represented by an arrow graph G on the original lattice: at each site 
(i, j )  draw the kijth vertex arrow configuration of Fig. 10.1. There are then 
two arrows on every edge, one from each of the end-sites. 
Consider a particular edge, say the vertical one between sites ( i  - 1 , j) 

and ( i  , j ) ,  with arrow spin alp Only two factors in (10.2.9) can contain 
aq, namely those for sites (i - 1 , j )  and (i , j ) .  Comparing (10.2.4) and Fig. 
10.1, we find that aq is absent from (present in) either factor if the 
corresponding arrow in G is up (down). 

But (10.2.9) must be summed over all , . . . , ~ M N ,  in particular over 
aij. Jf (10.2.9) contains an odd power of mu, it will give zero contribution 
to the sum, so can be ignored. This leaves only terms with an even power 
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of aq: this power can be either zero (aij absent from both factors), or two 
(aii present in each factor). In either case the corresponding two arrows 
in G point the same way. 

This applies to all edges, both vertical and horizontal, so a term (10.2.9) 
contributes to (10.2.6) only if all edges in G contain a pair of parallel 
arrows. Replace each such pair by a single arrow pointing in the common 
direction. Summing (10.2.9) over a, ,u now merely gives a factor 4MN, which 
cancels the factors 114 in each wbk). Thus (10.2.6) and (10.2.9) give 

where rnk is the number of vertices in G of type k (k = 1 , . . . ,8 ) ,  and the 
sum is over all arrow coverings G such that each vertex is one of the eight 
shown in Fig. 10.1. 

But (10.2.10) is precisely (10.2.2), with a ,  b, c, d replaced by a ' ,  b', c', d'. 
Thus 

The method used in deriving this result is basically that of the 'weak- 
graph expansion' (Nagle, 1968; Nagle and Temperley, 1968; Wegner, 
1973). Like the Ising model duality relation (Section 6.2), (10.2.11) relates 
a high-temperature model (a , b , c , d almost equal) to a low-temperature 
one (a B b , c , d). Indeed, it will be shown in the next section that the 
Ising model is a special case of the eight-vertex model: the duality relation 
(6.2.14) can in fact be deduced from (10.2.11). 

Some other simple symmetries (which relate high-temperature models 
to high-temperature ones, and low to low) are readily deduced from 
(10.1.1)-(10.2.2). Reversing all horizontal a~-rows, it is obvious from Fig. 
10.1 that 

Z ( a , b ; c , d )  = Z ( b , a ; d , c ) ,  (10.2.12) 

while rotating through 90" gives 

Suppose M, N are even. Then the lattice can be divided into two sub- 
lattices A and B such that every site in A has neighbours only in B, and 
vice-versa. Reverse all arrows on horizontal (vertical) edges that have an 
A site on the left (top) end. The new model is still a zero-field eight vertex 
model, but with a ,  b, c, d replaced by c, d ,  a ,  b; so 

From (10.1.3) and (10.1.4), (10.2.2) contains only even powers of c and 
d. From (10.2.14), Z must also be an even function of a and b. Thus 
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where each sign can be chosen independently. 
All these symmetry relations (10.2.11)-(10.2.15) can be summarized by 

introducing 

w1 = $(a + b), w2 = +(a - b) , (10.2.16) 

w 3 = f ( c + d ) ,  w q = f ( c - d ) ,  

and regarding Z as a function Z[wl , .  . . , wq] of w1 , . . . , w4, instead of 
a ,  b, c, d. The symmetries then become 

for any choices of the signs, and any permutations (i , j ,  k , I )  of 
(1 , 2 , 3  , 4 ) .  Thus Z is unaltered by negating or interchanging any of 
W 1 ,  . . . Wq. 

10.3 Formulation as an Ising Model with Two- and Four-Spin 
Interactions 

When thinking of the eight-vertex model as a generalization of the six- 
vertex, it is natural to describe it in terms of arrows on lattice edges, and 
view it as a model of a ferroelectric, the arrows being electric dipoles. 

However, the eight-vertex model can also be formulated in terms of 
spins, and viewed as a generalization of the Ising model of a magnet (Wu, 
1971; Kadanoff and Wegner, 1971). 

To see this, associate spins a;, with the faces of the square lattice, as in 
Fig. 10.3. Each spin can either have value + 1, or  - 1. Allow interactions 
between nearest and next-nearest neighbour spins. Then the most general 
translation-invariant Hamiltonian satisfying (1.7.4) is 

M N  

% = - ; = I  X ,=I  X {Juq4 , j+ l  + Jh~ i j~ ;+ l . ;+  J ~ i , j + ~ ~ ; + l , ;  

Thus this model contains a four-spin interaction between the spins round 
a site. The partition function is given by (1.7.5) with H = 0: denote it by 
21. 

Now define, for all i, j, 
(y.. = @.@ . 

11 11 I J + I  (10.3.2) 

11 1+1,;. Pij = 
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Then (10.3.1) can be written 
M N  

+ Jaiipii + J'ai+l,jpij + J'aijai+~,~) (10.3.3) 
and, for all i and j ,  

pijaijai + 1,jPi , j + 1 = 1 . (10.3.4) 

To any a-spin configuration there corresponds an a ,  p-spin configuration 
satisfying (10.3.4). Conversely, to any a ,  p-spin configuration satisfying 
(10.3.4), there correspond two a-spin configurations satisfying (10.3.2). 

Fig. 10.3. The eight-vertex model square lattice, shown by dotted lines; and the 
sites of the dual lattice, shown as open circles. 

(To see this converse, fix one face spin, say ql arbitrarily. Then (10.3.2) 
defines the neighbouring face spins, and so on; (10.3.4) ensures that the 
definitions are consistent. Thus there are just two solutions of (10.3.2), 
depending on the choice of the first spin.) 

It follows that 

where the sum is over all values (+ 1) of all , . . . ,  satisfying (10.3.4). 
However, since w ( p  , a lp ,  v) in (10.2.3) vanishes unless papv = 1, 

(10.2.6) is unchanged by imposing the condition (10.3.4). Thus the sums 
in (10.2.6) and (10.3.5) are the same, provided that (for papv = 1) 



(sharing out the Juaij energies between sites ( i  , j) and (i - 1 , j), and 
similarly for Jhpij. Hence 

ZI = ~ Z S V ,  (10.3.7) 

where Zsv is the partition function of the eight-vertex model defined above, 
with aij, pq being the edge arrow spins, and with (using Fig. 10.1, (10.3.6) 

Fig. 10.4. The Ising spins of Fig. 10.3. The solid and broken lines link pairs of spins 
that interact via the diagonal terms (with coefficients J and J') in eq. (10.3.1). 

Note the automatic division into two sub-lattices: solid and open circles. 

and (10.1.2)) 

S = Q =  -J+ J '+  J". 

Thus this general Ising-type model is equivalent to the general eight- 
vertex model, and vice-versa. In particular, the zero-field eight-vertex 
model (ol = 02, 03 = 04 )  corresponds to the Ising-type model with Jh = 
J, = 0, i.e. with only diagonal and four-spin interactions. In this case, from 
(10.1.2) and (10.2.1), 

More particularly, if J" = 0 then only the diagonal interactions remain 
and a ,  b, c, d satisfy the condition 

As is evident from Fig. 10.4, the Ising-type model then factors into two 
independent nearest-neighbour square Ising models, one on the sub-lattice 
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of solid circles, the other on the sub-lattice of open circles. These two 
models are identical: both have interaction strength J in one direction, J' 
in the other. If f8v is the free energy per site of this eight-vertex model, 
then in the thermodynamic limit it follows that 

where fIsi,, is the free energy per site of the usual square-lattice nearest- 
neighbour Ising model. 

The zero-field eight-vertex model therefore contains as special cases both 
the zero-field ice-type model of Chapters 8 and 9, and the Ising model of 
Chapter 7. In general it can be regarded as two identical Ising models, one 
on each sub-lattice of faces, coupled via a four-spin interaction round each 
site. 

10.4 Star - Triangle Relation 

Here I shall show how the zero-field eight-vertex model can be solved by 
generalizing the method of Sections 9.69.8: this is the way it was originally 
done (Baxter, 1971a, 1972b). 

The Bethe ansatz method of Sections 8.3 and 8.4 can in fact also be 
appropriately generalized (Baxter, 1973a), but is very cumbersome: it does 
have the merit of providing formulae for the eigenvectors of the transfer 
matrix, as well as the eigenvalues, but no use has yet been made of these. 

To obtain the results in a form analogous to those of Section 9.6-9.8, 
it is necessary to use elliptic functions. I shall introduce them at an ear!y 
stage, though Kumar (1974) has shown that they can be deferred at least 
until Section 10.7. 

Again we try to satisfy the 'star- triangle' relation (9.6.8), only now 
w(p ,  a@, v) is given by (10.2.3) rather than (9.6.2). The three equations 
(9.6.12) are thereby replaced by the six equations 

ac'a" + d a ' d  = bc'b" + ca'c" 

cb'a" + b d ' d  = ca'b" + bc'c" 

ad'b" + db'c" = bd'a" + c b ' d  

aa'# + dc'a" = bb'd" + cd'a" 

&'a'' + a c ' d  = db'b" + ad'c" 



These equations are homogeneous and linear in a", b", c", d .  The 
determinant of coefficients of the first, third, fourth and sixth equations 
is 

(cda'b' - abc'd')[(a2 - b2)(cr2 - dl2) + (c2 - d2)(a" - bt2) ]  . (10.4.2) 

For a", b", c", d" not to be all zero, this determinant must vanish. 
The aim here is to construct a class of transfer matrices (with weights 

a ' ,  b', c', d ')  that all commute with the original matrix V (with weights a, 
b, c, d). If V itself is to be a member of this class (this seems desirable, 
but it may not be essential), then we want (10.4.2) to vanish when a', b', 
c', d' equal a ,  b, c, d. In this case the first factor vanishes, but the second 
does not. 

In general, therefore, we require the first factor in (10.4.2) to vanish, 
i.e. 

cd - c'd' 
ab arb '  

The first, third, fourth and sixth equations in (10.4.1) can now be solved 
for a": b": c": d". Using (10.4.3), they give (to within a common factor) 

a" = a(ccl - dd')(b2cr2 - c2ar2)/c 

b" = b(dcl - ~ d ' ) ( a ~ c ' ~  - d2at2)ld 

Substituting these into either the second or fifth equation in (10.4.1), 
using (10.4.3), gives 

Define 

A = (a2 + b2 - c2 - &)/2(ab + cd) 

r = (ab - cd)l(ab + cd) , (10.4.6) 

Similarly, define A', T' by (10.4.6) with a, b, c, d replaced by a' ,  b', c', 
d'. Then (10.4.3) and (10.4.5) are equivalent to 

It follows that any two transfer matrices commute provided they have 
the same values of A and r. Apart from a trivial normalization factor, this 
leaves one degree of freedom in choosing a ,  b, c, d ,  so a non-trivial class 



212 10 SQUARE LATTICE EIGHT-VERTEX MODEL 

of transfer matrices can be constructed, each member commuting with 
every other. 

Parametrization in Terms of Entire Functions 

The next step is to generalize Section 9.7, i.e. to parametrize a ,  b, c, d in 
terms of four other variables, say p, k, A and v, so that a,  b, c, d are entire 
functions of v, but A ,  T am independent of v (and of the normalization 
factor p) .  

First eliminate d between the two equations' (10.4.6). This gives 

where 
y = (1 - T)l(l + T) = cdlab . (10.4.9) 

Eq. (10.4.8) is a symmetric biquadratic relation between alc and blc. If 
blc is given, then it is a quadratic equation for alc, with discriminant 

This is a quadratic form in (blc)', and can be written as 

(1 - y 2b21~2) (1 - k$2b2/~2) , (10.4.11) 

where k, y depend only on A ,  y, being given by 

kZy4 = Y 2  

(1 + k2)y2 = 1 + y2 - ~ ' ( 1  + y)'. (10.4.12) 

We want to parametrize blc as a function of some variable u (say), so 
that the square root of (10.4.11) is meromorphic. As is shown in Section 
15.4, this can be done by taking 

blc = y-' sn iu , (10.4.13) 

where sn u is the Jacobian elliptic sn function of argument u and modulus 
k, and the factor i in the argument is introduced for later convenience. 
The square root of (10.4.11) is then cn iu dn iu, so the solution of (10.4.8) 
is 

a y[A(l + y) sn iu + y cn iu dn iu] - - - 
c y2 - y2 sn2 iu 

(10.4.14) 

This is a meromorphic function of u. It can be simplified by defining A. 
by 

k sn iA= - yly . (10.4.15) 



Then (10.4.12) and (10.4.9) give 

y=sniA,  y = - k s n 2 i A ,  (10.4.16) 

r = (1 + k sn2 iA)l(l - k sn2 iA) 

A = - cn iA dn iAl(1 - k sn2 iA) . (10.4.17) 

Using the elliptic function addition formula (15.4.21), (10.4.14) gives 

alc = sn i(A - u )  1 sn iA , (10.4.18) 

so from (10.4.9) and (10.4.16), 

dlc = - k sn iu sn i(A - u )  . (10.4.19) 

The function sn u is a generalization of the trigonometric sine function: 
from (15.1.4)-(15.1.6) it reduces to sin u when k = 0. Just as it was con- 
venient to use the hyperbolic sine function sinh u in Chapter 9,  so it is 
convenient here to use the function snh u, defined by 

snhu = - isniu = i sn( - iu) .  (10.4.20) 

It is a meromorphic function of u ,  real if u is real (and 0 < k < 1). 
Using this, from (10.4.13, 16, 18, 19) we have 

a : b : c : d = snh(A - u )  : snh u : (10.4.21) 
snh A : k snh A snh u snh(A - p )  . 

From (15.1.6) and (10.4.20), 

snh u = - i k - k~ ( iu ) lO( iu )  , (10.4.22) 

where the theta functions H(u) ,  O ( u )  are entire. Define v by 

u = +(A + u ) .  (10.4.23) 

Using (10.4.22) in (10.4.21), the O function denominators can be multiplied 
out, giving 

a = -ip O(iA) H[+i(A - u)]  O[ti(A + v ) ]  , 

b = -ip O(iA) O[.ti(A- v ) ]  H[+i(A+ v ) ]  , 
(10.4.24) 

c = -ip H(iA) O[f i(A - u ) ]  O[+i(A + v ) ]  , 

d = ip H(iA) H[ti(A - v ) ]  H[ti(A + v ) ]  , 

where p is some normalization factor. If p, A, u are real, then so are a ,  b ,  
c,  d .  
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This completes the generalization of steps (i), (ii), (iii) of Section 9.5: 
a ,  b, c, d are defined in terms of p, k, A, u by (10.4.24); from (10.4.17), 
I- and A depend only on k and A. 

Keep p, k and A fixed; regard the transfer matrix V, given by (9.6.1) and 
(10.2.3), as a function V(v) of v. Then 

for all complex numbers v, u'. From (10.4.24), a ,  b, c, dare entire functions 
of u: so therefore are all elements of V(v). 

If A, u are held fixed and k allowed to tend to zero, then snh u -, sinh u. 
From (10.4.21), d +  0 (relative to a ,  b, c), so we regain the six-vertex 
model of Chapters 8 and 9 (A, A, u and u having the same meaning as 
therein). In particular, (10.4.21) becomes (9.7.12), and (10.4.17) gives 
(9.2.4). 

Relation between u, u', u" 

The equations (10.4.1) are unaltered by interchanging the unprimed and 
double-primed variables. Thus (10.4.7) further implies that 

A = A ' = A "  r = r t = r .  (10.4.26) 

The weights a', b', c', d' [and a" ,  b" , c" , d"] can therefore also be put 
into the form (10.4.22), with the same values of k and A. The values of 
p, u and u will be different: let us call them p', u' and v' [p" , u" and v"]. 

The first of the equations (10.4.1) can be written 

c'(aaM - bb") = a'(ccl' - d d )  . (10.4.27) 

Substituting the expressions (10.4.19) and using the identity (15.4.23), this 
becomes 

sni(A- u - u") = sni(A- u ) .  (10.4.28a) 

Proceeding similarly [but using (15.4.24)], the fourth of the equations 
(10.4.1) also gives (10.4.27). The second and fifth give 

while the third and sixth give 

sn i(ul - u") = sn(iu) . (10.4.28~) 

The general solution of these equations (10.4.28) is 

U'  = u + U" + 4miI + 2nZ1 , (10.4.29) 
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where I ,  I' are the complete elliptic integrals defined in Chapter 15, and 
m, n are any integers. However, incrementing u' by 4iZ or 21' does not 
affect (10.4.19), so without loss of generality we can choose 

u' = u + u". (10.4.30) 

This is exactly the same as the six-vertex relation (9.7.13), so the 
eight-vertex operators Ui defined by (9.6.9), (10.2.3) and (10.4.22) also 
satisfy the star - triangle operator relation (9.7.14). i.e. 

Note that u" is just the difference of u' and u. I suspect that this is closely 
related to the 'transformation to a difference kernel' that occurs in the 
Bethe ansatz, as in equations (8.8.2)- (8.8.4) and (8.13.30)-(8.13.38). 
The elliptic function parametrization has been introduced here simply on 
the grounds of mathematical convenience, but suppose we had originally 
required that a, b, c, d be functions of some variable u (and a', b', c', d' 
the same functions of u': and a", b ,  c", d of u") so that A and r be 
constants and that u" be a function only of u' - u. We would then have 
been led inexorably from the star - triangle relations (10.4.1) to the elliptic 
function parametrization (10.4.21), just as in Section 8.13 we were led 
from (8.13.31) to (8.13.67) and (8.13.73). 

10.5 The Matrix Q(v) 

Pair Propagation through a Vertex 

Now we seek to generalize Section 9.8. The first ten equations generalize 
trivially (we still want Hi(a) to be upper-right triangular). The 'pair propa- 
gation' conditions (9.8.11) become (replacing the integer i by j )  

They are still homogeneous and linear in g,(+), g,(-), g,!(+), g/(-). 
Equating to zero the determinant of coefficients, and using (10.4.6) and 
(10.4.9), we obtain 

where r, is again given by (9.8.13). 
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This is a symmetric biquadratic relation between ri and r,+l. It involves 
a, b ,  c, d only via the 'constants' A and T. Further, it is exactly the same 
as (10.4.8) with a, b,  c replaced by r,+l, r,, yt, respectively. 

We can therefore apply the solution (10.4.21) of (10.4.8) to the relation 
(10.5.2). Replacing u by t, this gives (for a particular value of j) 

y-kri+ = snh(A - t )  Isnh A , (10.5.3) 
y-*rj = snh t Isnh A , 

i.e., using (10.4.16) and (10.4.20), 

ri = kt snh t, r,+l = -kt snh(t - A) . (10.5.4) 

From (15.2.5) and (10.4.20), r, is unchanged by replacing 6 by 2iZ - b,  
while ri+l becomes -k* snh(t + A). Thus if 

rj = kt snh t , (10.5.5) 

then two solutions of (10.5.2) are 

Since (10.5.2) is a quadratic equation for r,+l, these are all the solutions. 
Now consider these equations sequentially for j = 1 , . . . , N, determining 

t for each value. The choice of sign in (10.5.6) can be made independently 
for each j, so the most general solution for rl , . . . , r ~ + ~  is 

where 

s is an arbitrary constant and each q has value + 1. (These q , . . . , 
have no connection with the Ising spins of Section 10.3). The cyclic 
boundary condition r ~ + ~  = r~ is satisfied if N is even and 

(As in the six-vertex models, this condition can be relaxed for the special 
values (4imI + 2rZ')ln of A, where m, r, n are integers: it is then sufficient 
that q + . . . + ON be an integer multiple of n. Such cases are often of 
particular interest: the Ising model (ZC = 0) has A = fZ'.) 

Clearly this solution for rl , . . . , rN is similar to that of the six-vertex 
model in (9.8.15). If we set r = kt eS and let k + 0 while keeping r fixed, 
then (10.5.7) reduces to (9.8.15). 



Eliminating gj (+)  between the first and third of the equations (10.5.1), 
we obtain 

Using (10.4.21), (10.5.7), (10.5.8) and the identity (15.4.23), this becomes 

-- - ) - ( - )k* snh(sj + up)  . 
g,( + ) 

Taking the ratios of the first and second equations (10.5.1) now gives 
[again using (l5.4.23)] 

g;(-) = ( - ) j t l k ' snh[s ,  + q ( u  + A ) ] .  
gj( + 

We are still free to choose pi(+ ), g,(+ ) arbitrarily. An important 
property in Chapter 9 was that the elements of Q ( u )  were entire functions 
of v (or u ) .  In Section 9.8 this came about because each g j ( + )  and 
gj ( -  ) was entire. From (10.5.11) and (10.4.22), this can be ensured in this 
more general situation by choosing 

for then 

gj( - ) = ( - H[i(s, + q u ) ]  . (10.5.13b) 

Similarly, from (10.5.7) and (10.4.22), we can choose pi(+ ) so that 

Using (10.4.24), (10.4.23) and (15.4.25), the first of the equations 
(10.5.1) now gives 

g,!( + ) = p h(A - u )  @[isi + ioj(u + A ) ]  , (10.5.15a) 

so from (10.5.12), 

g ; ( - )  = ph(A - u ) ( -  ) l i ~ [ i s ,  + iu,(u + A)] , (10.5.15b) 

where the function h ( u )  is defined by 

The matrices Gj( 2 ) now contain non-zero entries dg,(T ) instead of the 
zeros in (9.8.4). Using (10.4.24), (10.5.13) and (15.4.25 or 26),  their 
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determinants are 

det Gi( + ) = p2h(u) h(A - u) @[is, + iq(u + A)] @[is, + iq(u - A)] 

det Gi( - ) = - p2h(u) h(A - u) H[is, + iq(u + A)] H[isi + iu,(u - A)] . 
(10.5.17) 

As in Chapter 9, we can calculateg,!'(cu) in (9.8.6) by taking determinants 
in (9.8.5). The determinants of Pi and Pi+l can again be ignored, since 
their contribution to g,!'(cu) cancels out of (9.8.7) (or we can require that 
det Pi = 1). Using (10.5.15) and (10.5.17), we are left with 

gj'( + ) = p h(u) @[isi + iuj(u - A)] 

gj'( - ) = p h(u) ( - ) j i~ [ i s ,  + iq(u - A)] . (10.5.18) 

Column Vectors y (u )  

The 2N-dimensional vector y has elements given by (9.8.2). Thus it is a 
direct product of the two-dimensional vectors gl , . . . , g~ : 

where 

i.e., using (10.4.23) and (10.5.13), 

Comparing (9.8.1) and (9.8.7), the vector y' (y") is also defined by 
(10.5.19), but with each gj replaced by& (g,!'). From (10.5.15) and (15.2.5), 
gj' can be obtained from gi by multiplying by ph(A - u) and incrementing 
u by A', where 

A'= A -  2iZ. (10.5.22) 

Regard y, defined by (10.5.19) and (10.5.21), as a function y(u) of u (k, 
A, s being kept constant). From (10.4.23), incrementing u by A' is equivalent 
to incrementing u by 2A1, so 

y' = {ph[B(A - ~ ) ] } ~ y ( u  + 2A'). (10.5.23a) 

Similarly, using (10.5.18), 
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It is obviously convenient to define a function 

@(u) = [ ~ h ( u / 2 ) ] ~ ;  (10.5.24) 

the equation (9.8.1) can now be written 

so we have generalized (9.8.24) to the eight-vertex model. Again there are 
many choices of y(v), corresponding to different choices of s, 
s , . . . , aNin (10.5.8), subject to (10.5.9). Let QR(u) be a 2N by 2N matrix 
whose columns are linear combinations (with coefficients that are inde- 
pendent of u) of such vectors y(u). Then, from (10.5.25), 

V(V) QR(v) = @(A - U) QR(U + 2A1) + @(A + U) QR(U - 2At). (10.5.26) 

Row Vectors yT( - v )  and Matrix QL(v) 

Equations (9.8.26)-(9.8.29) generalize to the eight-vertex model, the only 
explicit modification necessary being to change r in (9.8.29) to s. Lets; be 
defined by (10.5.8), with s, q , . . . , q-I replaced by s', ai , . . . , a,!-1. 
Using (10.5.19), (10.5.21) and the identity (15.4.27), we find that 

F(u) = - H[$(I' + u)] H[ti(It - u)] , (10.5.28) 

G(u) = H1[ti(I1 + u)] Hl[$i(I1 - u)] . 
We can now use the same inductive argument as that following (9.8.31) 

to show that the RHS of (10.5.27) is a symmetric function of u and u. (We 
need only (10.5.27) and (10.5.8): the definitions (10.5.28) are irrelevant. 
It is necessary to split (10.5.27) into two factors, one containing only F 
functions, the other containing only G functions. The inductive argument 
applies to each, but one appeals initially to the case q = 4 for the F-factor, 
q = - 4 for the G-factor. ) 

The relation (9.8.33) therefore also generalizes to the eight-vertex model, 
i.e. 

Q L ( ~ )  QR(u) = QL(v) QR(u), (10.5.29) 
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QR(v) a Non-Singular Matrix 

Each vector y(u) is given by (10.5.19), (10.5.21), (10.5.8) and (10.5.9). 
There are many such vectors, since s can be any complex number, and 
q , . . . , UN any set of integers k1 satisfying (10.5.9). We want the set of 
all such vectors to span all 2N-dimensional space (except possibly for special 
values of v). 

As in Chapter 9, I am not able to give a full proof of this, but it is almost 
certainly so (it is for N = 2 and 4). 

It would not be generally true only if all determinants of all possible 
matrices QR(v) vanished identically for all k, A, v. If this were so, they 
would vanish for k = 0, which is the six-vertex model: in this case we know 
that the eigenvalues of the transfer matrix are correctly given by assuming 
QR(v) to be non-singular, and we have strong direct evidence that it is. 

Let us therefore assume that QR(v) is non-singular for some value vo. 
Defining Q(v) by (9.8.38), i.e. 

the relations (9.8.39) - (9.8.42) follow, in particular 

for all complex numbers v, u. 

Commutation Relations Involving S and R 

From (15.2.3a) and (15.2.4), the theta functions O(u), H(u) satisfy 

The effect of incrementing u by 4iI in (10.5.21) is therefore to negate the 
function H. 

Define the diagonal operator S by (9.8.43): it has entries +1 (-1) for 
row-states with an even (odd) number of down arrows. From (10.5.19) 
and (10.5.21), pre-multiplying y by S is equivalent to negating every H,  
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This is the generalization to the eight-vertex model of (9.8.44). The equa- 
tions (9.8.45) - (9.8.47) can at once be similarly generalized (merely replace 
n by 21). In particular, they give 

From (15.2.3b) and (15.2.4), the theta functions H(u), O(u) satisfy the 
relations 

H(u + iI') = iq-? exp(-$mlI) O(u) , (10.5.37) 
O(u + il ') = iq-? exp(-linull) H(u) . 

Define a 2N by 2N matrix R by 

(Multiplication by R has the effect of reversing all arrows.) Then from 
(10.5.19) and (10.5.21) it follows that 

From (10.5.8) and (10.5.9), 

This relation is independent of s and q , . . . , ON, SO is satisfied by all 
columns of QR(u). Using also (10.5.30), it can readily be verified that 

QR(U + 21') = q-N14exp(NmW RS Q R ( ~ )  , (10.5.42) 

QL(u + 21') = q-N'4 exp(Nm/41) QL(u) RS , 

so, from (9.8.38) and (9.8.39), 
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From (10.2.4), w(p, a l p ,  v) is unchanged by negating p, a, P, v. From 
(9.6.1) and (10.5.38) it follows that 

The matrices Q(u), Q(u), V(u), V(u), R, S therefore commute, for all 
complex numbers u and u. 

From (9.6.1), (10.2.3) and (10.4.24), all elements of V(u) are entire 
functions of v. From (10.5.19) and (10.5.21), so are all elements of Q(v). 

This completes the generalization to the eight-vertex model of the six- 
vertex model properties (i) - (vi) given in Section 9.5. The derivation has 
closely followed that given in Sections 9.6 - 9.8 for the six-vertex case. 

10.6 Equations for the Eigenvalues of V(v) 

The vital results of the previous two sections are (10.4.25), (10.5.24), 
(10.5.32), (10.5.33), (10.5.36) and (10.5.43), together with the fact that 
all elements of V(u) and Q(u) are entire functions of u .  

We now generalize the 'sufficiency' argument of Section 9.5. Since all 
matrices commute, there exists a matrix P (independent of u) such that 
Vd(u), Qd(u) in (9.5.1) are diagonal matrices. Equation (10.5.23) gives 
(9.4.3). Let A(u) be a particular eigenvalue of V(u), and q(u) the corre- 
sponding eigenvalue of Q(u). (This function q(u) is not to be confused 
with the nome q of the elliptic functions.) Then the corresponding entry 
in the matrix equation (9.4.3) is the scalar equation (9.3.6), i.e. ' 

but now @(v) is defined by (10.5.24), A' by (10.5.22). 
Since all elements of V(u), Q(u) are entire, so are A(u), q(u). Let 

r (=  +-I) be the eigenvalue of R corresponding to A(u), q(u); and 
s(= k l )  the eigenvalue of S. Then from (10.5.36a) and (10.5.43a), 

Integrating q1(u)lq(u) round a period rectangle of width 21' and height 
41, then using Cauchy's integral formula (15.3.4), it is readily found that 
q(u) has 4N zeros per period rectangle. Set 

and let vl , . . . , u, be these zeros. 
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Consider the function 

where h(u) is defined by (10.5.16). From (10.6.2), (15.2.3) and (15.2.4), 

f(v + 4iZ) = (-)"s f(v) , (10.6.5) 
f(u + 21') = (-)"rs exp[n(vl + . . . + vn)/211 f(u) . 

From (10.6.4), f(u) is entire and non-zero. From (10.6.5), f (v)lf(v) is 
therefore entire and doubly-periodic. From theorem 15a, it is therefore a 
constant, so f(v) is of the form 

f(v) = constant x exp(zv) . (10.6.6) 

Substituting this into (10.6.5) gives 

where p, p' are integers. 
Combining (10.6.4) and (10.6.6), to within a multiplicative factor that 

cancels out of all our subsequent calculations: 

This is the eight-vertex generalization of (9.3.5). The function h(u) has 
a simple zero at u = 0, so setting v = v, in (10.6.1) causes the LHS to 
vanish, leaving 

do - v,) = - s(v, - 212') j =  1 ,  . . .  , n ,  (10.6.9) 
@(A + v,) q(u, + 2A') ' 

or, using (10.5.24) and (10.6.8), 

f o r j = l ,  . . . ,  n. 
These are the eight-vertex generalizations of (8.4.12). They determine 

vl , . . . , v,; q(u) is then given by (10.6.83 and A(v) by (10.6.1). There are 
many solutions of (10.6.10), corresponding to the different eigenvalues. 



224 10 SQUARE LATTICE EIGHT-VERTEX MODEL 

If 01,. . . , v, are distinct, then (10.6.10) ensures that the ratio of the 
RHS of (10.6.1) to q(u) is an entire function, so that A(u) is entire, as 
required. However, if any two of v, , . . . , u, are equal, then (10.6.10) is 
not a sufficient condition for A(u) to be entire: it must be supplemented 
by further equations obtained by differentiating (10.6.1) with respect to 
u and then setting u equal to the common u, value. 

For this reason, solutions of (10.6.10) are in general spurious if any two 
of vl , . . . , v, are equal. (Note that in Chapter 8 we also rejected such 
solutions, though in that case it was because they gave the eigenvector to 
be zero.) 

10.7 Maximum Eigenvalue: Location of ul , . . . , v, 
Principal Regime 

Consider the case when 

so, from (10.4.23), 
O < u < A  (10.7. lb)  

From (10.4.21), the weights a ,  b, c, d all have the same sign; and from 
(10.4.24) they are all positive, so the restrictions (10.7.la) are physically 
allowable. 

From (10.4.17) and (15.4.4) 

so, since sn2 iA is negative real, 
A < - 1 .  

From (10.4.6) this implies that 

(a + b)' < (C - d)' 
b. .  

The ratio dlc is given by (10.4.21) to be k snh u snh(A - u); this has a 
maximum when u = $A, and from (15.4%) this maximum must be less 
than one, so d < c. Taking positive square roots of (10.7.4) and nodng 
that each RHS in (10.4.24) is positive, it follows that 

c > a + b + d ,  a > O ,  b>O, d > O .  (10.7.5) 

The restrictions (10.7.1) therefore imply (10.7.5); conversely, if a, b, c, 
d satisfy (10.7.5), then there are unique real values of k, A, v, p, u satisfying 
(10.4.21), (10.4.24) and (10.7.1). 



The inequality (10.7.5) specifies a domain, or regime, in (a , b , c , d) 
space. This is the generalization to the eight-vertex model of the six-vertex 
anti-ferroelectric regime (regime IV in Fig. 8.5). The dominant Boltzmann 
weight is c, and the ground-state energy configurations of arrows on the 
lattice are either that shown in Fig. 8.3, or the configuration obtained from 
it by reversing all arrows. By extending the six-vertex notation to the 
eight-vertex, we are led automatically to regard (10.7.5) as the archetypal 
regime. 

This has its disadvantages: if we regard the eight-vertex model as a 
generalization of the Ising model, as in Section 10.3, then it is natural to 
focus attention on the ferromagnetic regime, when J and J' are large. The 
dominant Boltzmann weight is then a, rather than c. Fortunately this can 
be converted to the case (10.7.5) by using the symmetry relation (10.2.14). 

In fact, it will be shown in Section 10.11 that any set of values of a, b, 
c, d can be mapped into (10.7.5) (or its boundaries: since most properties 
are continuous these present no problem) by using the symmetry relations 
(10.2.11)- (10.2.17). They can equally well be all mapped into other 
regimes, notably a > b + c + d,  but from now on I shall single out the 
regime (10.7.5) (with a , b , c , d all positive) and call it the principal regime. 

Low-Temperature Limit 

The equations (10.6.10) are quite complicated and for finite n have not in 
general been solved. I find it helpful to first look at the following simple 
limiting case: it gives some useful insights into the large-n behaviour. 

Suppose ~5 < Q ,  ~ 3 ,  E, and T is small. Then from (10.1.2) and 
(10.2.1) 

c + a , b , d ,  (10.7.6) 

so the weights are certainly in the principal regime. It follows that k 4 1; 
while I t ,  A, u are large, their ratios being of order unity. From (15.1.4) the 
nome q is small, so from (15.1.5) 

O(iu) = 1, H(iu) - iqa exp(m121) , (10.7.7) 

provided 0 < Re(u1l') < 1. Equation (10.4.24) therefore gives 

where 

q = exp(- nItlI), x = exp(-niV2I) . (10.7.9) 
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Suppose vl , . . ., vn are all of order unity (or less). Then in this limit 
(10.6.10) becomes, using (10.6.3), 

where 

a n d j = l , .  . . ,n .  
Equation (10.7.10) is a polynomial equation for z, of degree n, so has 

n distinct roots. We want ul , . . . , vn to be distinct, so zl , . . . , z, must be 
the n roots of (10.7.10). It follows that 

for all complex numbers z. Setting z = 0 and taking square roots gives 

while (10.6.7b) and (10.7.11) give 

From (10.6.7a), t is real; A' is given by (10.5.22), where A # Z'. Since 
r = + 1 and s = + 1, it follows that 

The asymptotic formulae (10.7.7) fail if Re(u) becomes zero or negative: 
in this case we must use 

for IRe(u/I1) 1 < 1. Then (10.6.8) and (10.5.16) give 

for I Re(vlZ1) 1 < 2. Setting 

this can be written 

n 

q(u) = (-)nqn14~-n12(z1. . . zn)-'r]: (z - zj) . (10.7.19) 
j= 1 

Using (10.7.12) and (10.7.13), this can in turn be written 



Now determine the asymptotic form of (10.6.1) in the low-temperature 
limit. If JRe(u)J G min(A ,21' - 2A), we obtain [using (10.5.24), (10.6.8), 
(lO.5.22), (10.5.16) and (10.7.7)] 

A ( U ) ~ ( U ) = P ~ ~ ~ ' ~ X - ~ ~ " ' ~ Z - " ' ~ ( Z ~  . . .  z , ) ' ( R ~ + R ~ ) ,  (10.7.21) 

where 

Ri = (-z),, R2 = (zl . . . zJ1. (10.7.22) 

The first term on the RHS of (10.6.1) gives the R1 term in (10.7.21), the 
second gives the R2 term. However, from (10.7.20), q(v) also contains a 
factor Rl + R2, so this cancels out of (10.7.21), leaving 

so, from (10.7.8) and (10.7.15), 

in the low-temperature limit. 
This is indeed the correct maximum transfer matrix eigenvalue in this 

limit. In fact there are two such eigenvalues, corresponding to r = ? 1. For 
r = + 1 (- 1) the corresponding eigenvector is symmetric (anti-symmetric) 
with respect to reversing all arrows, and the eigenvalue is positive (nega- 
tive). The two eigenvalues are asymptotically degenerate in that their 
numerical difference vanishes exponentially as N becomes large. We have 
therefore located ul , . . . , u, for these eigenvalues, in this low temperature 
limit. From (10.7.15), (10.7.10) and (10.7.11), their values are 

In Section 8.8 and 8.9 we remarked that the free energy is analytic at 
w (or v) = 0, even though the working for w positive differs from the 
working for w negative. It is easy to see how this comes about in the above 
equations: for u positive, R1 is exponentially smaller than R2 in the limit 
n -* a, so the first term on the RHS of (10.6.1) dominates. If u is negative, 
the situation is reversed. Thus when taking the thermodynamic limit in 
(10.6.1), or similarly in (8.4.4), the cases u > 0 and u < 0 must be discussed 
separately. 

However, since the factor R1 + R2 is contained in q(u), it cancels out of 
(10.7.21), i.e. of (10.6.1), so the end result is independent of whether it 
is R1 or R2 that dominates. Of course we have as yet only considered the 
low-temperature limit, but this argument generalizes to all temperatures. 
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10.8 Calculation of the Free Energy 

Let us return to non-zero temperatures, i.e. to 1', A, u finite, and consider 
how to solve (10.6.10) in the limit of n large. 

These equations are the eight-vertex generalizations of (8.9.12), with 
u, = - iq.  In Section 8.9 we showed that we expected al , . . . , a, to be 
real and distributed over the interval ( -n ,  n), i.e. over a semi-period of 
the relevant function sinh ia12. In the eight-vertex case the function is 
h(id2), and the corresponding interval is (-21,21). In the low-temperature 
limit we have just observed in (10.7.25) that the iul , . . . , iu, are indeed 
distributed over this interval. 

One obvious way to solve (10.6.10) is therefore to assume that in the 
limit n+ the ul , . . . , un are densely distributed along the line interval 
(-2iI, 2iI), and to proceed as in Sections 8.7 - 8.9, thereby obtaining from 
(10.6.10) a linear integral equation for the distribution function of 
U1, . . . , U". 

Here I shall use another method: it is a refinement of the method used 
in Baxter (1972b) and has the advantage that it discriminates between the 
two numerically largest eigenvalues, so can be used to obtain the interfacial 
tension (Baxter, 1973b). 

Assumed Properties 

First note that (10.6.7) and (10.7.11) determine z and z l .  . . z,  to within 
choices of the integers r, s, p ,  p'. Assuming that there are no discontinuous 
changes within the principal regime, these integers must keep their limiting 
low-density values. Hence (10.7.15) must be exactly correct throughout 
the principal regime. 

Set 

This is the ratio of the first term on the RHS of (10.6.1) to the second. In 
the low-temperature limit this is R11R2, where R1 and R2 are given by 
(10.7.22), so it is then true that 

For Re(u) > 0, this vanishes exponentially as n -, w ; for Re(u) < 0 it grows 
exponentially. 

Also, from (10.7.23), A(u) is constant (for finite u) in the low-temper- 
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ature limit. It therefore seems reasonable to assume (throughout the 
principal regime) that: 

(i) there exists a positive real number 6 such that ln[l + p(u)] is analytic 
for 0 < Re(u) < 6; and ln[l + llp(u)] is analytic for 
0 > Re(u) > - 6, 

(ii) ul  , . . . , u, are pure imaginary, 
(iii) A(u) is analytic and non-zero in a vertical strip containing the 

imaginary axis. 

Wiener - Hopf Factorization 

I shall now show that (10.6.1) does admit solutions with these properties. 
First use (i) to make a Wiener - Hopf factorization (Paley and Wiener, 
1934; Noble, 1958) of 1 + p(u): define X+(u), X-(u) by 

1 ff+2iI 

ln x+(u) = - j" In[' +p(u ' ) l  du', Re(v) > a ,  (10.8.3a) 
4iI exp[n(u - u')/2I] - 1 

1nX-(v) = -- 
I 

ln[' + P ( ~ ' ) ~  du', Re(u) <a ' ,  (10.8.3b) 
4iI a. -zil exp[n(u - v1)/21] - 1 

where 0 < a < d < 6. Adding these equations and using the fact that p(u) 
is periodic of period 4m4 the RHS can be written as an integral round the 
rectangle d - 2iI, a' + 2iI, a + 2iI, a - 2iI. Cauchy's residue theorem 
then gives 

This result can be used to define X+(u) for Re(u) G a ,  and X-(u) for 
Re(u) 3 d. 

The equation (10.6.1) can now be written as 

From (10.8.3), X+(v) is analytic and non-zero (ANZ) for Re(u) > 0, 
while X-(u) is ANZ for Re(u) < 6. The other terms on the RHS of (10.8.5) 
can be factored into products of similarly analytic functions. To do this, 
note from (10.5.16) and (15.1.5) that 
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where 

Substituting the expression (10.8.6) for h(u) into (10.5.24) and (10.6.8) 
(with z = 0) gives 

@(v) = pNy exp(Nnv/4I)A(u) A(21' - u) , (10.8.8) 

where 
m 

Note that A(v) is a known function; while ul , . . . , u,, and hence F(v) 
and G(v) are unknown. The object of the following manipulations is to 
obtain useful expressions for F(u) and G(v). 

Substitute the results (10.8.10), (10.8.11) into (10.8.5), using (10.8.9b) 
for q(v - 2A') and (10.8.9a) for the denominator q(u). This gives, using 
(10.5.22), (10.7.9) and (10.7.15), 

where 

Let 

using (10.7. la) ,  (10.8. lo), (10.8.11) and assumption (ii), it is readily 
observed from (10.8.13) that L+(u) is ANZ for Re(u) > 0, while L-(u) 
is ANZ for Re(u) < 6'. However, this last property, together with (10.8.12) 
and assumption (iii), implies that L+(u) is ANZ for Re(u) 3 0. Altogether 
we finally have 

L+(u) is ANZ for Re(v) 3 0 ,  
(10.8.15) 

L-(u) is ANZ for Re(v) < 6' . 



Now repeat the working, but start by Wiener-Hopf factorizing 
1 + [llp(v)]: 

-a+2i1 ln[l + llp(ut)] 
In Y+(v) = - 

exp[n(u - u')/21] - 1 
du' , (10.8.16) 

taking the upper choice of signs if Re(u) > - a ,  the lower if Re(u) < 
- a ,  and choosing 0 < a < 6. Then 

Y+(v) is ANZ for Re(v) > - 6, Y-(u) is ANZ for Re(v) < 0. Equation 
(10.6.1) becomes 

A(U) = #(A - u) q(u + 2A') Y+(u) Y-(u)lq(u) . (10.8.18) 

Using (10.8.8), (10.8.9a), (10.8.9b) for #(A - u), q(v + 2A1), q(v), respec- 
tively, this gives 

where 

M+(u) = A(21' - A + u) F(u + 2A) Y+(v)lF(u + 21') , 
(10.8.20) 

M-(u) = A(A - v) G(u - 21' + 2A) Y-(u)lG(u) . 

Equations for F(v), G(v), p(v) 

From (10.8.20), M+(v) is ANZ for Re(u) > - 8 ,  while M-(u) is ANZ for 
Re(v) < 0. Using (10.8.19) and property (iii), it follows that 

M+(u) is ANZ for Re(u) > 6' , (10.8.21) 
M-(v) is ANZ for Re(u) s 0 .  

Comparing (10.8.12) and (10.8.19), it is evident that 

L+(u)lM+(u) = M-(u)IL-(u). (10.8.22) 

The LHS of this equation is ANZ for Re(u) 2 0, periodic of period 4i1, 
and + 1 as Re(v) + + (this last property follows from the definitions). 
The RHS is ANZ for Re(u) < 0, periodic of period 4iZ, and + constant 
as Re(v)+ - a. Altogether therefore, both sides are entire (and non- 
zero) and bounded. From Liouville's theorem they ar3 therefore constant. 
This constant must be one, so 
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Using (10.8.13) and (10.8.20), the first of these equations is 

where 

S+(v) = F(v) F(u + 2A)lA(u + A) . (10.8.25) 

Regard X,(u), Y,(u) as known functions. Then equation (10.8.24) can be 
regarded as a recursion relation for S+(u): solving it gives 

S+(v) = n X+[u + 2m(11 - A)]lY+[u + 2m(Ir - A)] , (10.8.26) 
m=O 

and (10.8.25) can now be solved for F(u), giving 

(From their definitions, X+(u), Y+(v), A(v) all tend exponentially to 1 as 
Re(u) + + w ,  so these infinite products converge.) 

Similarly, the second of the equations (10.8.23) gives 

where 

S-(v) = G(u) G(u - 2A)IA(A - v) . (10.8.29) 

Since G(u), A( - u) tend exponentially to one as Re(v) + - m, so do 
S-(v) and Y-(u)lX-(u). Thus 

m 

S-(v) = n Y-[u - 2m(11 - A)]lX-[u - 2m(11 - A)] , (10.8.30) 
m=O 

The definition (10.8.1) of p(u) can be expressed in terms of A(u), F(u), 
G(v) by using (10.8.8) and (10.8.9). Use (10.8.9a) for q(u + 2A1), (10.8.9b) 
for q(u - 2A1), and (10.7.16). This gives 
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Iterative Calculation of p(v) 

These results are exact, even for finite n, provided the assumptions (i)- 
(iii) are satisfied. A possible iterative method of solution, starting with 
some initial guess at p(u) (satisfying assumption (i)) is: calculate X,(u), 
Y,(u) from (10.8.3) and (10.8.16); calculate S+(u) from (10.8.26) and 
(10.8.30); calculate F(u), G(u) from (10.8.27) and (10.8.31); calculate 
p(u) from (10.8.32) and repeat. 

Provided assumption (i) is satisfied, this procedure gives F(u) to be ANZ 
for Re(v) > 0, and G(v) for Re(u) < 0. From (10.8.11), vl , . . . , u, can 
therefore only be pure imaginary, so (ii) is satisfied. Also, from (10.8.12) 
or (10.8.19), A(v) is analytic for - 6' < Re(u) < 6', so (iii) is satisfied. 

Now consider the case when n is large. Suppose, as is suggested by 
(10.8.2), that p(u) vanishes exponentially with n for 0 < Re(u) < 6; and 
grows exponentially for 0 > Re(u) > - 6. Then from (10.8.3) and 
(lO.8.16), X+(u), X-(v), Y+(u), Y-(u) are exponentially close to one, 
provided that Re(v) >O, Re(u) < 6, Re(u) > - 6, Re(u) < 0, respect- 
ively. 

For Re(v) > 0, each function S+(u) in (10.8.27) is therefore exponentially 
close to one; for Re(u) < 0 so is each function S-(u) in (10.8.31). From 
(10.8.32) it follows that for (Re(v)l < min(2A, 21' - 2A) 

x (1 + (terms that vanish exponentially as n + m)) . (10.8.33) 

Now use the definition (10.8.10) of A(v); together with (10.7.9) this 
implies that 

A(u)lA(v + 21') = [I - exp( - nv/21)]~. (10.8.34) 

A quite remarkable feature of (10.8.33) is that A(u) only occurs in the 
combination (10.8.34), so 

for IRe(u)l < min(2A, 21' - 2A), where x, z are defined by (10.7.9) and 
(10.7.19), and the exponentially small corrections have been neglected. 
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The nome q has therefore disappeared from this expression. On the 
other hand, comparing (10.8.34) with (15.4.13), we see that p(u) is related 
to the elliptic functions of nome x2 or x. In fact, since am(u) is defined by 
(15.4.13) with q replaced by q2, 

p(v) = r ( - )" exp[- i~ am(i6, k)] , (10.8.36) 

where k is the elliptic modulus corresponding to the nome 

@ = x ,  (10.8.37) 

and 

611 = UI(~Z)  . (10.8.38) 

The function exp[-i ani(i6, k)] has modulus less than one for 0 < 
Re(u) < 2A, and greater than one for 0 > Re(u) > -2A. Also, it is a 
meromorphic function of v. The assumption (i) is therefore satisfied by 
(10.8.36) with 0 < 6 < min(2A, 21' - 2A); so therefore are (ii) and (iii). 
Further, it is also true that this function p(v) vanishes exponentially as 
n +  a, provided 0 < Re(v) < 6; it grows exponentially if 0 > Re(v) > 
- 6. 

If we now substitute this expression for p(v) back into (10.8.3) and 
(10.8.16) and continue the iterative procedure, we should obtain the 
exponentially small corrections to (10.8.36), then the corrections to the 
corrections, and so on. I have not done so, but expect that it should be 
possible to prove, with full mathematical rigor, that this procedure con- 
verges to a solution of (10.6.1) satisfying assumptions (i) - (iii), and with 
(10.8.36) as the exact large-N solution for p(u). 

Note that vl , . . . , u, are the zeros of 1 + p(u), lying on the imaginary 
axis. Like p(u) therefore, for large N the values of ullZ, . . . , v,lZ depend 
only on x: not on q (or 2). I find this intriguing: I have no simple explanation 
as to why it should be so. 

The Functions p(v), A(v) in the Thermodynamic Limit 

The large-n formulae (10.8.35) and (10.8.36) give p(u) only when 
IRe(v) I < min(2A, 21' - 2A). To obtain p(v) for other values of v, note 
that (10.8.27) gives F(v) for all v, but only when Re(v) > 0 do the functions 
S+ give a factor which is exponentially close to unity for large n. Thus 
(10.8.27) is 'useful' when Re(v) > 0, since to leading order in a large-n 
expansion the unknown functions X+(v), Y+(v), S+(v) can then be replaced 
by unity. Similarly, the expression (10.8.31) for G(v) is useful when 
Re(v) < 0. 
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Using the second periodicity relation in (10.6.2), the function q(u), for 
general values of v, can be written as proportional to q(u*), where 0 < 
Re(u*) < 21'. This function q(u*) can then be factorized by (10.8.9a), 
giving an expression for q(v) involving F(u) only for Re(u) > 0, and G(v) 
only for Re(v) < 0. 

Fig. 10.5. Regions of applicability of the forms a, b ,  c of equation (10.8.39). Within 
the broken line p(u)  is exponentially small for large n. 

Doing this in (10.8.1), using (10.8.27) and (10.8.31), we obtain (for n 
large) 

P(V) = P(O)(~) for (Re(u) I < min(2A, 21' - 2A) , (10.8.39a) 

P(U) = 1 for 2A < Re(u) < 21' - 2A , (10.8.39b) 

p(v) = P(0)(v)P(O)(u - 21') for 21' - 212 < Re(u) < 2A , (10.8.39~) 

where p(0)(v) is the function on the RHS of (10.8.35) and (10.8.36). 
Together with the periodicity relations [a consequence of (10.6.2), 

(10.5.24) and (10.8.1)] 

these equations define p(u) for general values of v. The regions of appl- 
icability of the three formulae (10.8.39) are shown in Fig. 10.5. Also shown 
is a broken line marking the boundary of the region in which p(u) is 
exponentially small when N is large. From this it is apparent that in 
assumption (i) of this section the maximum value of 6 is 

6 = min(2A, Z'). (10.8.41) 

Now calculate L-(u) from (lO.8.13), M+(v) from (lO.8.20), and calculate 
A(v) from (10.8.12), using (10.8.23) to replace L+ by M+. (This route 
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gives an expression which is manifestly analytic and non-zero for -6' < 
Re(v) < 8 . )  Neglecting exponentially small corrections, the result is 

(10.8.42) 
provided I Re(u) 1 < 6. 

We have solved the functional equation (10.6.1) for the functions q(v), 
A(u). This is equivalent to solving (10.6.1) for UI , . . . , u,: indeed 
v1 , . . . , U, are the zeros of 1 + p(v), so can be obtained from (10.8.35). 

These equations have many solutions, corresponding to the 2N different 
eigenvalues A(v) of the transfer matrix V(u). In fact we have obtained 
just two such solutions, i.e. eigenvalues: one with r = + 1  (arrow reversal 
symmetry), the other with r = -1 (anti-symmetry). From (10.8.42) they 
are equal in magnitude and opposite in sign (to within corrections that 
vanish exponentially as n+ m). 

In the low temperature limit we have verified that these are the two 
numerically largest eigenvalues. From the Perron-Frobenius theorem (Fro- 
benius, 1908), a matrix with positive entries has a unique maximum eigen- 
value. It follows that these are the two numerically largest eigenvalues 
throughout the principal regime (10.7.1), within which the Boltzmann 
weights a ,  b, c ,  d are positive and our analysis is valid. 

The result (10.8.42) can of course be analytically continued throughout 
the complex v-plane. Indeed, provided I Re(v) ( < 6, it has a direct meaning: 
A(u) is the eigenvalue associated with the eigenvector which is maximal 
in the principal regime (the eigenvector is independent of v). In particular, 
this analytic continuation satisfies 

A(u) A(2A - u) = @(A + v) @(3A - u) , (10.8.43) 

a relation to which I shall return in Chapter 13. 

Free Energy 

Taking logarithms of both sides of (10.8.42), using (10.8.10), the RHS 
becomes a double sum of terms like ln(1 - qaxbz"), where a and b are 
integers. Taylor expanding each such logarithm in powers of qaxbz", the 
summations can be performed term by term, giving 
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(10.8.44) 
Also, from (10.4.24), (10.8.7) and (15. I S ) ,  

As usual [equations (1.7.6) and (8.2.4)], the free energy f per site is 
related to the maximum eigenvalue A,,, by 

-flkBT = lim N-' In A,,, , (10.8.46) 
N-. m 

N being the number of columns of the lattice. 
From the Perron-Frobenius theorem (Frobenius, 1908), the maximum 

eigenvalue must have r = + l .  Thus A,,, is the A(u) given by (10.8.44), 
with r = + 1. Eliminating A(u) and pylx between these last three equations 
leaves 

X-m(Xh - qm)2 (Xm + X-m - Zm - Z-m) 
-flkBT = lnc + z 

m = l  m(1- qh) (1 + xh) 
(10.8.47) 

Alternatively, using (lO.4.24), (10.8.7) and (l5.4.27), one can establish 
that 

X2m + pX-h - q d 2  (xm + X-m - Zm - Z-m) 
ln(c + d )  = ln(py/x) - 2 

4 1  - qm) m = l  
7 

(10.8.48) 
and hence that 

10.9 The Ising Case 

It was shown in Section 10.3 that the eight-vertex model factors into two 
identical and independent Ising models when S' = 0. The interaction coef- 
ficients are termed K, L in Chapter 7; JlkBT, J'/kBT in this chapter. 
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Let kI, ul, qz, . . . be the variables k, u, q, . . . of Chapter 7. Then from 
(7.6.1) 

k;' = sinh(W/k~T) sinh(U1lk~T). (10.9.1) 

Expanding the RHS as sums of exponentials and using (10.3.9), (10.3.10) 
and (10.4.6) gives 

k;' = (a2 + b2 - c2 - d2)/4ab = A . (10.9.2) 

The ferromagnetic ordered state of the Ising model (J > 0 , J' > 0 , 
kz< 1) therefore lies in the regime A > 1, a > b + c + d of the eight- 
vertex model. 

This regime can be mapped into the principal regime (10.7.5) by using 
the symmetry relation (10.2.14), i.e. by interchanging a with c, and b with 
d. 

Do this, and then define p, k, A, u by (10.4.24), or (10.4.21). We obtain 

snh A = krf , (10.9.3) 

kt snh u = exp(-U1/kBT) , (10.9.4) 

and, from (10.9.2) and (10.4.17), noting that A is negated by interchanging 
a with c and b with d: 

k;' = tcniAdni3L. (10.9.5) 

Using (15.4.32), it follows from (10.9.3) that 

so il is exactly in the middle of the interval (0 ,  I t )  permitted by (10.7.1). 
From (10.7.9), 

q = x 4 .  (10.9.7) 

Also, from (15.4.32) and (10.9.5), 

This relation between elliptic moduli is that of the Landen transformation 
(Section 15.6). If ql is the nome corresponding to k ~ ,  then from (15.6.2) 
and (10.9.7), 

q1= qt = x2. (10.9.9) 

From (7.10.50), using (15.1.4), the Ising model spontaneous magnet- 
ization can therefore be written as 
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Also, using the transformation (15.6.4) in (10.9.4), comparing the result 
with (7.8.5) gives 

u l= (1 + k)u. (10.9.11) 

With these equivalences, it can be verified directly that (10.8.47) does 
indeed become the previous Ising model result (7.9.16) when J" = 0. 

10.10 Other Thermodynamic Properties 

Interfacial Tension 

In the principal regime the eight-vertex model has long range anti-ferro- 
electric order. The predominant pattern is either that of Fig. 8.3, or that 
obtained therefrom by reversing all arrows. 

The interfacial tension between domains of these two types can be 
obtained in the same way as in Section 7.10. If &, Al are the two 
numerically largest eigenvalues, they are asymptotically degenerate in the 
sense that 

A1/Ao = - 1 + 6 [exp(- Nslk~T)] , (10.10.1) 

where s is the interfacial tension. 
These eigenvalues Ao, A1 are the two eigenvalues discussed in the 

previous section, with r = + 1, - 1, respectively. We observed there that 
for large N they were equal in magnitude and opposite in sign. To obtain 
s we must keep some of the exponentially small corrections that we 
neglected in the previous section. 

First re-derive (10.8.42), keeping all the X,(u), Y*(V) contributions, 
and using (10.8.3) and (10.8.16). Let A(')(v) be the function on the RHS 
of (10.8.42). Then it is found that, for JRe(v)\ < a, 

- n+ 2il 
ln[l + llp(vl)] D(u - v') dv' , (10.10.2) 

where if z, x are defined by (10.7.18) and (10.7.9), 

This function D(v) satisfies the relations 
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in fact 

where dn(u , k) is the elliptic function defined in (15.1.6), and k, 0 are 
defined by (10.8.37) and (10.8.38): again we see the occurrence of elliptic 
functions with nome x, rather than q. 

Equation (10.10.2) is exact, even for finite n. The leading corrections 
(for large n)  to A(v) can be obtained by substituting into (10.10.2) the 
large-n expressions (10.8.39) for p(v). 

Provided a < min(2A ,211 - 2A), these are the expressions given in 
(10.8.35) and (10.8.36). The function p(v) then has saddle points at u = 
2iI 2 A, i.e. z = -x". Taking a = A in (10.10.2), integrating by steepest 
descents therefore gives 

Setting z = -x in (10.8.35): 

where 

[This quantity kl is the elliptic modulus with nome x2. It is related to & by 
k =2kil(l + kl) . ] 

For r = + 1, A(v) in (10.10.6) is At,; for r = - 1 it is Al. From (10.8.42), 
A(')(v) is the same for both cases except for a change in sign. Taking the 
difference, using (10.lO.7), therefore gives 

The two maximum eigenvalues are therefore asymptotically degenerate: 
they satisfy (10.10.1), the interfacial tension s being given by 

This argument fails if A > 21'13, since thenp(ul) in (10.10.2) is not given 
by (10.8.35) when a= A. Even so, (10.10.10) remains correct, as is shown 
in Appendix D of Baxter (1973d). 

When k +  0, then q +  0, I-* d 2  and snh u-, sinh u. Using (10.4.23), 
we see that the relation (10.4.21) becomes the same as (8.9.7), with d = 

0. Thus the eight-vertex model reduces to the six-vertex model, the principal 
regime (10.7.5) becomes the regime IV of Section 8.10, and A, v then have 
the same meaning as in Section 8.10. 
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The interfacial tension of the six-vertex model is therefore given by 
(10.10.10) and (10.10.8), in the limit q +  0. However, these equations are 
ipdependent of q, so they already give the result (8.10.3) quoted above. 
The definition (10.7.9) of x reduces to (8.10.2). 

Correlation Length 

In addition to the largest two eigenvalues A(u) of the transfer matrix V(u), 
in the limit of N large it is also possible to calculate the next-largest, and 
so on. Indeed, a considerable amount of work has gone into doing such 
calculations, mainly because they enter the related problem of the partition 
function of the X Y Z  chain, which is discussed in Section 10.14 (Yang and 
Yang, 1969; Gaudin, 1971; Johnson and McCoy, 1972; Takahashi and 
Suzuki, 1972; Takahashi, 1973, 1974; Johnson and Bonner, 1980). 

I shall not attempt to reproduce such calculations here. Let me merely 
remark that for any eigenvalue it is expected (for N large) that the zeros 
ul , . . . , vn of q(u) are grouped in strings in the complex plane. All zeros 
in a string have the same imaginary part, the zeros are spaced uniformly 
at intervals of 2A, and are symmetric about either the pure imaginary axis 
or about the vertical line Re(u) = I'. Thus a string of m zeros consists of 
the complex numbers 

where 1 is an integer (either 0 or 1). 
For the two largest eigenvalues (i.e. those discussed in Section 10.8) 

each string has 1 = 0 and contains only one zero. After these, let A2 be the 
next-largest eigenvalue. Johnson et a1 (1972a, 1972b, 1973) argued that this 
would correspond to either one of the strings having 1 = 1, or to two of 
them being replaced by a string of length two. 

In fact there are 2N such eigenvalues, all corresponding to the diagonal 
operator S having eigenvalue s = -(- 1)". In the limit N-, w , and provided 
A s $I1 ,  the largest of them is given by (8.10.10), or equivalently (8.10.11), 
i.e. 

where A, u ,  x, z are defined by (10.4.24), (10.7.9) and (10.7.18). (Like the 
results (10.10.8), (10.10.10) for the interfacial tension, this formula does 
not involve q,  so has the same form for both the eight-vertex and six-vertex 
models. ) 
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The argument following (8.10.11) still applies, so the arrow correlation 
length 6 is given by (8.10.12). Using (10.10.8), this can be written as 

provided as before that A s 41'. 
Eliminating kl between (10.10.10) and (10.10.13) therefore gives 

s E =  kBT, (10.10.14) 

s here being the interfacial tension. It can now be seen why this relation 
is satisfied by both the Ising model [eq. (7.10.44)] and the six-vertex model 
[eq. (8.10.13)l: both are special cases of the eight-vertex model, for which 
the relation holds generally, provided that 0 s UI' s i. (The Ising model 
has AII' = 4, the six-vertex model has AIZ' = 0.) 

Yet more generally, the scaling hypothesis (Widom, 1965; Abraham, 
1979) predicts that, for all systems near their critical point, s  and E should 
satisfy a relation of the form (10.10.14). 

Johnson et a1 (1973, equations (6.17)) also ob,tained E for 41' < A < Z', 
and found that (10.10.12) and (10.10.13) fail for A > 21'13. This is typical 
of the calculation of the lower eigenvalues of the eight-vertex model transfer 
matrix: the results differ for various sub-intervals of the line 0 < A < 1'. In 
part this is due to strings becoming longer than the period 21' of q(v) and 
hence reappearing on the other side of a period rectangle. It greatly 
complicates the study of the lower eigenvalues. 

It also means that many of the formulae, while appearing not to involve 
q (only x and z occur explicitly), do involve it in their domains of validity. 
This is a pity: if it were true for any eigenvalue A, that A,/& was a function 
only of x and z [as in (10.10.9), (10.10.12) and equation 8 of Johnson et 
al. (1972a)], then these ratios could be obtained (for N large) from the 
explicit Ising model results. 

It should be remarked that the results (10.10.10), (10.10.13) for the 
interfacial tension and correlation length do not quite reduce to (7.10. IS), 
(7.10.43) in the pure Ising model case. In this case, from (10.9.8) and 
(10.9.9), kI is the elliptic modulus with nome x2, so kl = kl is the modulus 
used in Chapter 7 and we see that there are discrepancies of factors of 2. 
For the interfacial tension this is because of a change of length scale: the 
n in (7.10.17) corresponds to N/2 in (10.10.9). For the correlation length 
it is because in the principal regime (wherein the system is ordered) the 
Azs discussed by Johnson et a1 (1972a, 1973) lie in a different diagonal 
block of the transfer matrix from A. (the corresponding eigenvalues of S 
have opposite sign), so the matrix elements tO2, tZ0 in (7.10.33) are zero: 
one has to go to the next-largest band of eigenvalues. The effect of this 
is to square A21Ao, and hence to remove the i from (10.10.13). (For the 
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disordered regimes the A2 of Johnson et al. lies in the same diagonal block 
as A. and (10.10.13) is correct as written, providing k, A, u are defined as 
in Section 10.11. The result then is to be compared with the low-temperature 
Ising result (7.11.4).) 

Spontaneous Magnetization 

We have seen that the eight-vertex model can be viewed either as a model 
of ferroelectricity (with dipoles represented by arrows on lattice edges), 
or of ferromagnetism (with Ising spins on lattice faces). One obtains a 
different order parameter depending on which viewpoint is adopted. 

Let us first use the magnetic Ising picture of Section 10.3. Let q be a 
particular spin, and let 

Mo = (d , (10.10.15) 

be the average value of this spin, calculated in t,he limit of an infinitesimally 
weak applied magnetic field, as in (1.1.1). 

Suppose that the system is ferromagnetic, so J and J' are positive, and 
that J" > -max(J , J'). Then for sufficiently low temperatures T, the Boltz- 
mann weights, given by (10.3.9), will satisfy 

This regime can be obtained from the principal regime (10.7.5) by 
interchanging a with c, and b with d,  using the symmetry argument of 
(10.2.14). It is the ferromagnetically ordered regime of the eight vertex 
model. 

Define k, A, u ,  p, satisfying (10.7.1), by interchanging a with c, and b 
with d,  and then using (10.4.21)-(10.4.24). Define q, x, z by (10.7.9) and 
(10.7.19), and a parameter y by 

q = x ~ ~ .  (10.10.17) 

Then Mo can be regarded as a function of x, y and z.  
Barber and Baxter (1973) expanded MO as a series in x, with coefficients 

that a priori are functions of y and z.  (This is a partially summed low- 
temperature series.) To order x4 they found that 

All coefficients calculated were in fact constants. 
It is not difficult to see that Mo must be independent of z:  as in (7.10.48) 

and (7.10.32), Mo can be written solely in terms of a diagonal single-spin 
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operator and the matrix P ( U  in Chapter 7) of eigenvectors of the transfer 
matrix. These are independent of u, and hence z;  so therefore is Mo. 

It is not obvious that Mo should be independent of q. However, the 
interfacial tension is, the correlation length is (provided A < 21'/3), and so 
are the first five terms in the x-expansion of Mo. For these reasons, Barber 
and Baxter (1973) conjectured that MO is a function only of x. 

However, for the pure Ising model, which from (10.9.7) is when q = 
x4, Mo is known from (10.9.10) to be 

so the conjecture implies that this formula is true for all q. 
The conjecture has been verified: Mo can be obtained from the corner 

transfer matrices, as will be shown in Chapter 13. 
Remember that the kl defined by (10.10.8) is, from (15.1.4a), the elliptic 

modulus corresponding to the nome x2, From (15.1.4b) it follows that 

Spontaneous Polarization 

Return now to the original arrow formulation and let 

Po = (a1) , (10.10.21) 

where is the 'arrow spin' on some particular edge (vertical or horizontal), 
having values +1 depending on the arrow direction. From (10.3.2), 

where q, q are the Ising spins of the faces on either side of the lattice 
edge. 

This Po is an 'order parameter' like Mo. From Fig. 10.1 and (10.1.5), the 
zero-field eight-vertex model is unchanged by reversing all arrows. This 
symmetry can be broken by adding a field-like contribution to the total 
energy of 

where E is the 'electric field' and the sum is over all vertical (or all 
horizontal) arrows. 

For a ferroelectric model, where a or b is the largest of the Boltzmann 
weights a, b, c, d, this field breaks the degeneracy of the ground states. 
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If one now calculates (10.10.21) in the limit of a large lattice, then lets 
E- 0 through positive values, the resulting expression for Po will be 
non-zero if a or b are sufficiently large. 

For an anti-ferroelectric model, where c or d is the largest of the 
Boltzmann weights [as in the principal regime (10.7.5)], (10.10.23) does 
not break the degeneracy of the ground states (such as that in Fig. 8.3). 
It is necessary to 'stagger' E, alternating its sign on successive edges. Then 
the appropriate limiting value of Po is again non-zero for sufficiently large 
c o r d .  

This calculation has not been carried out, any more than the Ising model 
has been solved in a magnetic field. In fact Po itself has not been calculated, 
but it must, like Mo, be a function only of x and q, independent of z .  Baxter 
and Kelland (1974) have conjectured that in the principal regime (10.7.5) 

This agrees with the six-vertex (q = 0) result (8.10.9). In the Ising case 
(q = x4) it gives, using (10.9.10), Po =M$: this is correct, since q and 02 
in (10.10.22) lie on distinct sub-lattices and so are independent for the Ising 
case. The conjecture is also correct in the limit q = x2, A = I', when a = 

b = 0, c = d and the system is completely ordered. 
Baxter and Kelland also set q = x * ~ ,  as in (10.10.17), and calculated Po 

to order x4 in an expansion in powers of x, with coefficients that are 
functions of y. The result agreed with (10.10.24) so it seems very likely 
that (10.10.24) is exactly correct throughout the principal regime. 

Noting that the nomes q, x2 correspond to the moduli k, kl, respectively, 
it follows from (15.1.7) that (10.10.24) can be written as 

Po = ki Ill(kfI) , (10.10.25) 

where k', ki are the corresponding conjugate moduli, and I ,  Il are the 
complete elliptic integrals of the first kind. 

10.11 Classification of Phases 

Within the principal regime (10.7.5), the free energy is given by (10.8.47). 
In this case we see from (10.2.16) that 

w3>w4>w1>Iw2J.  (10.11.1) 
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For general values of a, b, c, d, using the symmetry relation (10.2.17), 
the free energy is given by the following procedure: 

(i) Calculate wl , . . . , w4 from (10.2.16). 
(ii) Negate and re-arrange the wl , . . . , w4 as necessary to satisfy 

(10.13.1). 
(iii) Calculate the mapped values of a ,  b, c, d from (10.2.16). These will 

lie in the principal regime. 
(iv) Calculate p, k, A, u from (10.4.16)-(10.4.24), q andx from (10.7.9), 

z from (10.7.18). 
(v) Calculate the free energy f from (10.8.47) or (10.8.49). 

The resulting function f (a , b , c , d) is analytic except only when one of 
a, b, c, d is equal to the sum of the other three. Thus there are five regimes: 

I. Ferroelectric: a > b + c + d, A > 1 , 
11. Ferroelectric: b > a + c + d, A > 1, 

111. Disordered: a, b, c, d < $(a + b + c + d), -1 < A < 1 , 
IV. Anti-ferroelectric: c > a + b + d, A < -1, (principal regime) , 
V. Anti-ferroelectric: d > a + b + c, A < -1. 

In regimes I, 11, IV, V the system is ordered: any such regime can be 
obtained from IV by using only the elementary symmetries (10.2.12)- 
(10.2.14). The interfacial tension s, correlation length &', magnetization 
and polarization Po are given by (10.10.10), (10.10.13) (without the i), 
(10.10.19), (10.10.23), respectively; q, x, z being defined as in (iv) above. 

Note that the system is always ordered if A, as given by (10.4.6), is 
numerically greater than one. It is disordered if [A1 < 1. 

This classification into regimes becomes more obvious if we explicitly 
solve (10.4.17) and (10.4.6) for the elliptic modulus k. Squaring the second 
equation (10.4.17), using (15.4.4) and (15.4.5), and eliminating sn2iA 
between this and (10.4.16), we obtain 

Solving this for k + k-' and using (10.4.6) gives 

4a'b'cfdf 
ko+  k i 1 + 2 =  

abcd ' 
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where a', b', c', d' are defined by (10.2.5), and the suffix 0 means that k 
is to be evaluated directly from (10.11.3) or (10.11.4), the mapping pro- 
cedure (i)-(iii) above being omitted. This means that ko is not necessarily 
in the interval (0 , 1). 

In the ordered regimes I ,  11, IV, V, the RHS of (10.11.3) is positive. 
It is negative in the disordered regime 111. 

To map I11 into the principal regime it is necessary to use the duality 
relation (10.2.11). Various cases arise, depending on whether b', c', d' are 
positive or negative, but it is found that the free energy f is an analytic 
function of a, b, c, d throughout the regime 111. This regime is disordered: 
there is no spontaneous magnetization or polarization. The correlation 
length is given precisely by (10.10.13). 

Disorder Points 

The system is disordered throughout the regime 111, but it is particularly 
so when c' or d' vanish, i.e. when [using (10.2.5)] the point (a , b , c , d) 
lies on either of the surfaces 

a + c = b + d  or a + d = b + c .  (10.11.5) 

The procedure (i)-(v) maps these cases to eight-vertex models in the 
principal regime IV, with either a or b zero. Since ko is then the same as 
k, and 0 < k S 1, it is then apparent from (10.11.3) that k = 0. More 
precisely, as the mapped a (or b) tends to zero, then k +  0 and, from 
(10.4.9)-(10.4.21), y and y are proportional to k-l, and A +  a, while 
I' - A remains finite. From (10.7.9), q and x both tend to zero, x being 
proportional to q4. From (10.10.8) and (10.10.13), kl and therefore tend 
to zero. Thus the correlation length [as defined by (7.10.41), modified as 
in the argument following (8.10. l l ) ]  becomes zero: the system is completely 
disordered. 

The free energy is given by (10.8.47), c therein being the mapped value 
of c and all terms in the summation being zero, so 

- f l k B T = l n 4 ( a + b + c + d ) .  (10.11.6) 
[This simple result can be understood in at least two ways: one is to note 
that the mappings (10.2.11)-(10.2.15) can be used to map the model to 
a six-vertex model in the frozen ferroelectric regime I or I1 of Section 8.10; 
the other is to verify that Vx = [4(a + b + c + d)lNx, where Vis the transfer 
matrix and x is a vector with all elements unity-this calculation is par- 
ticularly simple if V is replaced by the transfer matrix that builds the lattice 
up diagonally.] 

Such points of complete disorder occur also in the anti-ferromagnetic 
triangular Ising model (Stephenson, 1970). 
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10.12 Critical Singularities 

The free energy is an analytic function of a, b, c, d, and the correlation 
length 5 is finite, unless 

where a, b, c, d are all non-negative. These are the critical surfaces in 
(a , b , c , d) space. 

If the energies E I ,  . . . , ~8 are held fixed, satisfying (10.1.5), and the 
temperature T varied, then the point ( a ,  b , c , d) will trace out a path in 
this space. If one of ~ 1 ,  ~ 3 ,  ~ 5 ,  ~7 (say EI) is less than the others, then for 
sufficiently small T this path lies inside one of the ordered regimes (regime 
I). On the other hand, for large T (a = b = c = d = 1) the path certainly 
lies in the disordered regime 111. Thus it must cross a critical surface (and 
does so only once) at a critical point. 

If two or more of ~ 1 ,  ~ 3 ,  ~ 5 ,  ~7 are equal and less than the others, then 
the path always lies in the disordered regime I11 and there is no critical 
temperature. 

Consider a point ( a ,  b , c , d) close to one of the surfaces (10.2.1) and 
let 

Then this t is zero on a critical surface and in general will vanish linearly 
with T - T,, (T - T,)lt being positive. We can therefore regard this t as 
the 'deviation-from-critical-temperature' variable, and replace (1.1.3) by 
(10.12.2). 

The four critical surfaces in (10.12.1) can all be mapped onto the surface 
c = a + b + d by the trivial mappings (10.2.12)-(10.2.14). These merely 
re-arrange a, b, c, d and map order to order, disorder to disorder. There 
is therefore no loss of generality in focussing attention on critical points 
on the surface c = a + b + d, i.e. between regimes I11 and IV. I shall do 
this for the rest of this section. 

Alternative Expressions for the Thermodynamic Properties 

Consider first the principal regime IV, where t is negative and k = ko. From 
(10.11.3) and (10.12.2) 
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so k approaches one as t + 0-. 
It follows that q +  1 and the product definitions (15.1.5) of the theta 

functions become weakly convergent. This can be avoided by using (15.7.2) 
in (10.4.24), so as to express a, b, c, d in terms of theta functions of the 
modulus k' conjugate to k. 

We shall also want to compare the correct free energy in regime I11 with 
its analytic continuation from regime IV. To do this it is convenient to 
work with the wl , . . . , w4 in (10.2.16), rather than a, b, c, d. Substituting 
the conjugated expressions (10.4.24) into (10.2.16), using (15.4.29) to 
factor the RHS, and then using the product expansions (15.1.5), we finally 
obtain 

where 
p = ( q ~ ) ~  = exp(-2nIl11) , 

and p' is some normalization factor (proportional to p) that we shall not 
need explicitly. 

These equations, together with the restrictions (10.7.la)' i.e. 

define p', p, w and p. As t+ 0, p+  0 and it is apparent that E,  p, V tend 
to finite limits, these being their critical values. In particular, the critical 
value of p is given by 

The free energy is given by (10.8.47) or, alternatively, (10.8.49). The 
latter is more convenient for the present purposes, since it involves c + d 
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(i.e. 2w3), rather than c: this makes it easier to compare regimes I11 and 
IV. 

We have just noted that p and w tend to finite limits as t+ 0 and 
k +  1. Since I' then tends to nl2 and I to infinity, from (10.12.5), (10.7.9) 
and (10.7.18) this means that q,  x ,  z all tend to one (from below). The 
sum in (10.8.49) therefore becomes an integral. Its behaviour near t = 0 
can be studied by using the Poisson summation formula (15.8.1). 

To do this, define 

[cosh(n - 2p)u - cosh pu] [cosh pa - cosh WU] 
F(u) = 

u sinh m cosh pu 
. (10.12.8) 

Then, noting that F(u) is an even function, that F(0) = 0, and using 
(10.7.9), (10.7.19) and (10.12.5), the equation (10.8.49) becomes 

From (15.8.1), this can be written 

where 

and we have used the fact that G(k), like F(u), must be an even function. 
For positive k, the integral in (10.12.11) can be closed round the upper 

half u-plane and evaluated as a sum of residues from the poles at u = in, 
i(n - i)nlp, for n = 1,2 ,3 ,  . . . . Substituting the result into (10.12. lo) ,  the 
sum over m can then be performed to give 

+ 2 x  
(COS 2np - cos n n  cos np) (cos n p  - cos nw) p2" 

n = l  n cos np  (1 - p2") 

The equations (10.10. lo) ,  (10.10.13), (10.10.20) for the interfacial ten- 
sion s, the correlation length E ,  and the spontaneous magnetization Mo, 
are 
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where kl, defined by (10.10.8), is the elliptic modulus with nome x2. 
To study the behaviour near x = 1, we simply go to the conjugate 

modulus and conjugate nome. The conjugate modulus is ki =(1 - k:)$, 
while from (15.1.3) (interchanging I and I t ) ,  the conjugate nome is 
exp[n?/ln(x2)]. From (10.7.9) and (10.12.5), the conjugate nome is 
therefore 

Replacing k, q in (15.1.4a) by kl, q; ,  and squaring, we obtain 

The spontaneous polarization is believed to be given exactly by 
(10.10.25), i.e. 

Po = killl(krl) . (10.12.16) 

Again we want to work with conjugate nomes. Replacing k, I ' ,  q in (15.1.8) 
by k', I ,  q' and using (10.12.5), we obtain 

Similarly, using ki, 11, qi and (10.12. Id), 

Behaviour near Criticality 

Given a, b, c ,  d in regime IV, the equations (10.12.4) and (10.12.5) define 
p, y and V. The free energy, interfacial tension, etc. are then given by 
(10.12.12)-(10.12.18). 

On the other side of the transition, in regime 111, wl , . . . , w4 must first 
be re-arranged as in the procedure (i)-(v) of the previous section. The 
effect of this is to interchange wl and w4 before using (10.12.4) and 
(10.12.5). The free energy is again given by (10.10.12) and the correlation 
length ij by (10.12.13); Mo and Po are then zero, s is meaningless. 
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However, examining (10.12.4) it is apparent that p ,  p, V are analytic 
functions of a ,  b,  c, d even when p = 0, i.e. at the transition from regime 
IV to 111. Also, interchanging wl and w4 therein is equivalent to simply 
negating p ,  leaving p and V unchanged. 

It follows that p ,  p, V can be analytically continued from regime IV into 
regime 111, and that these analytic continuations differ from their correct 
values only in that p is negated. 

Also, from (10.12.3), (10.12.5) and (15.1.4a), when t is small 

so p vanishes linearly with t. 
Look at the expression (10.12.12) for the free energy. The first three 

terms involve only wg, p, V and p2, all of which are analytic across the 
boundary between regimes I11 and IV, being the same functions of a ,  b, c, d 
on either side. Only the last term can therefore be in any sense singular, 
and for p small the dominant contribution to it is 

This fsin, is effectively the f ,  defined by (1.7.10a). Since p, w tend to finite 
limits as t- 0 and p is non-zero, the cot and cos terms in (10.12.20) are 
effectively constants. From (10.12.19) and the above comments, the correct 
value of p in either regime IV or regime I11 behaves for t small as 

p = lt1116. 

It follows that 

f i n g  - Itlnlp 

the critical value of p being given by (10.12.7). 
Exceptional cases occur if p = nlm, where m is an integer. If m is even 

the factor cot(dI2p) in (10.12.20) is infinite. This is due to the fact that 
two poles of F(u) coincide. The residue of the resulting double pole should 
be calculated properly when evaluating (10.12.11). The effect of this is to 
introduce an extra factor InJtJ,  so 

fsing - Itlnip , (10.12.22b) 

if nlp is an even integer. 
If the critical value of nlp is an odd integer, then the factor cot(n2/2p) 

vanishes- in (10.12.20). To obtain the leading singularity in this case 
it is then necessary to consider the dependence of p on the temperature 
variable t. 
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In the ordered regime IV it follows easily from (10.12.13)-(10.12.18) 
and (10.12.21) that for t small (and negative) 

s, 5 - 1  - (-t)"2"Mo - (-t) n/16@ 9 

(lO.12.23a) 
Po - (-t)("-")'4@ , 

while in the disordered regime 111 (t positive) 

(The formula (10.10.13) for the correlation length is correct only for 
A 6 21'13, i.e. p s  2x13; however, Johnson et a1 (1973) showed that it gives 
the correct critical behaviour even for p > 2x13.) 

Critical Exponents and Scaling 

As in Section 8.11, define a critical exponent pe for Po, analogously to the 
definition (1.1.4) of /3 for Mo. To avoid confusion with the parameter p 
above, denote the interfacial tension exponent in (1.7.34) by ps. Then from 
(1.1.4), (1.7.9), (l.7.25), (1.7.34), (10.12.22) and (lO.l2.23), the critical 
exponents a ,  a ' ,  p, pe, v, v', ~ l ,  are 

Since the eight-vertex model has only been solved in zero fields (both 
electric and magnetic), it is not possible to use it to fully test the scaling 
hypothesis (1.2.1). However, all the scaling predictions that can be tested, 
namely (1.2.15), (1.2.16), a = a' and v = v' , are indeed satisfied. 

If one accepts the other scaling predictions, then the other exponents 
can be calculated from (1.2.12)-(1.2.14). In particular, the 'magnetic' 
Y, 6, 1? are 

y =  7xl8p, 6 =  15, q =  i .  (10.12.25) 

Universality and Weak Universality 

It is worth-while recapitulating the definition of p at criticality. For given 
vertex energies E ~ ,  E S ,  E,, the weights a, b ,  c ,  d are given by (10.1.2) and 
(10.2.1). The condition for criticality is (10.12.1). If ES ~ 3 ,  &.I, it follows 
that the critical temperature Tc is given by 
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From (10.12.17) and (10.12.6), the critical value of p is given by 

[Other cases occur when el, e3 or e7 is the least energy, but they can be 
trivially mapped to this case by using the relations (10.2.12)-(10.2.14).] 

By varying el, e3, e5, e7, this p can be given any value between 0 and 
n. Thus the exponents a, /?, y, u, ~ 1 ,  (but not 6 and 11) depend on the values 
of el, . . . , e7, and vary continuously with them. 

This contradicts the universality hypothesis of Section 1.3: that critical 
exponents should not depend on the details of the interactions. Kadanoff 
and Wegner (1971) argued that this variation was due to the special 
symmetries and dimensionality of the zero-field eight-vertex model. For 
instance, in the magnetic picture of Section 10.3, suppose that Jh and J ,  
are not both zero (in the electric picture, this means a field is applied). 
Then Kadanoff and Wegner's argument suggests that the magnetic expo- 
nents should be exactly those of the Ising model. From this viewpoint, 
universality is expected to 'normally' hold, the eight-vertex model being 
a special exceptional case. This has been supported by approximate renor- 
malization group calculations (van Leeuwen, 1975; Kadanoff and Brown, 
1979; Knops, 1980). 

There are two other models which are believed to have continuously 
variable exponents, though they have not been solved exactly. They are 
the Ashkin - Teller model discussed in Section 12.9 (Kadanoff, 1977; 
Zisook, 1980) and the square lattice Ising model with ferromagnetic 
nearest-neighbour interactions and anti-ferromagnetic next-nearest neigh- 
bour ones (Nightingale, 1977; Barber, 1979; Oitmaa, 1981). 

Suzuki (1974) proposed what may be called 'weak universality'. Most 
exponents are defined as powers of the temperature difference T - Tc (6 
and r ]  are exceptions). Suzuki suggested that it was more natural to use 
the inverse correlation length 5' as the variable measuring departure from 
criticality. For instance, instead of (1.1.4) one should write 

being a critical exponent. (This idea is quite attractive: from a math- 
ematical point of view the temperature is rather an uninteresting divisor 
of the Hamiltonian, while the correlation length gives valuable information 
on the near-critical behaviour of the system.) 

From (1.1.4) and (1.7.25), 

Similarly, the reduced exponents for f&, s and x are 
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while 6 and q are not affected. From (10.12.24) we have for the eight- 
vertex model that 

all of which are fixed numbers, independent of p. 
Thus if one formulates 'weak universality' as the proposition that 

B, 4 ,  A, 3, 6, 17 should be independent of the details of the interactions, 
then the eight-vertex model is consistent with this hypothesis. Further, this 
hypothesis connects well with scaling, since the scaling relations 
(1.2.12)-(1.2.16) predict 

Thus scaling implies that if 6 is universal, then weak universality must 
be satisfied. 

10.13 An Equivalent Ising Model 

We saw in Section 10.3 that the eight-vertex model can be regarded as two 
nearest-neighbour Ising models (one on each sub-lattice), linked by 
four-spin interactions. Some people are unhappy at the introduction of 
such four-spin interactions, feeling that they are somehow 'unphysical'. 
Jiingling (1975) has answered this objection by showing that the eight- 
vertex model, and in particular the zero-field eight-vertex model, is also 
equivalent to a square lattice Ising model with only two-spin interactions. 
These interactions are between nearest neighbours, and between next- 
next-nearest neighbours. 

To see this, consider the square lattice in Fig. 10.6. It is drawn diagonally 
and the two sub-lattices are distinguished, their sites being shown as open 
circles and solid circles, respectively. Let N be the number of solid-circle 
sites. 

Divide the lattice into N squares, as indicated by dotted lines, each 
containing one solid circle. Let the total energy be 
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where the sum is over all such squares; i, j ,  k, I ,  m are the sites within a 
square, arranged as in the example in Fig. 10.6; and oi(= 21)  is the spin 
at any site i. 

This energy contains only interactions between pairs of spins; either 
nearest-neighbours (e.g. up,), or next-next-nearest neighbours (e.g. aiak). 
As usual, the partition function is 

Z = 2 exp(-%lk~T), (10.13.2) 
0 

the sum being over the values of all the spins. 

Fig. 10.6. Jiingling's formulation of the eight-vertex model: an Ising model on the 
lattice of solid lines, with only two-spin interactions, is equivalent to an Ising model 

on the lattice of dotted lines, with two- and four-spin interactions. 

The summand in (10.13.2) factors into a product of N terms, one for 
each square. Each solid-circle spin enters just one such term, so the 
summation over its values (*I) is easily performed. Doing this for each 
solid-circle spin gives 

Z =  Z'")n ~ ( o i ,  q 7  a*,  01) (10.13.3) 

where the product is over all squares, the superfix ( 0 )  means that the sum 
is over all values of all the open-circle spins, and if 

Ki = JiIkBT, K = JIkBT, Kt  = JtIkBT, (10.13.4) 
then 

W ( q ,  q, q, a4) = 2 exp(Kala3 + K'azrr4) 

Since q , . . . , a 4  only have two values (+ 1 and -I) ,  any function of 
them can be written as 



where all terms are linear in q , . . . ,ad, there are 16 such terms, and 
L , . . . , L1234 are constant coefficients. 

The function W(q  , 02, a3 , 04) is positive, so its logarithm is real and 
can be written in the form (10.13.6). Further, it is an even function of 
q , . . . , a4, so only the even terms in (10.13.6) occur. It must therefore 
be possible to find L,  L12, L13, L14, L23, L24, L34, L1234 such that 

(This is known as the 'star-square' transformation: it is a generalization of 
the star - triangle relation of Section 6.4.) 

Substituting (10.13.7) back into (10.13.3), noting that each nearest- 
neighbour pair aiq occurs in two squares, we obtain 

where the summations inside the exponential are over all vertical edges 
(i , j), horizontal edges ( j  , k), diagonal pairs (i , k) and ( j , I), and squares 
(i , j , k , 1), respectively. 

Apart from the factor exp(NL), this is the partition function of an 
king-type model on the square lattice of open circlcs and dotted lines in 
Fig. 10.6, with nearest-neighbour, diagonal and four-spin interactions. This 
is exactly the formulation (10.3.1) of the eight-vertex model, the interaction 
energies Jh and J, therein being given by 

Jh/kBT = L12 + L34, J,/kBT = L23 + L14. (10.13.9) 

In general these are non-zero, so Jungling's model is equivalent to an 
eight-vertex model in electric fields (and vice-versa). 

Yet more interesting is the fact that if J1, JZ, J3, J4 satisfy the 
temperature-independent conditions 

then Jungling's model is equivalent to a zero-jield eight vertex model. 
To see this, note that Kl = K3 and K2 = -K4. The RHS of (10.13.5) is 

then unaltered by interchanging q with g ,  or by interchanging and negating 
@ and 04.  It follows that (10.13.7) must take the form 
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In particular, this implies that 

so Jh and J, are given by (10.13.9) to be zero. 
This formulation of the eight-vertex model highlights a potential difficulty 

with universality. As explained in Section 1.3, the hypothesis admits that 
critical exponents may change discontinuously when a symmetry is broken. 
This is consistent with the argument of Kadanoff and Wegner (1971) 
mentioned in the previous section: in the presence of fields the eight-vertex 
model may have fixed Ising exponents, even though it does not have these 
in zero field. 

In Jungling's formulation, this means that the model (10.13.1) has one 
set of exponents in general, but another set if J1 = J3 and J2 = -J4. Although 
we can now see that this special case has special symmetry, it is by no 
means obvious apriori that this is so. The symmetry is 'hidden'. Presumably 
such breaking of hidden symmetries occurs in other models: it could be 
hard to anticipate. 

10.14 The XYZ Chain 

Closely related to the zero-field eight vertex model is the problem of 
determining the eigenvalues of the operator 

N 

X = - i ,3 [J,ufu;+ 1 + J,~;u;+, + Jlu:u:+ , (10.14.1) 

where J,, J,, J, are constants and 

and sl , . . . , SN, c1 , . . . , CN are the operators defined by (6.4.17). In direct 
product notation 

@ = e m  . . . .  @ e @ c @ e @  . . . .  @ e  

a! = e @ . .  . . @ e @ d @ e @ .  . . . @ e  (10.14.3) 

a f = e @  . . . .  @ e @ s @ e @  . . . .  @ e ,  

where there are N terms in each product; c, d, s occur in position j; and 
e, c, d, s are the two-by-two Pauli spin matrices 



The of ,  4 ,  a?, X are all 2N by 2N matrices. 
This operator X is the Hamiltonian of a one-dimensional quantum 

mechanical model of ferromagnetism: there are N spins, labelled j = 

1 , . . . , N, on a line. With each spin j is associated the three-dimensional 
vector u, = ( o f ,  4 ,  a?) of Pauli matrices; neighbouring spins j and j + 1 
have interaction -8u,.J. u,+l, where J is a three-by-three diagonal matrix 
with elements J,, Jy, J,. The partition function of the model is 

Zx = Trace exp(-XlkBT). (10.14.5) 

If J, = Jy = J,, this is the Heisenberg model (Heisenberg, 1928; Bloch, 
1930, 1932). If J, = Jy = 0, then X is diagonal and the model reduces to 
the nearest-neighbour Ising model (each spin is effectively either up or 
down, and lies in the z-direction). These models can be formulated on a 
lattice of any dimension, but it is the one-dimensional case that is rep- 
resented by (10.14.1), and that is related to the two-dimensional eight- 
vertex model. 

The case J, = Jy = 0 is easily solved, being the one-dimensional Ising 
model of Chapter 2. The case J, = 0 is known as the 'XY model', and is 
related to the Ising model. Explicit expressions for all the eigenvalues can 
be given (for finite N), and the partition function evaluated. This has been 
done by Lieb et al. (1961) and Katsura (1962). 

The case J, = Jy is sometimes called the 'Heisenberg- Ising' model. 
Bethe (1931) gave the correct form of the eigenvectors of X, Yang and 
Yang (1966) proved rigorously that Bethe's ansatz was correct, and derived 
the minimum eigenvalue in the limit of N large. 

When Lieb (1967a, b, c) solved the ice-type models, he found that the 
eigenvectors of the transfer matrix were precisely those of the one-dimen- 
sional Heisenberg - Ising operator. He was therefore able to use many of 
Yang and Yang's results. 

Sutherland (1970) showed directly that the transfer matrix of any 
zero-field eight-vertex model commutes with an XYZ operator X. They 
therefore have the same eigenvectors. I was not aware of Sutherland's 
result when I solved the eight-vertex model (I did much of the work in the 
writing room of the P & 0 liner Arcadia, in the Atlantic and Indian Oceans. 
This was good for concentration, but not for communication). It should 
be obvious from Sections 10.4-10.6 that such commutation relations are 
closely linked with the solution of the problem. 

In fact it can be shown, for any J,, Jy, J, (Baxter, 1971b, 1972c), that X 
is effectively a logarithmic derivative of an eight-vertex transfer matrix, 
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and hence the minimum eigenvalue of X can be obtained. This will be 
done in this section. 

The calculation of 2% involves considering all the eigenvalues. This 
problem is very difficult, and in general the best that has been done is to 
reduce it to one of solving a set of non-linear integral equations (see the 
remarks and references regarding the correlation length in Section 10.10). 

Relation Between X and V 

The eight-vertex transfer matrix V is given by (9.6.1), where the weight 
function w is defined by (10.2.3), or equivalently (10.2.4). These definitions 
can in turn be written as 

First consider the case when 

From (10.14.6) it is then true that 

Substituting this into (9.6.1), the p1 , . . . , p~ summations can at once be 
performed. If Vo is the matrix V for this case, then its elements (a, j3) are 

Thus coNVo is the left-shift operator that takes an arrow configuration 
{ w , .  . . , a ~ } t o { a ~ , a i  , .  . . , ~ N - I } .  

Now perturb about this case and set 

where 6a, 6b, 6c, 6d are infinitesimal increments in a, b, c, d. Let 6w, 6V 
be the increments induced in the weight function w and the transfer matrix 
V. Then from (9.6.1) 

(note the two sets of 6s: increments and Kronecker symbols). 



Pre-multiplying the matrix 6V by v i l ,  (10.14.9) and (10.14.11) give 
N 

( V i l  6V)@  = c i l  Z.  . . %a;-,, Pj-1) 6w(aj 7 ffj+lIPj , Pjtl)  
j =  1 

From (9.6.9), using the eight-vertex function w,  it follows that 

where 6Uj is the increment in the vertex operator U,. 
Also, substituting the form (10.14.6) of w into (9.6.9), and using the 

definitions (6.4.17) of s, and c,, U, can be written 

~ , = & { ( a + c ) , $ +  ( a - c ) s , s j + l + ( b  +d)cjcj+i-(b-d)sicisi+lci+l} 

(10.14.14) 
or, using (10.14.2), 

Uj=i{ (a  + c ) 9  + ( b  + d )  $ $ + I +  ( b  - d ) u / a / + ~ +  (a - c)u;af+l} ,  

(10.14.15) 
where 9 is the identity operator. 

The increment 6Uj is given simply by replacing a,  b ,  c ,  d in (10.14.15) 
by da, 6b ,  &, 6d. Doing this, (10.14.13) becomes 

Apart from the additive term proportional to 9 ,  this is an XYZ operator 
of the form (10.14.1). 

To complete this identification, substitute the values of (10.14.10) of 
a,  b ,  c ,  d into (10.4.6). To leading order in the increments, this gives 

so (10.14.16) can be written 

(10.14.18) 
If J,, J,, J, are related to l- and A by 
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then it follows that 

where X is precisely the XYZ chain operator (10.14.1). 
Suppose we keep A and r fixed while varying a, b, c, d. Then all transfer 

matrices V will commute with one another and, from (10.14.20), with X. 
Thus if (10.4.6) and (10.14.19) are satisfied, with the same r and the same 
A, then the eight-vertex transfer matrix Vcommutes with the XYZ operator 
X. They have the same eigenvectors. [This is Sutherland's result (1970).] 

If co, 6b, ad, Jx are positive, then from (10.14.20) it is apparent that the 
maximum eigenvalue A,,, of V corresponds to the minimum eigenvalue 
of X .  Further, a ,  b, c, d are then positive, so A,,, is precisely the eigenvalue 
needed in the calculation of the eight-vertex free energy. 

Ground-State Energy Eo 

Let NEo be the minimum eigenvalue of X. Then EO is the ground-state 
energy per site. From (10.8.46) and (10.14.20), in the limit of N large, Eo 
is given by 

6(-flkBT) = c<'{i(& + 6c) - (6b + ad) EoIJ,), (10.14.21) 

where f is the eight-vertex free energy per site, and 6(-flk~T) is the 
increment induced in - f lk~T.  

Up to this point, no restriction has been made in this section on A ,  F, 
J,, J,, Jz, except that Jx be positive. Now let us consider the principal 
regime (10.7.5) of the eight-vertex model, wherein (from (10.4.6)) 

From (lO.l4.19), this implies that 

so I shall call this the 'principal regime' for the XYZ chain. From (10.7.1), 
the elliptic function parameters k, A, v are real, and 0 < k < 1, 0 < A < I t .  
For given values of a, b, c, d ,  the free energy f is given by (10.4.21) and 
(10.4.23), (10.7.9) and (10.7.18), and (10.8.47) or (10.8.49). 

Holding r and A fixed is equivalent to keeping k and A unaltered. 
Without loss of generality we can require in this section that c = 1, so from 
(10.4.21) and (10.4.23) 

a = snh 4(A - u) Isnh A, b = snh i(A + u) Isnh A , (10.14.24) 

c = 1 ,  d = k s n h i ( A - u )  snh$(A+u).  
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This leaves v as a variable. The case (10.14.7) corresponds to u = -A; 
incrementing u by 6u gives 

u = - A +  6 u .  (10.14.25) 

From (15.5.la), (15.5.5) and (10.4.20), 

d 
-snh u = cniu d n i u ,  (10.14.26) 
du 

for all complex numbers u. Using this formula to differentiate (10.14.24) 
with respect to u, then setting u = -A, gives 

6a16u = -i cn iA dn iA lsnh A, 6bI6u = ilsnh A , 
(10.14.27) 

6cI6u = 0, Sdl6v = i k snh A . 

[It is now easily verified that (10.4.17) and (10.14.17) are equivalent.] 
Also evaluating a(-flkBT) from (10.8.47) and (10.7.18), substituting 

the results into (10.14.21) gives 

where q ,  x are defined by (10.7.9), 1 is the complete elliptic integral of the 
first kind of modulus k, and 

t = 2 J, snh Al(1 + k snh2 A) . (10.14.29) 

An equivalent form can be obtained by using (10.8.49) instead of 
(10.8.47), namely 

Define a parameter 1 by 

1 = 2 k*/(l + k) . (10.14.31a) 

(This is the Landen-related elliptic modulus of (15.6.1.) Then eliminating 
Y2 (which is negative) between the two equations (10.4.12), using (10.4.9) 
and (10.14.19), gives 

I = (J: - J:)*/(J~ - J:)" (10.14.31b) 

Solving (10.4.17) for sn ih, using (10.4.20) and (10.14.19), one obtains 

kk snh A = (J, - J,)~I(J, + J,);. (10.14.31~) 
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Substituting this into (10.14.29) gives 

t = k-y~,2 - ~2 4 
Y )  9 (10.14.31d) 

which, using (10.14.31b), can be put into the form 

t = (l/k)&(~: - J;)"J: - J;)~. (10.14.32) 

To summarize the results so far: if J,, J,, J, lie in the principal regime 
(10.14.23), then the ground state energy per site of the XYZ operator 
(10.14.1) is given by (10.14.28) or (10.14.30), where k, A, ra re  defined by 
(10.14.31), q and x by (10.7.9). 

Symmetries 

The three Pauli matrices a;", a/, uf can be permuted by simple similarity 
transformations, so Eo is a symmetric function of J,, J, and J,. Suppose, 
as in (10.5.9), that N is even, and consider the similarity transformation 

X + a;a$a$ . . . X aIaj;a$. . . . (10.14.33) 

Since a7 anti-commutes with a/ and a)', but commutes with all the other 
Pauli operators, the effect of this on (10.14.1) is to negate J, and J,. Thus 
Eo is unchanged by negating any two of J,, J,, J,. These symmetries can 
be used to map any XYZ operator X into the principal regime (10.14.23). 
The ground state energy per site is then given by (10.14.28) or (10.14.30). 

These symmetries are of course related to those of the eight-vertex 
model. From (10.4.6), (10.14.19) and (10.2.16) 

It is apparent that the eight-vertex symmetries (10.2.11)-(10.2.15), or 
equivalently and more obviously (10.2.17), merely re-arrange the terms 
on the RHS of (10.14.34), and possibly negate two of them. 

Singularities of Eo 

It follows from these results that EO is an analytic function of J,, J, and J, 
except when the two numerically largest coefficients J,, J,, J, have equal 
magnitude. The archetypal case is when -J, = J, > IJ,I. This is a boundary 
of the principal regime (10.14.23), and on it we see from (10.14.31) that 
k = 1. The behaviour near the boundary can be obtained by applying the 



Poisson summation formula (15.8.1) to the series in (10.14.27). The work- 
ing closely parallels that of (10.12.8)-(10.12.12) (indeed it can be obtained 
thereform by differentiating with respect to w). It gives, for -J,  
> Jx > IJyI7 

m 

- 4 C (cos 2np - cos nn  cos np) tan np p2" 
n = l  

(10.14.35) 
(1 - pZn) 

where p 7 p  are defined by (10.12.5) and 

[cosh ( n  - 2p)u - cosh pu] sinh p 
exp(iku) du . (10.14.36) 

sinh nu cosh pu 

The case Jx >-J, > lJyI, can be mapped into the principal regime by 
negating and interchanging Jx and J,. As when interchanging wl and w4 in 
the eight-vertex model, this leaves p unchanged by negates p. In fact p and 
p2 are analytic across the boundary -J, = Jx, while near it 

so p vanishes linearly with J, + Jx. 
~ r o ;  (15.6.6), with k replaced by k', (10.14.31a) and (10.12.5): 

From this and (10.14.32) is is apparent that negating and interchanging Jx 
and J, leaves unaltered the factor JJ(zI') in (10.14.35), and this factor is 
analytic at I, = -Jx. Thus all terms in (10.14.35) are analytic across this 
boundary, except for those in the last summation. The dominant singular 
term is 

(EO)sing = (2n2t/fl) cot(n2/2p) p d p .  (10.14.39) 

When ;I, = -Jx, then k = 1, 1 = 1, I' = in ,  snh A = tan A, so from 
(10.14.31~) and (10.12.5) p is given by 

Jy/Jx = cos p, 0 < p < n , (10.14.40) 

while from (10.14.32) 
t = (J: - J;)* = Jx sin p , (10.14.41) 
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so (10.14.39) simplifies to 

(Eo)sin, = 4n p-' Jx sin p cot(n '12p) pdp , (10.14.42) 

p being given by (10.14.37). Provided cot(dl2p) is finite and non-zero, it 
follows that Eo has the power-law singularity 

(&)sing - IJr + JXln" (10.14.43) 
at Jz = -Jx. 

In fact, comparing (10.12.20) and (10.12.21) with (10.14.42) and 
(10.14.37), it is apparent (for all values of p) that Eo has the same singularity 
at Jz + J, = 0 as the eight-vertex free energy has at t = 0. 

Some General Comments on d-Dimensional Ising Models and (d - 1)- 
Dimensional Quantum Mechanical Models 

Equation (10.14.20) relates the XYZ operator "de with the eight-vertex 
model transfer matrix V. Here V is evaluated with a, b,  c, d infinitesimally 
close to the values (10.14.7), for which the value Vo of V is proportional 
to a simple shift operator. 

As Suzuki (1976) has pointed out, such relations exist for many models. 
For instance, the layer-to-layer transfer matrix of the simple cubic Ising 
model is a matrix V with elements 

Here a={ql , . . . , oMN) denotes all spins in one layer of the lattice, 
d ={oil , . . . , ohN} all spins in the next layer. 

Defining operators sij, ci, analogously to (6.4.17), and using the identity 
(6.4.22), it follows that 

(2 sinh 2 ~ 3 ) - ~ ~ ~  V = exp[S(KlA + K2B)I exp[KfC] exp[S(Kd + K2B)] , 



When K1 =K2 = Kt = 0, the RHS of (10.14.45) is simply the identity 
operator. When K1, K2, Kt are all small, to first order 

ln[(2 sinh V] = X , (10.14.47) 

where now 
X = K l A + K 2 B + K , h C .  (10.14.48) 

As in (10.14.2), si, and cq are the Pauli operatorso; and a",, respectively. 
The RHS of (10.14.48) can therefore be regarded as a two-dimensional 
Heisenberg-type operator, in which the quantum-mechanical spins interact 
with one another only via their components in the z-direction, and an 
external field of strength Kt is applied in the x-direction. 

If K$ =0, the operator is diagonal and its eigenvalues are the energy 
levels of the two-dimensional Ising model. For this reason the operator X 
is known as the Hamiltonian of the two-dimensional Ising model in a 
transverse magnetic field (Stinchcombe, 1973; Oitmaa and Plischke, 1977; 
Pfeuty, 1977). 

From (10.14.47), if we could evaluate the eigenvalues of the transfer 
matrix V of the three-dimensional Ising model, then we could also evaluate 
them for the two-dimensional Hamiltonian X .  Conversely, we might hope 
that solving the latter problem would lead to a solution of the former. 
Unfortunately neither has been solved exactly, though the approximate 
methods mentioned in Section 1.5 have been very successful. 

The above arguments can easily be extended to arbitrary dimensions and 
to other lattices. However, it should be noted that the two-dimensional 
zero-field eight-vertex model has an extra property that does not so gen- 
eralize: its transfer matrix V always commutes with some XYZ operator, 
even when V is far from its shift operator value Vo. 

10.15 Summary of Definitions of A, r, k, A, u, q, x, z, p, p, w 

The results of this chapter have inevitably been expressed in terms of 
elliptic function parameters such as q,  x, p and p. These have been defined 
as needed, for both the eight-vertex model and the XYZ chain, and some 
special cases have already been considered. For clarity, it seems helpful 
to summarize their definitions in general. 

For the eight-vertex model, with Boltzmann weights a ,  b, c, d, define 
A and T by (10.4.6), i.e. 

a2 + b2 - c2 - d2 ab - cd 
A = r=- (10.15.la) 

2(ab + cd) ' ab + c d '  
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For the XYZ chain, with coefficients J,, J,, J,, define them by (10.14.19), 
i.e. 

Jx:Jy:Jz = 1 : T : A .  (10.15.lb) 

The eigenvectors of the eight-vertex transfer matrix, and of the XYZ 
Hamiltonian, are the same functions of T and A only. 

Re-arrangement Procedure 

Now map the models into their principal regimes. For the eight-vertex 
model this means using the procedure (i)-(iii) of Section 10.11. Let a ,  b, c, d 
be the original values of these parameters, and a,, b,, c,, d, their re-arranged 
values. Then a,, b,, c,, d, lie inside the principal regime (10.7.5), or on a 
boundary thereof (since the free energy, etc. are continuous functions of 
a, b, c, d, boundary cases can be handled by taking an appropriate limit), 
i.e. 

c, a, + b, + d,, a, 3 0, b, 2 0, d, 2 0 .  (10.15.2) 

Define A,, T, by (10.15.la), with a, b, c, d replaced by a,, b,, c,, d,. Then 
it follows that 

and equalities occur only on a boundary of the regime (10.15.2). 
For the X Y Z  model the re-arrangement procedure is simpler. One 

merely permutes J,, J,, J,, and possibly negates a pair of them, so as to 
bring them into the regime (10.14.23), or onto a boundary thereof. Let 
&, 6, J: be these re-arranged values. Then 

Define A,, r, by (10.15.lb) with J,, J,, J, replaced by J:, J;, J:, i.e. 

then clearly these A,, T, also satisfy (10.15.3). 
It was shown in (10.14.34) that the eight-vertex symmetries merely 

permute the quantities ab + cd, ab - cd, h(a2 +b2 - c2 - &), and possibly 
negate two of them. From (10.15.1) it follows that an equivalent definition 
of T,, A, for the eight-vertex model is: 

Define T, A by (10.15.la) and choose J,, J,, J, to satisfy (10.15.lb), J, 
being positive. Permute and pair negate these J,, J,, J, to satisfy (10.15.4). 
Now define T,, A, by (10.15.5). 

We shall find this alternative procedure helpful in the next section. 
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Elliptic Function Parameters 

The elliptic 
alently by ( 
rr,  Ar of r ,  

function parameters k, A are defined by (10.4.17), or equiv- 
10.4.9), (10.4.12) and (10.4.16), using the re-arranged values 
A. These equations can be written as 

2k4/(l + k) = (1 - r;)4(8f - r;)', (10.15.6a) 

snh A = k-i (1 - rr)4(1 + r,)', (10.15.6b) 

where snh u = -i sn iu and k, A must satisfy 

I and I' being the complete elliptic integrals of the first kind of moduli k 
and k' = (1 - k2)&. Again, equalities occur in (10.15.7) only on regime 
boundaries. 

The parameter u in the eight-vertex model can now readily be obtained 
from (10.4.21) and (10.4.23), using the re-arranged values of a, b, c, d, e.g. 

snh $(A - v )  = (a,lc,) snh A , (10.15.8) 
and must satisfy 

- A s u s A ,  (10.15.9) 

The parameters q,x,  z are then given by (10.7.9) and (10.7.18), i.e. 

and satisfy 
0 s q s x 2 s 1 ,  x s z s z - ' .  (10.15.11) 

Finally, p, p and w are given by (10.12.5), i.e. 

The models are critical when, and only when, k = 1. When this is so, 
from Chapter 15 it follows that I' = in ,  I = m, q = 1, p = 0, while from 
(10.15.6)-(10.15.13), A, u, p, w are finite, A, = -1 and x = z = 1. 

10.16 Special Cases 

There are three special cases of the eight-vertex model which were solved 
before the general zero-field model, namely the Ising model of Chapter 
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7, (Onsager, 1944), the 'free-fermion' model (Fan and Wu, 1970), and the 
'ice-type7 or 'six-vertex' model of Chapter 8 (Lieb, 1967a, b, c). These 
correspond respectively to the XZ, XY and Heisenberg - Ising cases of the 
XYZ chain. In each case the critical value of p is either 0, In or n. Felderhof 
(1973) and Jones (1973,1974) have considered these special cases in some 
detail. 

Ising Model and XY Chain 

As was shown in Section 10.3, the ordinary two-spin nearest-neighbour 
Ising model is a special case of the eight-vertex model, occurring when the 
condition (10.3.10) is satisfied, i.e. cd = ab. From (10.15.la) this implies 
that 

From (10.15.lb), this corresponds to Jy being zero, i.e. to the XZ case 
of the X Y Z  chain. Re-arranging J,, Jy, J, to satisfy (10.15.4) must leave 
J, as the zero coefficient, so from (10.15.5) 

r , = o .  (10.16.2) 

From (10.15.6b), (15.4.32) and (10.15.12), 

Thus p lies exactly at the mid-point of its allowed range of values (0, n). 
The critical exponents a, P, v, ps given by (10.12.24) are indeed the same 

as those in (7.12.12) and (7.12.14). Note that this is a case when nip is an 
even integer, so the free energy singularity contains a factor Inlt(, as in 
(10.12.22b) and (7.12.10). Similarly, an extra factor InlJ, + J,l occurs in 
(10.14.43). 

Free-Fermion Model 

Fan and Wu (1970) used the Pfaffian method mentioned in Section 7.13 
to solve the eight-vertex model for the case when 

Here ol , . . . , Q are the Boltzmann weights defined in (10.1.2). The 
method works even if the conditions (10.1.5) are not satisfied, i.e. it works 
for an eight-vertex model in a field. 



For the zero-field case, from (10.2.1) the restriction (10.16.4) becomes 

so from (10.15.1), A = 0 and J, = 0. This model therefore corresponds to 
the XY chain. Re-arranging Jx, J,, J, to satisfy (10.15.4) must take J,  to 
zero, i.e. it must transform the XY chain to the XZ chain. Then (10.15.lb) 
gives 

T r = O ,  (10.16.6) 

which is the Ising case just discussed. 
The zero-field free-fermion model can therefore be mapped to an Ising 

model, and has ,u = in. However, the restriction (10.16.5) ensures that 
a, b, c, d always lie in the disordered regime I11 of Section 10.11, so there 
is no transition to an ordered state. 

Six-Vertex Model and Heisenberg - Ising Chain 

The six-vertex model is obtained from the eight-vertex by setting d = 0, 
so from (10.15.1) F = 1 and 

Jx = J, . (10.16.7) 

The model therefore corresponds to the Heisenberg - Ising chain, and the 
eigenvectors of the transfer matrix must be those of the Heisenberg - Ising 
Hamiltonian. Lieb (1967a, b, c) determined this correspondence directly 
and made considerable use of it. 

Take (J ,  , J, , J,) =(1 , 1 , A) , thereby satisfying (10.15.lb). Permute and 
pair-negate them to satisfy (10.15.4). Define the elliptic function para- 
meters, in particular k, il and p, by (10.15.5)-(10.15.13). There are three 
distinct cases, and it is readily seen that they correspond to the ferro- 
electrically ordered, disordered and anti-ferroelectrically ordered phases 
of Section 8.10: 

(i) A > 1 (ferroelectric order): I', = - 1, Ar = -A , 
k = O ,  A = l ' = w ,  p = n .  

(ii) - l < A < l ( d i s o r d e r ) : r , = - A ,  A,= - 1 ,  
k = 1 ,  il=;p, A = - c o s p .  

(iii) A < -1 (anti-ferroelectricorder): rr = 1, Ar = A , 
k = O ,  A=-coshil,  p = O .  

The case (ii) is quite remarkable, since k = 1 throughout. This is the 
condition for the eight-vertex model to be critical. Thus in this phase of 
the six-vertex model the correlation length is infinite [for the free-fermion 
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case of the six-vertex model this has been verified explicitly (Baxter, 
1970a)l. The system is disordered only in the sense that there is no 
spontaneous polarization. 

Conversely, a critical eight-vertex model can be mapped to a 'disordered' 
six-vertex model. 

The six-vertex model has transitions at A = + 1 or - 1. The former occur 
in ferroelectric models, such as the KDP model, and from (10.16.8) ,u is 
then equal to n, which is its maximum possible value. As is shown in 
Section 8.11, this transition is first order, and the ordered state is frozen. 
This makes it difficult to interpret the general eight-vertex results, but note 
that (8.11.8) and (8.11.10) are correctly given by (10.12.24). 

The A = -1 transition occurs in anti-ferroelectric models, such as the 
Fmodel. From (10.6.8), ,u is then equal to its minimum value of zero. The 
derivation of the critical properties (10.12.22) and (10.12.23) is then invalid. 
A proper calculation of course gives the essential singularities of 
(8.11.14)-(8.11.25), and it is impossible to sensibly define critical expo- 
nents. Even so, it is worth noting that merely setting ,u = 0 in (10.12.24) 
does give the infinite exponent (8.11.18). Also, the 'exponent relations' 
(8.11.26) are in fact satisfied by the general eight-vertex model. 

10.17 An Exactly Solvable Inhomogeneous Eight-Vertex Model 

Until now in this chapter, the eight-vertex model has been taken to be 
homogeneous, i.e. the vertex energies , . . . , c8 do not vary from site to 
site. For the solvable zero-field case, this means that the Boltzmann weights 
a, 6, c, d, given by (10.1.2) and (10.2. I ) ,  are site-independent. 

It is possible to weaken this requirement, in a very special way, and still 
be able to calculate the free energy, etc. by straightforward generalizations 
of the above methods. In fact, exactly the same equations apply, but the 
variables are interpreted slightly more generally. 

Column Variation 

To see this, first suppose that the Boltzmann weights a, b, c ,  d can vary 
from column to column, but not row to row. Let a,, b,, c,, dj be their values 
in column j .  There are N columns in the lattice, so j =1 , . . . , N. 

Consider the star-triangle relation (10.4.1), which comes from 
(9.6.5)-(9.6.8). The matrices S and St now depend on the lattice column 
j to which they correspond, i.e. to their position j in the matrix products 



in (9.6.5) and (9.6.6). Even so, it is still true that (9.6.7) implies the 
equality of (9.6.5) and (9.6.6), provided only that M is a single matrix, 
independent of j. 

This corresponds to w", and hence a", b", c", d in Section 10.4, being 
independent of j. Since A" and T" are defined by (10.4.6) with a ,  b, c ,  d 
replaced by a", b", c", d ,  they are also independent of j. From (10.4.26), 
so therefore must be A, T, A', T'. 

For each column j, define p, k,  A, u by (10.4.24). Then from (10.4.17), 
k and A are independent of j, and are the same for the transfer matrix V' 
as they are for V. 

Once (10.4.26) is satisfied, the star-triangle relation reduces to 
(10.4.30). Here u and u' may depend on j, but u" may not. Let u, (u,') be 
the value of u for column j and transfer matrix V(V'). Then from (10.4.23) 
it follows that 

u,' - u, = independent of j . (10.17.1) 

To summarise: define the transfer matrix V by (9.6. I) ,  where each weight 
function w depends on the lattice column j to which it corresponds, i.e. 
to its position in the product. For column j, define w by (10.2.3) and 
(10.4.24), where k and A are independent of j and 

(The normalising factor p enters trivially into the equations and may be 
varied in any manner desired: here I shall regard it as constant for all lattice 
sites.) 

Then two transfer matrices commute if they have the same values of 
k, A, UP,. . . , u;. Their eigenvectors are therefore independent of u: they 
depend only on k, h and the differences of ul  , . . . , uN. 

Regard V as a function V(u) of u. Then again it satisfies (10.4.25). 
The working of Section 10.5 now generalizes easily. The a ,  b, c, d in 

(10.5.1) should be replaced by a,, b,, c,, dl. However, A and y in (10.5.2) 
are still independent of j, sop, is still given by (10.5.14) and (10.5.8). The 
u and u in (10.5.11)-(10.5.21) should be replaced by ul and u,, still related 
by (10.4.23). The factors {p  h[4(A + u ) ] ) ~  in (10.5.23) should be replaced 
in an obvious way by a product of p,h[i(A ku,)] over j = 1 , . . . , N; and 
incrementing u by k2A' should be read as incrememting each u, by 
+2A1. However, if ul is put into the form (10.17.2), where each uf is 
regarded as a constant, then this is the same thing. We therefore again 
obtain (10.5.32), but now (10.5.24) is replaced by 
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Provided each uj lies in the range (-A, A) the working of Section 10.8 
goes through virtually as written, the main change being that the definition 
(10.8.10) of A(u) is replaced by 

m N  

A(u) = n n (1 - qm exp[-n(u7 + u)/21]). (10.17.4) 
m = O j = l  

Note also that the ul , . . . , u, in Section 10.8 are quite different from the 
ul , . . . , u~ of this section. 

Regard the RHS of (10.8.47) as a function of the Boltzmann weights 
a, 6, c, d ,  the parameters q, x, z being defined as in Section 10.5. Write it 
,as -q (a ,  6 ,  c ,  d), i.e. 

Then for the inhomogeneous system being discussed, (10.8.44) becomes 
(in the limit of N large) 

N 

In Amax = - X V(aj , bj , cj dj) 
j= 1 

(10.17.6) 

a remarkably simple result! 
The other properties discussed in Section 10.10 are all independent of 

u, so are valid as written for this inhomogeneous model. 

Row Variation 

Now consider a lattice in which the Boltzmann weights a, 6, c, d can vary 
from row to row, as well as column to column. Let aii, bij, cij, dii be their 
values for the site in row i and column j. For each site, define p, k, A, u 
by (10.4.24) and require, for all i and j, that 

k, A = independent of i and j , (10.17.7) 
u . .  = uO + u! 

'I I ' 7  

where ui, is the value of u at site ( i ,  j), UP,. . . , 0% and u i  , . . . , u L  are 
some parameters which are at our disposal. 

The transfer matrix V now depends on the row i to which it refers, so 
let us write it as Vi. Then (8.2.1) becomes 

Z = Trace VlV2. . . VM. (10.17.8) 



Now note that k, A and the differences of vil, vi2,. . . , UI.N are indepen- 
dent of i. From the remarks after (10.17.2), it follows that the eigenvectors 
of Vi are independent of i: V1 , . . . , VM all commute. Provided each vi, lies 
in the range (-A, A), each Vi has the same maximal eigenvector. Thus 
(8.2.4) generalizes to 

Am,(i) being the maximum eigenvalue of Vi. From (10.17.6) we therefore 
obtain 

Like (10.17.6), this is an amazingly simple formula: the total free energy 
F = -kBT ln Z is the sum of the site free energies (but only in the limit of 
M, N large, and provided the conditions (10.17.7) are satisfied). Clearly 
this 'de-coupling7 is connected with the commutation properties of the 
transfer matrices. 

Again the v-independent properties (interfacial tension, correlation 
length, magnetization and polarization) must be the same as those of an 
homogeneous system with the same values of k and A. 

I regret that I know of no physically interesting inhomogeneous system 
satisfying (10.17.7). The staggered eight-vertex model (with different 
weights on the two sub-lattices) is extremely interesting as it contains as 
special cases the Ising model in a magnetic field (Wu and Lin, 1975), and 
the Potts and Ashkin - Teller models (see Chapter 12). Unfortunately it 
does not satisfy (10.17.7). 

Even so, it can be mathematically useful to consider these inhomogeneous 
generalizations of the eight-vertex model. The derivation (Baxter, 1973c) 
of the spontaneous polarization of the anti-ferroelectric six-vertex model 
makes extensive use of the form of the dependence of the transfer matrix 
eigenvectors on UP,. . . , u i .  The remarks after (10.17.2) will also play a 
key role in Chapter 13 in establishing the multiplication properties of the 
corner transfer matrices. 



KAGOME LATTICE EIGHT-VERTEX MODEL 

11.1 Definition of the Model 

With very little extra work, the results of Chapter 10 can be generalized 
to a particular class of eight-vertex models on the KagomC lattice of Fig. 
11.1. Not all KagomC lattice eight-vertex models belong to this class: the 
Boltzmann weights must satisfy the restrictions (11.1.7). Even so, the class 
is interesting since it contains as special cases the triangular and honeycomb 
Ising models, the triangular and honeycomb critical Potts models (see 
Chapter 12), and the triangular three-spin model (Baxter and Wu, 1973, 
1974). 

The eight-vertex model can be defined for any graph or lattice with four 
edges meeting at each site. (The word 'graph' is used here for any set of 

Fig. 11.1. The KagomC lattice, showing the three types 1, 2, 3 of sites. Also shown 
are three particular sites P, Q, R ,  and some typical right-pointing arrows. 

276 
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sites and connecting edges; a 'lattice' is a regular graph.) Place arrows on 
.the edges (one arrow per edge). Allow onfy configurations with an even 
number of arrows pointing into each site. At each site i there are eight 
possible arrangements of arrows: to arrangement j assign an energy E~, and 
a Boltzmann weight 

mii = exp(- ~ ~ , l k ~ T )  , (11.1.1) 

where kg is Boltzmann's constant and T the temperature. Then the partition 
function is 

= n mi,j,i.~, , (11.1.2) 

where the sum is over all configurations C of arrows on the graph, the 
product is over all sites i, and j ( i  , C) is the arrow arrangement at site i for 
configuration C. 

For each site i, we can always label the eight arrow arrangements so that 
arrangement 2 is obtained from 1 by reversing all four arrows; and similarly 
for arrangements 4 and 3 , 6  and 5, 8 and 7. Then the 'zero-field' condition 
is 

It is then convenient to write ai, bi, ci, difor mil, 0.43, mi5, mi,, SO that 

For the homogeneous square lattice, with the vertex arrow arrangements 
ordered as in Fig. 10.1, these ai, bi, ci, di are independent of i and are the 
a,b,c,d of (10.2.1). 

Now consider the KagomC lattice. It is apparent from Fig. 11.1 that there 
are three types of sites. Let us call them simply 1, 2 and 3, and suppose 
that all sites of the same type have the same interaction energies and 
Boltzmann weights. We can then use bl to denote the value of b for all 
sites of type 1, and similarly for al, cl, dl, a2, b2, c2, d2, a3, b3, c3, d3. 

For a site of type i, order the eight vertex arrow arrangements as in row 
i of Fig. 11.2. This ordering has the symmetry property that any row can 
be obtained by rotating the previous row anti-clockwise through 120". 

For each site of type i, it is useful to define a vertex weight function wi 
analogously to (10.2.3). To connect with relevant equations in Chapters 
9 and 10, it is convenient to do this in the following asymmetric way. 

With each edge m associate an 'arrow spin' a,, with value +1 (-1) if 
the corresponding arrow points generally to the right (left). (Some typical 
right-pointing arrows are shown in Fig. 11.1). Consider a particular site 
of the lattice, of type i, and let p, a ,  P, v be the arrow spins of the 
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Fig. 11.2. The three types of vertex on the Kagome lattice, with the eight arrow 
arrangements allowed on each. The corresponding Boltzmann weights are shown 

underneath. 

Fig. 11.3. The three types of vertex on the Kagome lattice, showing the labelling 
p, a, B, v of the surrounding edge arrow-spins, and the labelling r ,  s, t, u of the 

surrounding faces. 

Table 11.1. Values of wi(p, alp, v). 

CL, alp, v w1 wz w3 

+, +I+, + and -, -I-, - a2 b3 
+, -I-, + and -, +I+, - b~ b2 a3 
+, -I+, - and -, +I-, + c1 c2 c3 
+, +I-, - and -, -I+, + dl d2 d3 

appv = -1 0 0 0 
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surrounding edges, arranged as in Fig. 11.3. Let wi(p , alp , v) be the 
Boltzmann weight of the corresponding arrow configuration, as given by 
Fig. 11.2. Then the functions wl, w2, w3 have the values given in Table 
11.1. 

Comparing this with (10.2.3), it is apparent that this is the same as 
defining each function wi by (10.2.3), with a, b, c, d replaced by 
ai, bi, q, di, except that a3 and b3 are interchanged. The partition function 
can now be written in a form analogous to (10.2.6), namely 

= C II wi(ai, a m l a p  q) 7 (11.1.5) 

where the sum is over all choices a ={a1 , a 2  , . . .} of the arrow spins; the 
product is over all sites; and for each site the symbol i denotes its type, 
and 1, m , p ,  q are the labels of the surrounding edges, arranged in the same 
way as p, a ,  p, v in Fig. 11.3. 

Star - Triangle Restriction 

It is obvious from Fig. 11.1 that there are two types of triangles in the 
KagomC lattice: up-pointing and down pointing. Consider a triangle, of 
either type, and let a1 , . . . , as be the arrow spins on the external edges; 
pl , & , & the arrow spins on the internal edges, arranged as in Fig. 11.4. 

These two types of triangles contribute factors 

Fig. 11.4. The two types of triangles on the KagomC lattice. The arrow spins 
ctl, . . . , a, /?I, &, /?3 are associated with edges; the Ising spins fi, . . . , a-, with faces. 
Equations (11.1.6) and (11.5.8) are the conditions that the total weights of the two 

triangles be equal. 



respectively to the summand in (11.1.5). In each case all remaining factors 
in (11.1.5) are independent of PI, P2, &, The summations over P1 , b ,  

may therefore be performed, giving an effective total weight for the 
triangle. 

This weight is a function of al , . . . , a!6. It will be shown in the next 
section that the KagomC lattice eight-vertex model is solvable if the weight 
is the same for both types of triangle, i.e. if 

for all values of al ,  . . . , ( ~ g  

This is precisely the 'star- triangle' relation (9.6.8), with w, w", w' 
replaced by wl, w2, w3. It is therefore equivalent to the six equations 
(104.1)  with a, b, c, d ,  a", b", c", d ,  a ' ,  b', c', d' replaced by 
a,, bl, cl, dl, a2, b2, CZ, d2, b3, a3, c3, d3. With this notation the equatiops 
(10.4.1) assume a more symmetric form, and can be written as 

for all permutations (i , j , k) of (1 , 2  , 3 ) .  
All the corollaries of (10.4.1) that were obtained in Section 10.4 can 

now be applied to (11.1.7). In particular, as in (10.4.6) define 

A, = h(a: + b: - c: - d:)l(al b, + cldl) , (11.1.8) 

for j = 1,2 ,3 .  Then from (10.4.26) it follows that Al = A2 = A3 and = 

T2 = r3. Taking A and r to be the common values, we may therefore write 

Elliptic Function Parametrization 

We can also apply the elliptic function parametrization of Section 10.4 to 
the equations (11.1.7). (We shall only need it in this chapter at the end 
of Section 11.7 and in Section 11.8.) Using (10.4.21), we can define k, 
A, ul, u2, u3 such that, for j = 1, 2, 3, 
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Here snh u is the hyperbolic sn function of argument u and modulus k, as 
defined by (10.4.20) and (15.1.4)-(15.1.6). From (10.4.17), it follows that 

The ul, u2, u3 here correspond respectively to u, u", A - u' in Section 
10.4. (Interchanging a'  and b' is equivalent to replacing u' by A - u'.) Thus 
(10.4.30) becomes 

u ~ + u ~ + u ~ = A .  (11.1.12) 

This completes the parametrization. If the ai, b,, ci, d, satisfy (11.1.10) 
and (11.1.12), then the star - triangle restrictions (11.1.7) are satisfied. 
Conversely, (11.1.7) implies that there exist k, A, ul, u2, u3 satisfying 
(11.1.10) and (11.1.12). 

11.2 Conversion to a Square-Lattice Model 

In this section it will be shown that the effect of the star - triangle restrictions 
(11.1.7) is to ensure that certain properties of the KagomC lattice model 
are the same as those of an associated square-lattice model. The results 
of Chapter 10 can then be used. 

The argument here can be specialized to the Ising model (Baxter and 
Enting, 1978), or generalized to any graph made up of intersecting straight 
lines (Baxter, 1978a, b). 

First consider any up-pointing triangle in the KagomC lattice, e.g. the 
triangle PQR in Fig. 11.1. Label the surrounding arrow spins as in Fig. 
11.4. Then the contribution of this triangle to the partition function (11.1 S ) ,  
summed over arrow spins on internal edges, is the LHS of (11.1.6). 

Replace this contribution by the RHS of (11.1.6). The partition function 
is now that of the graph shown in Fig. 11.5(a), in which the horizontal line 
AB has been shifted above the site R. The site P is still the intersection 
of AB with the SW-NE line, and still has weight function wl. Similarly, 
Q and R lie on the same lines as before, and have the same weight functions 
(w2 and w3) as before. 

This procedure not only leaves the partition function Z unchanged; it 
also leaves unchanged any correlation, e.g. 
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Fig. 11.5. The KagomC lattice of Fig. 11.1 with: (a) the line AB shifted above R; 
(b) the line AB shifted up a complete row. The partition function, and all corre- 

lations in the lower half of the lattice, are unchanged. 

provided none of the arrow spins a3, a4, @ ,  . . . , a82 correspond to edges 
inside the triangle PQR. 

Suppose the lattice to be wound on a vertical cylinder and perform this 
procedure for each triangle that initially has its base on the line AB. The 
result is the graph in Fig. 11.5(b): the line AB has been shifted up one 
row. 

Now repeat this procedure for the horizontal line above AB, then for 
AB itself, and so on until AB and all horizontal lines above it are at the 
top of the graph. Similarly, shift CD and all horizontal lines below it to 
the bottom of the graph. The end result is that the Kagome lattice of Fig. 
11.6(a) is changed to the graph of Fig. 11.6(b). 

Consider any set of edges lying between (but not on) the initial lines AB 
and CD, i.e. adjacent to the middle row of sites. An example is the pair 
( j  , k) in Fig. 11.6. At no stage of the transformation does a horizontal line 
pass over any of these edges. They are therefore external to all triangles 
involved in the many star - triangle transformations, so their correlations 
are unchanged. 

( a )  (b) 

Fig. 11.6. (a) The KagomC lattice, (b) the same lattice after all upper horizontal 
lines have been shifted to the top, and all lower ones to the bottom. The partition 
function, and correlations in the central row such as (a;a& and (omon), are 

unchanged. 
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The eight-vertex models on the two graphs (a) and (b) in Fig. 11.6 
therefore not only have the same partition function Z, but also the same 
correlations between spins in the middle row, e.g. (a;.cuk). 

Let 2M be the number of horizontal lines. Then Fig. 11.6(b) consists of 
a central square lattice (drawn diagonally) region of 2M rows, 'framed' 
above and below by regions each containing M horizontal lines. All sites 
in the central region have weight function w3. 

In the limit of M large, edges j and k lie deep inside the square lattice 
region. We therefore expect the correlation (a;ak) to be that of the usual 
square lattice, drawn diagonally. In particular, this implies that 

(qak)  = function only of a3, b3, c3, d3 , (11.2.2) 

and similarly for any correlation between edge spins adjacent to the central 
row of sites. 

Framing Boundaries 

The result (11.2.2) is true even though the boundary 'framing' regions also 
become large. To see this, let V3 be the row-to-row transfer matrix in the 
central region, and VI2 the transfer matrix in the framing regions. Then 

where sj, sk are diagonal matrices with diagonal entries a;., ak,  and q is a 
vector whose entries are determined by the boundary conditions. Let A12 
be the maximum eigenvalue of VI2 and set 

Then (11.2.3) becomes 

This is precisely the correlation inside a square lattice, with weight function 
w3 and boundary conditions corresponding to the vector @. When M is 
large, @ tends to a non-zero limit, namely the maximal eigenvector of V12. 
From the Perron - Frobenius theorem (Frobenius, 1908), this vector has 
only non-negative entries, and so does the maximal eigenvector of V3. 
They cannot therefore be orthogonal (unless the entries of one are zero 
for all non-zero entries of the other, which is not to be expected). This 
means that @is not a pathological boundary condition on the square lattice, 
and the RHS of (11.2.5) can be evaluated for M large by the methods of 



Section 2.2. These give 

(~j.ak) = gTsk(v3/A3) sjWCT( (11.2.6) 

where A3, (are the maximum eigenvalue and eigenvector of V3. This result 
depends only on V3, not on the boundary condition @. 

For simplicity I have assumed in this argument that VIZ and V3 (and the 
top and bottom boundary conditions) are symmetric: this is not a necessary 
restriction. 

11.3 Correlation Length and Spontaneous Polarization 

Return to (11.2.2). If edges j and k are far apart, but still lie in the central 
horizontal band in Fig. 11.6, then 

(qffk) - exp[- I j - ~ I / ~ K G ]  , (11.3.1) 

where &G is the horizontal correlation length of the KagomC lattice. From 
(11.2.2) it follows that 

where EsQ(a , b , c , d)  is the diagonal correlation length of the square lattice 
eight-vertex model with Boltzmann weights a ,  b, c, d as in row 3 of Fig. 
11.2. This diagonal correlation length has not to my knowledge been 
evaluated (it would mean obtaining equations for the eigenvalues of the 
diagonal-to-diagonal transfer matrix, which should be possible). It pre- 
sumably has the same critical behaviour as the row correlation length 
given in Section 10.10, since near criticality correlations in all directions 
are expected to become similarly long-ranged. 

Consider any site of type 3 in the central row of the KagomC lattice in 
Fig. 11.6(a). Let y, a; P, v be the spins on the surrounding edges, arranged 
as in the last diagram in Fig. 11.3. These edges all lie between the lines 
AB and CD, so analogously to (11.2.2) 

(a), (my) , . . . , (yapv) = functions only of a3, b3, c3, d3, 
being the same as those of the 
regular square lattice model 
with these weights, constructed 
on the interior lattice of 
Fig. 11.6(b). (11.3.3) 

Thus all local correlations round a site of type 3 are the same as those 
of the corresponding square lattice. By symmetry, analogous equivalences 



apply for sites of type 1, and of type 2. Provided the restrictions (11.1.7) 
are satisfied, all local correlations of the KagomC lattice model can therefore 
be expressed as square lattice correlations. 

This means that for an edge j of the KagomC lattice, adjacent to a site 
of type 3, 

(a;.) = w a s  , b3 , C3, d3) , (11.3.4) 

where Po(a, b , c , d) is the spontaneous polarization of the square lattice 
eight-vertex model with Boltzmann weights a, b, c, d.' This is given by 
(10.10.24), q and x being defined in Section 10.15. It depends on a, b, c, 
d only via A and T, so from (1 1.1.8) the RHS of (11.3.4) is unchanged by 
replacing a3, b3, c3, d3 by al, bl, cl, dl or a*, b2, c2, d2. Using rotation 
symmetry, it also follows that (11.3.4) is true for all edges j. Thus (a;.) has 
the same value for all edges of the KagomC lattice. 

11.4 Free Energy 

While the framing regions in Fig. 11.6(b) do not contribute (for a large 
lattice) to central correlations, they certainly contribute to the partition 
function, and hence to the total KagomC lattice free energy 

In fact, in the limit of a large lattice we expect the bulk free energy FKG 
to be simply the sum of the bulk free energies for the three regions in Fig. 
11.6(b), the contributions from their boundaries being insignificant. Thus 

where Fse is the total free energy of the central region, FFR is the free 
energy of either the upper or lower framing regions. 

Let N be the number of sites of type 1 in the lattice. Then (for N large) 
there are also N sites of type 2, and N of type 3. There are therefore N 
sites in the central region, all of type 3, so 

where f(a , b , c , d) is the free energy per site of a regular square lattice 
eight-vertex model, as given by (10.8.47) and Section 10.15, and kBT is 
here to be regarded as some given constant. 

An expanded picture of one of the framing regions is given in Fig. 11.7. 
Plainly this is also a square lattice, but with sites of type 1 and sites of type 
2 on alternating columns. There are N sites altogether. 



From (11.1.8), all sites have the same value of A and of T, so the 
eight-vertex model in either framing region is a column-inhomogeneous 
model of precisely the type discussed in Section 10.17. The total free energy 
is therefore (for N large) 

FFR = iNf(a1, bl , c l ,  dl) +1Nf(a2, b2, c2, d2). (11.4.4) 

Substituting the expressions (11.4.3) and (11.4.4) into (11.4.2) gives the 
properly symmetric and very simple result 

Fig. 11.7. Expanded section of one of the framing regions in Fig. 11.6(b), showing 
the two types of sites. This is a square lattice, with different weights on alternate 

columns. 

11.5 Formulation as a Triangular-Honeycomb Ising Model with Two- 
and Four-Spin Interactions 

Like the square-lattice model, the KagomC lattice eight-vertex model can 
be formulated in terms of 'magnetic' spins on faces, instead of 'electric' 
arrows on edges. 

The most symmetric way to do this is to regard the arrow configuration 
shown in Fig. 11.8(a) as a standard. (It is anti-ferroelectric: all vertices 
are of the fifth type in Fig. 11.2.) With each face r associate a spin a,, with 
values + 1 and - 1. Consider an edge j, with faces r and s on either side. 
Place an arrow on it according to the rule: 

if qa, = + 1, point the arrow in the same direction as 
the arrow on edge j in the standard configuration; 
otherwise point it the opposite way. (11.5.1) 

Do this for all edges. 
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Imagine an observer walking round any particular site, going successively 
through the four faces. If he observes a change in spin from one face to 
the next, then the arrow on the intervening edge is non-standard, and 
conversely. When he returns to his starting point he must have seen an 
even number of changes, so there are an even number of non-standard 
arrows on the four edges at each site. Since the standard configuration is 
two in and two out, there must in any event be an even number of arrows 
into (and out of) each site. This is the eight-vertex condition. 

Fig. 11.8. (a) The standard anti-ferroelectric arrow configuration on the Kagome 
lattice (not all arrows are shown); (b) the corresponding triangular lattice con- 
figuration, obtained by shrinking the up-pointing triangles of the Kagomt lattice 
down to points. The three sub-lattices A ,  B, C of the triangular lattice are also 

shown. 

To each configuration of the face-spins, there therefore corresponds an 
arrow covering of the edges that satisfies the eight-vertex condition. Con- 
versely, by the same reasoning as in Section 10.3, to each such arrow 
covering there correspond two face-spin configurations (differing from one 
another in the reversal of all spins). Using this one-to-two correspondence, 
(11.1.2) can be written 

where the sum is over all configurations a = {q , @ , . . .) of the face-spins, 
the product is over all sites i, and j(i , a)  is the arrow arrangement at site 
i for spin-configuration a. 

Let r, s, t ,  u be the faces round a site of type i, arranged as in Fig. 11.3. 
Let W i ( q  ,4 , a, , a,) be the Boltzmann weight of the vertex arrow arrange- 
ment corresponding to the face spins having the values a,, a,, a,, a,. Then 
from rule (11.5.1) and Figs. 11.2, 11.3 and 11.8, 



11 KAGOME LATTICE EIGHT-VERTEX MODEL 

W;(- , + , + , +) = W;(+ , + , - , +) = b;, 

W;(+ , + , + , +) = W;(- , + , - , +) = c;, (11.5.3) 

W;(-, - , + , +) = W;(- , + , + , -) = di, 

for i = 1, 2, 3 and a,, a,, a,, a, =? 1. This defines the function Wi, and 
(11.5.2) can be written as 

~ = : z f l ~ ; ( 4 , ~ ~ , a , , ~ ~ ) ,  (11.5.4) 

the product being over all sites; i now denotes the type of the site, and r,  
s, t ,  u are the surrounding faces. 

From (11.5.3), the function W; can be written as 

where M, K;, K[, K:! are related to a;, b;, ci, d; by 

Using this form (11.5.5) of W;, it is apparent from (11.5.4) that Z (strictly 
22) is the partition function of an Ising model defined on the faces of the 
KagomC lattice, with two-spin interactions between opposite faces at a site, 
and four-spin interactions between the four faces round a site. 

Placing a dot at the centre of each face of the KagomC lattice, and linking 
dots whose spins interact via a two-spin interaction, gives the lattice of 
Fig. 11.9. This consists of a honeycomb lattice interlacing a triangular one. 
The interaction coefficients K;, K,! associated with the various edges are 
shown. Let N be the number of sites of type 1 (or type 2, or type 3) in the 
original KagomC lattice. Then the associated honeycomb lattice has 2N 
sites, the triangular one has N; each has 3N edges, and each edge of one 
is crossed by an edge of the other. Using (11.5.5), (11.5.4) can now be 
written as 
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where the first sum inside the exponential is over all edges ( r  , t )  of the 
honeycomb lattice; the second is over all edges ( s  , u )  of the triangular 
lattice; and the third is over all honeycomb edges ( r  , t ) ,  (s  , u )  being the 
crossing triangular edge. In each case i ( = I ,  2 or 3) is the type of the 
edge, as in Fig. 11.9. 

Fig. 11.9. The honeycomb-triangular lattice formed by placing a dot at the centre 
of each face of the KagomC lattice, and linking dots whose Ising spins interact via 
a two-spin interaction. The corresponding interaction coefficientsK1, . . . , K( are 
indicated; r, s, t ,  u correspond to the four faces in Fig. 11.3(a); m and n correspond 

to the faces m and n in Fig. 11.6(a). 

Thus Z is, to within a normalization factor, the joint partition function 
of a honeycomb and a triangular king model interacting via four-spin 
interactions on crossing edges. 

Star - Triangle Restriction 

For the solvable model, the interaction coefficients K1 , . . . , K! are not 
arbitrary: they must satisfy the restrictions (11.1.7), where ai, bi, ci, di are 
given by (11.5.6). 

These restrictions came from the star- triangle relation (11.1.6): it is 
interesting to go back to this and express it in terms of 'magnetic' spins on 
the faces of the KagomC lattice, rather than 'electric' spins on the edges. 

The relation (11.1.6) states that the two graphs in Fig. 11.4 have the 
same total weight, after summing over allowed configurations of arrows 
on the internal edges. To express this relation in 'magnetic' language, 



associate spins with the faces of the graphs, as in Fig. 11.4. Then the 
requirement that the two graphs have the same total weight is 

This equation must be true for all values of the external spins 
q, . . . ,us. The summations are over the values of the internal spin q: 
this corresponds in (11.1.6) to summing over the allowed values of B1, 
a, & (only two sets of values are allowed by the eight-vertex rule). 

Using (11.5.3), one can verify directly that the equations (11.5.8) are 
the same as (11.1.6). Using (11.5.5), they can be written explicitly as 

Since they are equivalent to (11.1.6), they imply (11.1.7) and (11.1.8), 
in particular TI = T2 = r3. From (11.1.9), this means that aibilc;di is there- 
fore independent of i, and from (11.5.6) this implies 

K:' = independent of i . (11.5.10) 

Thus all sites must have the same four-spin interaction coefficient, 
regardless of their type. Let us call this coefficient simply R'. Then by 
considering all 64 values of q , . . . , q, we find that (11.5.9) is equivalent 
to the six equations: 

cosh(Ki - Kj + Kk + K") 
exp(2K; - 2Kk) = 

cosh(Ki + Kj - Kk + Kt') ' 

for all permutations (i , j , k) of (1 , 2  , 3 ) .  
These are the equations (11 .l.7). They are not independent, since the 

second set can be easily deduced from the first. The first set, containing 
three equations, is plainly independent since it can be used to define 
Ki, Ki, Kj for given values of K1, K2, K3, K". Alternatively, 
Ki, Ki, Kj, K" can be regarded as given, and the equations solved for K1, 
Kz, K3. 
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Using (l1.5.6), the corollaries (11.1.8)-(11.1.9) become, for j = 1,2 ,3 ,  

A = - sinh 2K, sinh 2Kj - tanh 2K' cosh 2K, cosh 2K; , (11.5.12a) 

~liminating y2 (taken to be negative) between the equations (10.4.12), and 
using (10.4.9), the elliptic modulus k is given by 

2kil(1 + k) = I ,  (11.5.13) 

where 
l 2  = (1 - r 2 ) / ( ~ 2  - r 2 ) .  (11.5.14) 

Using (11.5.12), this last equation can be written 

where 

u, = tanh K,, uj = tanh K,!, u" = tanh K" . (11.5.16) 

Spontaneous Magnetization 

The argument of Section 11.2 can be repeated in terms of face-spins, 
instead of edge arrow-spins. Instead of using (11.1.6), one uses (11 S.8) .  
The resulting analogue of (11.2.2) and (11.3.3) is the following. 

Let q , . . . , a, be any set of face spins of the Kagome lattice, all lying 
between the lines AB and CD in Fig. 11.6(a). Suppose the restrictions 
(11.1.7), or equivalently (11.5. 11), are satisfied. Then for a large lattice 

(q . . . . a,) = same as in the regular square-lattice eight-vertex 
model, with weights a3, b3, c3, d h  on the 
interior lattice in Fig. 11.6(b) . (11.5.17) 

Thus (9 . . . . a,) is a function only of a3, b3, cg, d3, or equivalently of K3, 
K;, r. 

In particular, this means that the expectation value of any face-spin a, 
is 

(0,) = Mo(a3 , b3 , c3 , d3) , (11.5.18) 

regardless of whether a, lies in a triangular or hexagonal face of the 
KagomC lattice. Without ambiguity, we can therefore call (a,) the spon- 
taneous magnetization. 
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Here Mo(a3 , b3 , cg , d3) is the spontaneous magnetization of the square 
lattice eight-vertex model with Boltzmann weights a, b, c ,  d. It is given by 
(10.10,19). Like the spontaneous polarization, it depends on a, b, c, d only 
via A and T. These have the same value for all three types of lattice site, 
so (11.5.18) is unchanged by replacing a3, b3, c3, d3 by al, bl, cl, dl,  or by 
a2, b2, c2, d2. Indeed, it is obvious from the rotation symmetry of the lattice 
that this must be so. 

Hyperbolic Trigonometry and the Elliptic Function Parametrization 

Define two further parameters w, & by 

Then (11.5.12a) can be written as 

cosh w = cosh 2Kjcosh 2Kj + cosh & sinh 2Kjsinh 2Kj . (11.5.20) 

This is the same as the relation between the sides w, 2Kj, 2K; of an 
hyperbolic triangle, with angle n + i& between the sides 2Kj, 2K; (Onsager, 
1944, p. 135; Coxeter, 1947). Other corollaries of the star - triangle rela- 
tions (11.5.11), e.g. 

- cosh 2K2 C O S ~  2K3 + coth 2Ki sinh 2K2 sinh 2K3 (11.5.21) 
=cosh 2K1 cosh 2K" + coth 2Ki sinh 2K1 sinh 2 K ,  

can be interpreted in terms of hyperbolic trigonometry. It seems likely that 
many of the properties of the star-triangle relation, notably the 'quadri- 
lateral theorem' (Baxter, 1978a), could be conveniently interpreted in this 
way: as far as I know, this has not yet been done. 

These ideas also provide an alternative approach to the elliptic function 
parametrization of Section 10.4. It is well known that the relation (11.5.20) 
can be simplified by introducing elliptic functions of modulus 

1 = sinh Qlsinh w , (11.5.22) 

(Greenhill, 1892, Paragraph 129). Onsager (1944, p. 144) refers to this as 
a uniformizing substitution. 

This 1 is precisely that defined by (11.5.15), so it is related to the modulus 
k used in Chapter 10 by (11.5.13). From Section 15.6,l and k are therefore 
related by a Landen transformation, so both approaches lead effectively 
to the same elliptic function parametrization, as they should. 



11.6 Phases 

From (11.3.4) and (11.5.18), the spontaneous polarization and magnet- 
ization of the KagomC lattice model are the same as those of a square- 
lattice eight-vertex model with the same values of A  and r. From Section 
10.11, it follows that the KagomC lattice model is ordered if ( A  1 > 1, 
disordered if 1 A 1 < 1. 

The archetypal ordered regime is when 

c i > a i + b i + d i ,  ai>O, bi>O, d i>O,  (11.6.1) 

for i = 1, 2, 3. From (11.1.9), it follows that A  < - 1. The ground state is 
then the anti-ferroelectric arrow configuration shown in Fig. 11.8(a), or 
the one obtained from it by reversing all arrows. Since we have used this 
as a standard in relating face- and arrow-spins, our resulting face-spin 
interpretation of this phase is ferromagnetic: in a ground state all spins on 
triangular faces are the same, and all spins on hexagonal faces are the 
same. There are four such ground states. 

In addition to (11.6.1), there are seven other regimes in the available 
parameter space in which the system is ordered (Baxter, 1978a, p. 337). 
They can all be obtained from the archetypal case by reversing appropriate 
sets of spins. For example, reversing all face-spins on up-pointing triangles 
is equivalent to reversing all arrows on the sides of up-pointing triangles: 
from Fig. 11.2 this interchanges ai with di, and bi with ci, SO maps (11.6.1) 
to 

b i > a i + c i + d i ,  ai>O, ci>O, d i > O ,  (11.6.2) 
with A > 1. 

Alternatively, reversing face-spins between alternate pairs of horizontal 
lines is equivalent to reversing all horizontal arrows. This leaves a3, b3, c3, 
d3 unaltered, but for i = 1 or 2 it interchanges ai with bi, ci with di. Thus 
it maps (11.6.1) to 

dl > al + bl + cl, d2 > a2 + b2 + c2, c3 > a3 + b3 + c3, (11.6.3) 

all weights being positive and A < -1. 
Two other mappings can obviously be obtained from this by using the 

rotation symmetry. All eight ordered regimes can then be obtained by 
combinations of these various mappings. 

There is only one disordered regime, namely 

0 < ai, bi, ci, di < $(ai + bi + ci + di) , (11.6.4) 

for i = 1, 2, 3, with -1 < A <,I .  
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11.7 K' = 0: The Triangular and Honeycomb Ising Models 

In Section 10.3 we remarked that the square-lattice eight-vertex model 
factors into two independent Ising models if the four-spin interaction 
coefficient K" is zero. 

A similar factorization occurs for the Kagome lattice model. From 
(11.5.10), we can set all four-spin coefficients K:' simultaneously to zero. 
The exponential in (11.5.7) then factors into two parts, one involving only 
spins on the honeycomb lattice of Fig. 11.9, the other only spins on the 
triangular lattice. It follows at once that 

where ZH(K1. K2, K3) is the partition function of the nearest-neighbour 
Ising model on the honeycomb lattice, with interaction coefficients 
K,, K2, K3; and ZT(Ki , Ki , Kj) is the partition function of the nearest- 
neighbour Ising model on the triangular lattice, with interaction coefficients 
K;, Ki, Kj. The honeycomb lattice has 2N sites, the triangular has N. 

The relations (11.5.11) can be written as 

together with two other equations obtained by permuting the suffixes 1, 
2, 3. These are precisely the Ising model star-triangle relations (6.4.8) 
(with R eliminated and Kj , L, replaced by K,! , K,). 

This equivalence with the Ising model star- triangle relation is even 
clearer in the original equation (11.5.9). If the Ky therein vanish, it factors 
into two equations, one involving only the spins q, q, 05, the other 
involving @, a4, 06. They are 

where R is a common constant. Each of these equations is precisely the 
star - triangle relation (6.4.4) - (6.4.5). 

From (11.5.12b), r is zero, so from (11.5.14) and (11.5.12a) we can 
choose 

1- '=-A=sinh2Kjsinh2K/, j = 1 , 2 , 3 .  (11.7.4) 
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This is precisely the relation (6.4.13), with k, K,, L, therein replaced by 
1, K;, Ki. From (6.4.16) and (6.3.5) it follows that 

where ui, v;, uj are defined by (11.5.16) in terms of the triangular inter- 
action coefficients Ki, Ki, Kj. 

Alternatively, using (6.4.12), 1 can be expressed in terms of the honey- 
comb lattice coefficients K1, K2, K3 as 

where 
Z, = exp(-2Kj), j = 1,2 ,3 .  (11.7.7) 

[The similarity in form of (11.7.5) and the inverse of (11.7.6) is a 
reflection of the duality relation of Section 6.3. Why they should also 
resemble the eight-vertex single-site relation (11.5.15) I do not know.] 

The R in (11.7.3) is the same as the R in Section 6.4, so from (6.4.14), 
changing k, L,, K, to 1, K,, K!: 

R~ = 21 sinh 2K1 sinh 2K2 sinh 2K3 (11.7.8) 
= 2/(12 sinh 2Ki sinh 2Ki sinh 2Kj) 

Free Energy 

In our present notation, the identity (6.4.7) becomes 

ZH(KI , K2, K3) = RN&(Ki , Ki , Ki) . (11.7.9) 

Substituting this into (11.7.1), taking logarithms and using (11.4.1) and 
(11.4.5), gives 

writingfi for f(ai , bj , cj , dj ) ,  which is the free energy per site of the square 
lattice eight-vertex model with weights ai, b,, c,, d,. 

These weights are given by (11 S.6). Since KJ' is zero, the square lattice 
model is the product of two square lattice Ising models. Choosing each M, 
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to be one, from (10.3.11) f ,  is the free energy per site of the square lattice 
Ising model with interaction coefficients K,, K,'. 

It is convenient to work with the dimensionless free energy per site 

From (1.7.6), for a lattice of N sites this is related to the partition function 
Z by 

v = - lim N-' In Z 
N--t m 

For the square lattice Ising model with interaction coefficients K,, K,', 
v is a function only of these coefficients. Let us write it as qsQ(Kj, K,'). 
Similarly, for the triangular Ising model with interaction coefficients 
Ki, Ki, K;, let us write it as qT(Ki , K$ , Kj). Then from (11.7.10)- 
(11.7.12), 

Also, using (11.7.9) and remembering that the honeycomb lattice herein 
has 2N sites, the dimensionless free energy per site of the honeycomb 
lattice Ising model, with interaction coefficients K1, K2, K3, is 

The function vsQ(K, K') has been obtained in Chapter 7, and (as a 
special case of the eight-vertex model) in Chapter 10. Replacing the K, L, 
k of Chapter 7 by the K', K, 1 herein, the equations (7.9.14), (7.9.16), 
(7.6.1) give, for all values of K and K', 

vsse(K, K') = -(2n) -' ln{2[cosh 2K' cosh 2K 1 
+ (1 + 1-2 - 21-I cos 20)~]) dB, (11.7.15) 

where, similarly to (11.7.4), 

1-' = sinh 2K sinh 2K' . (11.7.16) 

We are free to make any choice of Ki, Ki, K;, or of K1, K2, K3, so we 
can use (11.7.13) or (11.7.14) to obtain the free energy of any regular 
triangular or honeycomb Ising model. The other parameters are defined 
by the three equations (11.7.2), and by (11.7.8). 
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Nearest-Neighbour Correlations 

When K t  = 0, (11.5.17) relates correlations of the triangular and honey- 
comb Ising models to those of the square. Consider the two faces m, n in 
Fig. 11.6. Let a, , a,, be the corresponding Ising spins and apply (11.5.17) 
to ( W T n ) .  

As in Section 11.5, place dots at the centre of each face and link dots 
whose spins interact via a two-spin interaction. Then Fig. 11.6(a) becomes 
Fig. 11.9, and m and n are vertical nearest neighbours on the honeycomb 
lattice, with interaction coefficients K1, K2, K3. On the other hand, Fig. 
11.6(b) becomes two interlaced square lattices: m and n are vertical nearest 
neighbours on the square lattice, with interaction coefficients K3, Kj. In 
both cases the edge (m , n) has interaction coefficient K3. Since (aman) is 
the same for both, it follows that 

where g ~ ,  gse are the nearest-neighbour correlations of the honeycomb 
and square lattices, respectively, and the first argument is the interaction 
coefficient of the edge under consideration. 

Similarly, considering the correlation between the spins on the two faces 
in Fig. 11.6 that are next to both rn and n, we obtain 

The correlations g s ~ ,  g ~ ,  g~ are derivatives of qSQ, qH, qT. From (6.2.1) 
(with K ,  L replaced by Kt,  K), (11.7.12) and (1.4.4), 

gsQ(K, Kt) = -aqsQ(K, Kt)IaK. (11.7.19a) 

Similarly, 

g ~ ( K i  , K2, K3) = - aqH(K1, K2, K3)IdKi, (11.7.19b) 

gl(Ki, Ki , Kj) = - aql(Ki, Ki , K$)IaKi, (11.7.19~) 

where each differentiation is performed with the other arguments kept 
constant. 

Alternative Derivation of the Ising Model Free Energy 

The relations (11.7.17) and (11.7.18) are not mere consequences of 
(1 1.7.19). They contain more information. 

To see this, note that (11.7.13) and (11.7.14) imply that 



(This is a simple corollary of (11.7.9).) Differentiate this equation with 
respect to K3, keeping K1 and K2 constant. 

The Ki, K;, Ki are defined by (11.7.2). From this, (11.7.4) and (11.7.8), 
one can verify that 

aKiIdK3 = 2 ~ 2 ,  aK$laK3 = 2w1, 
where 

w = 1 sinh 2Ki sinh 2K$ sinh 2KS, (11.7.22) 

Differentiating (11.7.20), using (11.7.17)-(11.7.19), therefore gives 

Since K1, K2, K3 are independent, this is a three-variable equation for 
the two-variable function gsQ(K, K'). Baxter and Enting (1978) have 
shown that it, together with (11.7.19a) and the symmetry property 
IlrsQ(K, K t )  = vsQ(Kt , K), completely determines gsQ(K, Kt) .  The inter- 
ested reader is referred to that paper for details: equation (8) therein (with 
K , L replaced by K' , K) is the equation (11.7.23) above. Briefly, (11.7.23) 
implies that, for K and Kt positive, 

2K a(1) - b(1) tanh2x 
gsQ(K , K') = ~ 0 t h  2K lo (1 + P sinh2 x)"  

d x ,  (11.7.24) 

where, consistently with (11.7.4), 

I-' = sinh 2K sinh 2K' , (11.7.25) 

and a(l), b(1) are functions of 1 only. The RHS of (11.7.24) must tend to 
one as K +  + w ,  which implies a linear relation between a(1) and b(1). 

The symmetry of vsQ(K, Kt) ,  together with (11.7. Na),  implies that 
a(l), b(1) satisfy certain differential equations. Solving them gives, for 
O < l < m ,  

a(1) = [(I + 1) E(11) + (1 - 1) Z(ll)]ln, (11.7.26) 

where 

ll = 2&(1 + 1) , 

and Z(ll), E(ll) are the complete elliptic integrals of the first and second 
kinds, of modulus 11, as defined in (15.5.9) and (15.5.13). 



Now that gsQ(K, K') is determined, the free energy can be obtained 
from (11.7.19a). 

The fascinating feature of this derivation is that it uses only the star - 
triangle relation, which is a local property of the Ising model. It uses it 
twice: once to establish (11.5.17) and the corollaries (ll.7.17), (11.7.18); 
and again to establish (11.7.20). (Hilhorst et al. (1978, 1979) and Knops 
and Hilhorst (1979) have shown that the star- triangle relation can also 
be used to obtain the critical properties of the Ising model via the renor- 
malization group method.) This further underlines the significance of the 
star - triangle relation, at least for the Ising model. I am not sure whether 
the method can be generalized to the full eight-vertex model. 

The result (11.7.24)-(11.7.27) of course agrees with the result of the 
transfer matrix calculation of Chapter 7, namely (7.9.16) and (11.7.15). 

The critical singularities at 1 = 1 arises not from the integral in (11.7.24), 
but from the 'coefficients' a(1) and b(1). Near 1 = 1 these behave as 

This makes it clear that all square, honeycomb and triangular Ising models 
have the same critical singularities in their internal energies, namely that 
of b(1). The symmetric logarithmic divergence of the specific heat follows 
at once, so as in (7.12.12) the exponents a ,  a' are given by 

a-  Cut = 0 .  (11.7.29) 

Magnetization 

From (ll.5.18), the triangular Ising model with coefficients Ki, Ki, Ki, the 
honeycomb model with coefficients K1, K2, K3, and the square model with 
coefficients K1, Ki (or K2,  Ki , or K3,  Ki) all have the same spontaneous 
magnetization. We can therefore use the square-lattice result (7.10.50). 
With our present notation this is 

Mo=(l-12)1'8 if 1 1 1 ~ 1 ,  (11.7.30) 

= 0 if I l I > l .  

(Each Ising model is ordered if 11 ( S 1,  disordered otherwise.) 
Comparing this with (1.1.4), and noting that at the critical temperature 

1 - 1 vanishes linearly with T - T,, it follows that for all three models the 



exponent /3 is 
B = 118. 

All other critical exponents are also expected to be the same for the 
triangular, honeycomb and square-lattice Ising models, and to have the 
values given in (7.12.12)- (7.12.16). This is in agreement both with the 
scaling and universality hypotheses. 

11.8 Explicit Expansions of the Ising Model Results 

The results (11.7.13) and (11.7.15) are expressed in terms of elementary 
functions and integrals thereof. This form is easy to understand, but is not 
necessarily the most convenient to use. For some purposes, e.g. developing 
series expansions or even direct evaluations, it may be easier to use elliptic 
functions and their infinite product expansions. 

Throughout this section it will be supposed that all the interaction 
coefficients K1, K2, K3, Ki, Ki, K4 are non-negative. This means that for 
any lattice there are only two cases to consider: low temperature (0 < 
1 < I ) ,  and high temperature (1 > 1). 

Square Lattice: Low Temperature 

First consider the square-lattice Ising model with interaction coefficients 
K,, K,!. This is equivalent to a square-lattice eight-vertex model with weights 
a,, b,, cj, dj given by (11.5.6), M, being one and Ky being zero. 

Replace the a, b, c, d of Chapter 10 by these a,, bj, c,, d,. Replace u, v, 
z by u,, v,, zj. Then from (10.4.21) and (11.5.6), k, A, uj are given by 

1 = ( ~ ~ d , l a , b ~ ) ~  = kt snh A , (11.8.1a) 

exp( - 2K,) = d,/a, = kt snh u, , (11.8.1b) 

exp( - 2K;) = dj/b, = k%nh(A - u,) . (11.8.1~) 

As in Chapter 15, let I,I' be the complete elliptic integrals of the first 
kind of moduli k, kt = (1 - k2)t. Then from (11.8.la) and (15.4.32), we 
obtain the result (10.9.6), i.e. 

A = i I ' .  (11.8.2) 

From (10.4.23), (10.7.9) and (10.7.19), 

u,=$(A+u,), q=exp(-nIt lI) ,  (11.8.3) 

x = exp(- nA121), Z, = exp(- nv,/21) , 



so from (11.8.2) 
q = x 4 .  

Provided 0 < 1 <  1, which from the equation (11.7.4) means that 
sinh 2K, sinh 2K; >1, the free energy is given by (10.8.47). Using (11.5.6) 
and (11.8.4), the dimensionless free energy I/J = flkBT is therefore 

We can write Kj and Ki explicitly in terms of x and z, by using the infinite 
product expansion (15.1.5) - (15.1.6) of the function kt sn u in (11.8. lb)  
and (11.8.lc), together with the definitions (11.8.3) and (11.8.4). It is 
useful to define a parameter z, and two functions @(z) and g(z) by 

where x is regarded as a constant. Then, proceeding as above, we obtain 

This defines the function qSQ(K,, Kj') for all non-negative numbers 
K,, K; such that 1, given by (11.7.4), is less than one. The parameters x 
and zj are uniquely defined by (11.8.7a) and the restrictions (10.15.11), 
i.e. 

O < x < l ,  x < z , < x - ' ;  (11.8.8) 

qsQ(Kj , K;) is then given by (11.8.7b). 
These equations can readily be used to evaluate the function qsQ, or to 

expand qsQ(Kj , Ki) + K, + K; in powers of exp( - 2Kj) and exp( -2K;). 
The parameter x is small for very low temperatures (1  -e I ) ,  increasing to 
one at the critical temperature (1  = 1). 

(The suffix j is irrelevant in this and the next sub-section: it is included 
in anticipation of the sub-sections on the triangular and honeycomb Ising 
models. ) 
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Square Lattice: High Temperature 

The easiest way to obtain the high-temperature (I > 1) result is to apply 
the duality transformation (6.2.14) to the result (11.8.7). This gives 

tanh Kj = @(z,), tanh K, = @(zjl) , (11.8.9a) 

, Kj) = - ln[2 cosh K, cosh K;] - t + g(z,) + g(zjl) .  (11.8.9b) 

Again x and z, satisfy (11.8.8). Now x is small for very high temperatures. 

Triangular and Honeycomb Lattices: Low Temperature 

The dimensionless free energies of the triangular and honeycomb lattices 
can now be obtained from (11.7.11) and (11.7.12). Define x and zj by 
(11.8.7a), for j = 1, 2, 3. From (11.7.4) and (11.5.13), 1 and k, and hence 
q and x, are independent of j .  Also, from (11.1.12) and (11.8.3), zl, z2, 
23  must satisfy the relation 

zlzgg = x-l . (11.8.10) 

The main problem is to obtain a useful expression for In R from (11.7.8). 
From (11.8.lb) 

sinh 2K, = i(l + k sn2 iuj)l(2k%n iu,) . (11.8.11) 

The moduli k and 1 are related by the Landen transformation (11.5.13). 
From (15.6.3), it follows that 

sinh 2K, = il[l sn(ii, , l ) ]  , (11.8.12) 
where 

a, = (1 + k ) ~ ,  . (11.8.13) 
Hence, from (11.7.4), 

sinh 2Kj = -isn(i$, I).  (11.8.14) 

(This result can also be obtained directly from (11.8.1~). Comparing it and 
(11.8.12) with (7.8.5), we see that Kj, Kj, 4 correspond to the L, K, u of 
Chapter 7.) 

Again 'we can use this infinite product expansion (15.1.5) - (15.1.6) of 
the sn function, only now the modulus is 1 rather than k. Using the relations 
(15.6.2), (11.8.3) and (11.8.4), it follows that 

(1 - ~ 4 n - 3 ~ ~ )  (1 - X4n-1Zjl) 
sinh 2 Kj = (t) ' fi 

(1 - ~ ~ " - ~ z j l )  (1 - x4"-lzj) ' 
(11.8.15) 
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Using this result in (11.7.8), together with (11.8.7) and (11.8. lo),  gives 
3 

R2 exp 2 E (K; - K,) [ j = 1  I 

From (15.6.2) and (1 1.8.4), the nome of the modulus 1 is q" x2. Using 
this modulus in (l5.1.4a) therefore gives 

which can be re-arranged as 

Taking logarithms of (11.8.18) and (11.8.16), Taylor expanding every 
term of the form ln(1 - xRn x constant), then summing over n and com- 
paring with (11.8.6), gives 

Using this equation for In R ,  together with (11.8.7b) and (11.7.13), the 
dimensionless free energy of the triangular Ising model is 

VdKi r Ki , Ki) 
= - K i - K i - K ; - ~ + g ( z l ) + g ( z ~ ) + g ( ~ ~ ) ,  (11.8.21) 

where x, zl, 22, 2 3  are defined in terms of Ki, K;, K4 by (11.8.10) and the 
second equation in (11.8.7a), i.e. 

For the honeycomb lattice, using (11.7.14) and the first equation in 
(11.8.7a), we obtain 

+ &a + g(G1) + g ( z 3  , (11.8.23) 
where 

~ 1 ~ 2 ~ 3  = X-I , exp(-2Kj) = +(zj), j = 1 , 2 , 3 .  (11.8.24) 



The inequalities (11.8.8) must still be satisfied; x and I are small at very 
low temperatures and increase to one at the critical temperature. 

For an isotropic system, zl = 2 2  = Z3 = X-$. The equation (11.8.22), or 
(11.8.24), then reduces to a single equation for x. 

Triangular and Honeycomb Lattices: High Temperature 

Above the critical temperature, the modulus I defined by (11.7.5) or 
(11.7.6) is greater than one. Similarly to the square lattice, the easiest way 
to handle this case is to apply the duality transformation (6.3.7) to the 
above low-temperature results. For the triangular lattice this gives 

qT(Ki , K$ , K;) = -ln[2 C O S ~  Ki C O S ~  Kh C O S ~  Kj] 

- 22+ g(zrl) + g(z<l) + g(z;') , (11.8.25) 

where zl, z2, 23, x are defined by (11.8.8) and 

zlz2z3 = X-I, tanh K,' = @(z,), j = 1 , 2 , 3 .  (11.8.26) 

For the honeycomb lattice 

2VH(K1 , K2,  K3) = -ln[4 cosh K1 cosh K2 cosh K3] 

- r +  g(zd + g(zz) + g(z3) , (11.8.27) 
where 

~ 1 ~ 2 ~ 3  = X-I, tanh Kj = @(zjl), j = 1 , 2 , 3 .  (11.8.28) 

The parameter x is small at very high temperatures. Again zl = z2 = 23  

= x-a for an isotropic system. 

Magnetization 

From ( l lS . l3 ) ,  (15.6.2) and (11.8.4), the nome corresponding to the 
modulus I is qt= x2. Using (15.1.4b), the expression (11.7.30) for the 
spontaneous magnetization is therefore equivalent to 

= 0 if 111 > 1 ,  

which agrees with (10.10.19). 
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This result applies to the square, triangular and honeycomb lattices. For 
111 6 1, i.e. belaw the critical temperature, x is defined by (11.8.7), (11.8.22) 
or (11.8.24). 

Combined Formulae for all Three Planar Lattices 

The above results for the square, triangular and honeycomb lattices can 
all be combined into a simple form. It is intriguing that this should be so. 

Fig. 11.10. The Ising model interaction coefficients for the square, triangular and 
honeycomb lattices, as used in (11.8.32)-(11.8.43). 

Let q be the coordination number of the lattice, i.e. the number of 
neighbours of any site. For the square, triangular and honeycomb lattices, 
q = 4 , 6  and 3, respectively. Let K1 , . . . , Kg be the Ising model interaction 
coefficients associated with the q edges at a site, as indicated in Fig. 11.10. 

Note that this notation differs from the previous sub-sections: for the 
square lattice K1 and K2 replace the K, and K,! of (11.8.7) and (11.8.9), 
and K3 = K1, K4 = Kz; for the triangular lattice, K1, K2, K3 replace the 
Ki, Ki, K; of (1 1.8.22) and (1 l.8.36), and K4 = K1, K5 = Kz, K6 = K3. For 
the honeycomb lattice there is no change. 

With each K, associate a parameter w,, defined as follows: 

Square lattice : wl , . . . , w4 = z,, z i l ,  z,, 2;' ; 

Triangular lattice : wl , . . . , wb = z;', z;', z;', z;', z i l ,  2;' ; 

Honeycomb lattice : wl, WZ, wg = z ~ , z z , z ~ .  (11.8.30) 

Here zj is the z, in (11.8.7) and (11.8.9); zl, 22, z3 are the zl, z2, 23 of 
(11.8.22) - (11.8.28). The inequalities (11.8.8) therefore imply that 

The low-temperature (1 < 1) results (11.8.7), (11.8.21) - (11.8.24) can 
now all be written as 
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the sums being over r = 1 , .  . . , q and t, @(z) ,  g(z) being defined by 
(11.8.6). Given K1 , . . . , Kq, the equations (11.8.31) and (11.8.32a) define 
wl , . . . , wq and x. The dimensionless free energy per site of the lattice 
(square, triangular or honeycomb) is then given by (11.8.32b). The mag- 
netization is again given by (11.8.29). 

Similarly, the high-temperature (1 > 1) results (11.8.9), (11.8.25)- 
(11.8.28) can all be written as 

W I W ~ .  . . wq = ~ q - ~ ,  tanh K, = $(w;') , (11.8.33a) 

ly = -In2 - 4 2 cosh K, + t + i 2 [g(w,) - t] . (11.8.33b) 
r 1 

Similarity to the Bethe Lattice Formulae 

These results for the anisotropic planar lattices are very similar in form to 
those for the anisotropic Bethe lattice of Section 4.9. 

In fact, if in Section 4.9 we set h = 0 and replace t ,  xr by x2, (xlw,)&, 
respectively, then the Bethe lattice free-energy results (4.9.4), (4.9.6) 
become exactly (ll.8.32), but with the definitions (11.8.6) replaced by 

In both (11.8.6) and (11.8.34) it is true that 

The equation (4.9.5) for the magnetization becomes 

M = (1 - x2)l(1 + x2) . (11.8.36) 

This is not the same as (11.8.29), but again M is a function only of x2. 
For a ferromagnetic Bethe lattice model below its critical temperature, 

the inequalities (11.8.31) are also satisfied. [Above its critical temperature 
x = wl = . . . = wg = 1, and the Bethe lattice model becomes rather trivial: 
I/J is exactly -In 2 - 4C cosh K,, and M of course is zero.] 

It is fascinating that there should be these correspondences between 
zero-field anisotropic Ising models on two-dimensional lattices, and on the 
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infinite-dimensional Bethe lattice. I have used short series expansions to 
look for similar properties for three-dimensional models, and for planar 
models in a field, but with no success. 

Critical Temperature 

For the ferromagnetic Ising models on both the planar and Bethe lattices, 
the critical point occurs when x, wl, . . . , wq differ infinitesimally from one. 
Set 

x=exp(-a) ,  wr=exp(-a,.). (11.8.37) 

Then from (11.8.6), (15.1.5) and (l5.1.6), the planar function $(wr) is 

where k is the modulus of this section, with nome q = x4. Thus 

When x = 1, then k = 1 and I' = in. Using (15.7.3a) and (11.8.39), 
(1 1.8.38) becomes 

$(wr) = tan[n(ar + 6)/86] . (11.8.40a) 

This is the form of the planar function $(wr) in the limit when 6+  0, 
4 6  being kept constant. 

On the other hand, for the Bethe lattice it is easily verified from (11.8.34) 
and (11.8.37) that in this limit 

$(wr) = (ar  + 6)/26. (11.8.40b) 

In either case, (11.8.32a) must be satisfied, so 

Solving (11.8.41b) and (11.8.40) for a,, then substituting into (11.8.41a), 
gives the following conditions for criticality for the Ising model on a lattice 
of coordination number q, with interaction coefficients K1,. . . , Kq: 

planar: artan(&) + . . . + artan(&) = n(q - 2)14 , (11.8.42) 

Bethe:5;,+ . . . + & = q -  2 ,  
where 

cr=exp(-2K,), r = l  , . . . ,  q .  (11.8.43) 
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For any particular planar lattice, (11.8.42) can be simplified. Let K1, K2 
(K1 , K2,  K3) be the interaction coefficients of the square (triangular or 
honeycomb) lattice. Then the criticality conditions are: 

Square: C1t$ + + S;z = 1 , 

Triangular: c2& + +35;1 + = 1 , (11.8.44) 

For an isotropic lattice model, with all interaction coefficients equal to 
a common value K, the critical values of 5; = exp( - 2K) are, from (1 l.8.42), 

Planar: 5; = tan[n(q - 2)/4q] , (11.8.45) 
Bethe: 5; = (q - 2)lq . 

For the particular planar lattices these values are: 

Square: 4 = 4, 5; = lh - 1 = 0.414214 

Triangular: 4 = 6, c = 1 1 l h  = 0.577350 (11.8.46) 

Honeycomb: 4 = 3, 5; = 2 - lh = 0.267949. 

The corresponding critical values of K = JlkBT are given in Table 11.2, 
together with numerical estimates for the three-dimensional lattices (Sykes 
et al. 1972; Gaunt and Sykes, 1973), and with the Bethe lattice values. 

Table 11.2. Critical values of K = JlksT for the Ising model on various lattices: q 
is the coordination number. 

4 Planar Three-dimensional Bethe 

3 0.658479 
(honeycomb) 

4 0.440687 
(square) 

0.36979 
(diamond) 

' 6 0.274653 0.22169 0.202733 
(triangular) (simple cubic) 
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Since the Bethe lattice is infinite-dimensional (in the sense given in Section 
4.2), for a given coordination number the three dimensional estimates 
should lie between the planar and the Bethe lattice results. They do. 

The results (11.8.42) - (11.8.45) apply to a ferromagnetic Ising model, 
with all interaction coefficients non-negative. Any square, honeycomb or 
Bethe model can be mapped into this regime by reversing appropriate 
alternating layers of spins: in this way any interaction coefficient can be 
negated. For the triangular lattice only pairs of interaction coefficients can 
be negated: there are four critical surfaces in (5;l , c2,  C3) space, namely 
that given in (11.8.44), and three others obtained from it by inverting any 
two of 51, c2, 53. 

11.9 Thirty-Two Vertex Model 

An obvious generalization of the ice-type, or six-vertex, models on the 
square lattice is to place arrows on the edges of the triangular lattice so 
that at each site there are three arrows pointing in, and three pointing out. 
There are then 20 possible arrangements of arrows at a vertex, so this is 
known as the 'twenty-vertex' model. With each arrangement one associates 
a weight wi, where j = 1 , . . . ,20. The partition function is then 

where the sum is over all allowed arrangements C of arrows on the edges 
of the triangular lattice, the product is over all sites i, and j(i , C) is the 
arrow arrangement at site i for configuration C. This model has not been 
solved in general: only when certain conditions are satisfied by the weights 
(Baxter, 1969; Kelland, 1974a, b). 

In the same way as one can generalize the six-vertex model to the 
eight-vertex by allowing the number of arrows into each vertex to be 0 or 
4, as well as 2, so the twenty-vertex model can be generalized by allowing 
any odd number of arrows into each vertex. There are then 32 possible 
arrow arrangements at a vertex. 

The arrows can be represented by bonds: leave an edge empty if the 
corresponding arrow points generally to the right (in the sense that the 
arrows in Fig. 11.1 point generally to the right), place a bond on the edge 
if the arrow points to the left. There are then an even number of bonds 
incident to each site. The 32 possible arrangements of bonds at a vertex 
are shown in Fig. 11.11. Also shown are their respective weights 
m , .  . . , aI6. 
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Fig. 11.11. The 32 allowed bond arrangements at a vertex of the triangular lattice, 
and their associated weights. 

Free-Fermion Case 

Sacco and Wu (1975) considered this model and showed that it can be 
solved by the Pfaffian method of Section 7.13 provided that 

. .  for all permutations i, j, k ,  1, m, n of 1 , 2 , .  , 6  such that m < n and 
i < j < k < 1. There are 15 such permutations (corresponding tq the 15 
choices of m and n),  and hence a total of 16 conditions. 

Cases Reducible to the Solvable Kagome Lattice Eight-Vertex Model 

Another interesting class of solvable cases can be obtained from the 
KagomC lattice eight-vertex model. In Fig. 11.1 the up-pointing triangles 
of the KagomC lattice are drawn smaller than the down-pointing ones. 
Imagine this process continued until the up-pointing triangles become 
infinitesimal. The lattice then becomes the triangular lattice. 

Each site of this triangular lattice is a 'city', consisting of three sites of 
the original KagomC lattice. Such a city is shown in Fig. 11.4(a). The edges 
round it have spins ffl ,..., ff6 which are + 1 if the edge is empty, - 1 if 
it contains a bond. Summing over internal arrow or bond configurations 
within the triangle, the total Boltzmann weight of this city is the function 
of LY, , . . . ,  L Y ~  occurring on the LHS of (11.1.6). 
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It follows that if o , . . . , a16 are these total Boltzmann weights, for the 
appropriate values of @I , . . . , @6, then the 32-vertex model is equivalent 
to the KagomC lattice eight-vertex model. If the conditions (11.1.6), or 
equivalent (11.1.7), also hold, then the model can be solved as in Section 
11.2-11.5. 

Considering all 32 vertex arrangements, this will be so if 

and, for 1 s m < n s 6, 

If al , . . . , d3 can be found so as to satisfy (11.9.3), which includes the 
restrictions (11.1.7), then the spontaneous polarization of the 32-vertex 
model is given by (11.3.4), and from (11.4.5) its free energy per site, or 
vertex, is 

where f ( a  , b , c , d )  is the free energy per site of the square lattice 
eight-vertex model with weights a ,  b, c, d ,  and ~ B T  is here regarded as a 
constant, the same for each f. 

From (1 1.1.8) - (11.1.12) it is apparent that there are only five degrees 
of freedom: k, u l ,  u2, u3 and a single normalization factor for o , . . . , a16. 
Thus (11.9.3) implies 27 restrictions on the weights of the 32-ver- 
tex model. Even so, this restricted model can still be interesting, as will 
be evident in the next section. 

When dl  = d2 = d3 = 0, the restricted model reduces to the solvable cases 
of the twenty-vertex model discussed by Kelland (1974b) and Baxter et a1 
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(1978). In particular, these include the 'triangular KDP' model (Kelland, 
1974a): this behaves very similarly to the square lattice ferroelectric model 
of Chapter 8, having a first order transition to a frozen ferroelectric state. 

Formulation as an Honeycomb Lattice Ising Model with Multi-Spin 
Interactions 

Like the eight-vertex model, the 32-vertex model can be regarded as an 
Ising model with multi-spin interactions. With each face m of the triangular 
lattice associate a spin a,, with values + 1 or - 1. As in Sections 10.3 and 
11.5, establish a two-to-one correspondence between spin canfiguratians 
{q, q , . . . } and allowed arrow coverings of the lattice. This can be done 
by taking the arrow configuration in Fig. 11.8(b) to be the standard: if the 
spins on either side of an edge are equal (different), place an arrow on the 
edge pointing in the same (opposite) way as the standard. Do this for all 
edges. Then at each vertex, there must be an even number of non-standard 
arrows on the six incident edges, and hence an odd number of incoming 
(and outgoing) arrows. 

Let q , . . . , 0 6  be the six spins round a site, arranged as in Fig. 11.4(a), 
the triangle being shrunk to a point. Let W(q , . . . , a6) be the function 
whose value for spin configuration q , . . . , 0 6  is the weight of the corre- 
sponding arrow configuration at the site. Then (11.9.1) can be written as 

where the sum is over all values of the spins on the faces of the triangular 
lattice, the product is over all sites i, and q i ,  . . . , 06i are the face spins 
round site i. 

Negating qi , . . . , a6i leaves unchanged the arrows into or out of site i. 
Thus W ( q ,  . . . , g) is an even function, i.e. 

Now use the dual lattice: the spins lie on the sites of the honeycomb 
lattice, the product in (11.9.5) is over all hexagonal faces i of this lattice, 
and q i  , . . . , a6i are the six spins round face i. Thus the 32-vertex model 
is equivalent to an king-type model on the honeycomb lattice, with inter- 
actions between all six spins round each face. These interactions must be 
even, so that the face weight functionw satisfies (11.9.6). This equivalence 
is quite general. 
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Now consider the solvable case of the 32-vertex model when the weights 
satisfy (11.9.3). One can of course obtain all the values of the function - 
W by working back through the definitions of this subsection and using 
(11.9.3). For instance, m ( +  , + , + , + , + , +) corresponds to the stan- 
dard vertex configuration in Fig. 11.8(b). Replacing left-pointing arrows 
by bonds, from Fig. 11.11 this is the configuration with weight m14 Thus, 
using (11.9.3), 

Other examples are 

More directly, we can remember that this case of the 32-vertex model 
is obtained by shrinking to points the up-pointing triangles of the KagomC 
lattice. Doing this in the multi-spin Ising model formulation of Section 
11.5, we obtain at once the Ising spin formulation of the 32-vertex model, 
the spins being those that remain in Section 11.5 after summing over those 
inside up-pointing triangles. The weight function W(u1 , . . . , a6) is simply 
the total weight of the triangle in Fig. 11.4(a), summed over the centre 
spin q. This is simply the LHS of (11.5.8). Writing the KagomC lattice 
weight functions Wl, W2, W3 in the form (11.5.5), and using (11.5.10), it 
follows that 

This is the LHS of (11.5.9), multiplied by the constant 2M1M2M3. 
1f W is given by (11.9.8), then the 32-vertex model is equivalent to the 

general KagomC lattice eight-vertex model: they have the same partition 
function and, since neighbouring Ising spins a,, a, in the former are 
neighbouring Ising spins in the latter, the same spontaneous magnetization 
(a,) and polarization (amon). 

If the restrictions (11.5.11) are also satisfied (which means that the LHS 
of (11.5.8) or (11.5.9) is equal to the RHS), then the KagomC lattice model 
is the one solved in Sections 11.2 - 11.5. The total free energy, spontaneous 
magnetization and polarization of the 32-vertex model are therefore then 
given by (11.4.5), (11.5.18) and (11.3.4), respectively, where N is the 
number of vertices and a1 , . . . , d3 are given by (11.5.6). 



11 KAGOME LATTICE EIGHT-VERTEX MODEL 

11.10 Triangular Three-Spin Model 

Historical Introduction 

The solution of the eight-vertex model (Baxter, 1971a, 1972b) excited 
interest in models with multi-spin interactions, notably the three-spin model 
on the triangular lattice. 

In this model, at each site i of the triangular lattice there is a spin ui, 
with values + 1 or - 1. The energy of a given spin configuration is 

where the sum is over all triangular faces (both up-pointing and down- 
pointing) of the triangular lattice. From (1.4.1), the partition function is 

Z = 2 e x p [ ~  2 uiqak] , (11.10.2) 
a 

where 

K = J/kBT. 

The dimensionless free energy per site is 

q(K) = - lim N-' In Z , 
N+ m 

where N is the number of sites of the lattice. 
The triangular lattice can be divided into three sub-lattices A ,  B, C ,  as 

in Fig. 11.8(b), so that any triangular face (i , j , k) contains one site of 
type A,  one of type B, and one of type C. From (11.10.1) it is obvious that 
negating all spins on just one sub-lattice is equivalent to negating J ,  and 
hence K. Without loss of generality we can therefore take K to be non- 
negative. 

Wood and Griffiths (1972), and Merlini and Gruber (1972), considered 
this model and showed that it satisfies the duality relation 

q(K*) = 2K + q(K) - ln(2 cosh2 K*) , (11.10.5a) 

where 
tanh K* = exp( - 2K) . (11.10.5b) 

This is precisely the duality relation (6.2.14) of the square lattice isotropic 
Ising model (with L = K). The argument preceding (6.2.16) therefore 
applies: if there is just one critical point, then it must occur when K = Kc, 
where 

sinh 2Kc = 1, Kc = 0.44068679 . . . . (11.10.6) 
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Griffiths and Wood (1973) used this argument and series expansions to 
estimate the critical exponents. They obtained 0.6 s d s 0.8, 
0.070 s /3 s 0.071, 1.25 6 y' 6 1.4, and correctly guessed that d = 213. 
Their estimates of P and y' were somewhat out: /3 is actually 1112 and 
(assuming scaling) y' is 716. 

Suppose that a magnetic field term - H Z  a;. is added to the energy 
(11.10.1). Let ( a i ) ~ , ~  be the average of a spin a;, evaluated as in (1.4.4) 
for a finite lattice of N sites in the presence of the field H, and let 

(a;) = lim lim ( a i ) ~ ,  H , (11.10.7) 
H+O+ N+m 

where the limit N+ OJ means that the lattice becomes large in all directions. 
This is the zero-field magnetization. Like the Ising and eight-vertex 

magnetization, it must be zero at sufficiently high temperatures. 
This is not immediately obvious: the energy (11.10.1) is not unchanged 

by reversing all spins, so the usual Ising model argument of Section 1.7 
(that M is an odd function of H, continuous for sufficiently high temper- 
atures) does not apply. Instead, note from (11.10.1) that, when H = 0, E 
is unchanged by negating all spins on any two of the sub-lattices A, B, C. 

Let UA, UB, acdenote all the spins on the A, B, Csub-lattices, respectively. 
Then to any total configuration (aA, UB, ac) of spins there correspond three 
others that can be obtained by negating all spins on two sub-lattices. Thus 
the spin configurations can be grouped in equal-energy sets of four: 

( ~ A , ~ B , ~ C ) , ( ~ A , - ~ B , - ~ C ) ~ ( - ~ A , ~ B , - ~ C ) , ( - O A , - ~ B , U C ) .  

(11.10.8) 
For any single spin ai, the sum of its values over four such configurations 

is clearly zero. For a finite lattice, grouping configurations in such sets of 
four, it must therefore be true that 

At sufficiently high temperatures the limits in (11.10.7) can be inter- 
changed; for finite N, (oi)N,H is a continuous function of H, so from (11.10.9) 

(o;:) = 0 for sufficiently high temperatures . (11.10.10a) 

On the other hand, Merlini et a1 (1973), and Merlini (1973), used an 
argument due to Peierls (Peierls, 1936; Griffiths, 1972) to obtain lower 
bounds for (q)N,H. They thereby showed that 

(a;) > 0 for sufficiently low temperatures , (11.10.10b) 



i.e. there is a non-zero spontaneous magnetization (a). This proves that 
there must be a critical point: a temperature T, at which (ai) just ceases 
to be zero as the temperature is decreased. 

Very similar remarks apply to (aiq), where i and j are nearest neighbours, 
evaluated by the double limiting procedure of (11.10.7). This must be zero 
for sufficiently high temperatures, and is expected to be non-zero for 
sufficiently low temperatures. By analogy with the multi-spin formulation 
of the eight-vertex model given in Section 10.3 and (10.10.22), it is con- 
venient to call (qq)  the 'polarization' of the three-spin model. 

Baxter and Wu (1973,1974) calculated the free energy of the three-spin 
model (with H = 0) directly, using the transfer matrix method and a 
generalized Bethe ansatz for the eigenvectors. Baxter et al. (1975) used 
series expansions to conjecture the exact expressions for the spontaneous 
magnetization (ai) and polarization (qq). 

Baxter and Enting (1976) noted that these results were exactly the same 
as a particular eight-vertex model, and that the eight-vertex model also 
has a four-fold symmetry between spin configurations. Guided by this, they 
found a transformation of the triangular three-spin model irlto a square- 
lattice eight-vertex model. All the three-spin results could then be seen to 
be consequences of the eight-vertex ones. 

Later, I was also able to show that the three-spin model is a special case 
of the solvable KagomC lattice eight-vertex model (Baxter, 1978a). This 
equivalence is much simpler than the Baxter - Enting one, and is the one 
used in this section. From this point of view, the Baxter - Enting trans- 
formation provides a way of relating these particular square and KagomC 
eight-vertex models: an alternative way to that of Section 11.2. 

Equivalence to a Kagomk Lattice Eight-Vertex Model 

In (11.10.2), perform the sum over all spins on one sub-lattice, say C. This 
can readily be done because each such spin interacts only with spins on 
sub-lattices A and B. This gives 

where 
- 
W(q , . . . , 06) = 2 cosh K ( q q  + qq + a3a4 + 0 4 0 5  + 0 5 0 6  + a6al) . 

(11.10.12) 

The sum in (11.10.11) is over all spins on the A and B sublattices. Taken 
together, these form an honeycomb lattice, as is evident in Fig. 11.8(b). 
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The product is over all faces i of this honeycomb lattice, qi , . . . , 06i  are 
the six spins round face i. 

Apart from a factor of 1, which is irrelevant for a large lattice, (11.10.11) 
is the same as the partition function (11.9.5) of the 32-vertex model. 
Further, a straightforward direct calculation, using the fact that 
q , . . . , 0 6  only have values + 1 or - 1, reveals that (11.10.12) can equiv- 
alently be written as 

But this is precisely the function W given by (11.9.8), with 

for i = 1,2 ,3 .  Thus the three-spin model is equivalent to the Kagome 
lattice eight-vertex model of Section 11.5, with these values of Mi, 
Ki, K/, K". It is interesting to note that these values are quite special: the 
triangular lattice edge interactions in (11.5.7) now vanish, and the remain- 
ing two- and four-spin interaction coefficients all have the same value. 

The restrictions (11.5.11) are automatically satisfied, so from the remarks 
at the end of the previous section, the free energy per site of the three-spin 
model is 

f3spin = f (a  , b , C d)  (11.10.15) 

where f (a , b , c , d)  is the free energy per site of the square-lattice eight- 
vertex model with weights a ,  b, c, d given by (11.5.6) and (11.10.14) for 
any particular value of i, i.e. 

Similarly, the spontaneous magnetization and polarization are 

where m and n are neighbouring sites. 
The triangular three-spin model is therefore equivalent to the square- 

lattice eight-vertex model with weights a ,  b, c, d ,  in that f ,  (a,), (aman) are 
the same for both. Further, let q , . . . , a, be any set of spins that all lie 
on the heavy vertical zig-zag line in Fig. 11.8(b). Then by using (1 1.5.17) 
and the above arguments, it is quite easy to show that (q . . . a,) is the 
same for the three-spin model as for the eight-vertex model on the square 
lattice formed by removing all horizontal edges in Fig. 11.8(b). Thus the 



two models have the same correlation length lj in the direction of the 
zig-zag line. 

Ordered Phase 

The properties f, Mo, Po of the square-lattice eight-vertex model can be 
obtained from Chapter 10. If K > Kc, where Kc is the critical value of K 
in (11.10.6), then from (11.10.16) 

Thus a, b, c, d lie in the principal regime (10.7.5), and the equations of 
Sections 10.4-10.10 can be used directly. No initial transformation of a, 
b,  c, d is needed. 

From (11.10.16), ad = bc and a = d. From (10.4.21), this implies that 

From (10.7.1) and (10.4.23), k, A and u are real, and 0 < u < A < I'. The 
elliptic function snh u defined by (10.4.20) is real, increases monotonically 
from 0 to as u increases from 0 to I ' ,  and from (15.2.5) and (15.2.6) it 
satisfies 

snh(I1 - u) = (k snh u)-l. (11.10.20) 

From (11.10.19) it follows that 

A - u = p ,  A + U = T ,  (11.10.21) 

so, using (10.4.23), (10.7.9) and (10.7.19), 

To relate these parameters to the interaction coefficient K, note from 
(10.4.21), (11.10.16) and (11.10.22) that 

b snh u 
exp(-2K) = - = = khnh(T/4) . (11.10.24) 

a snh(A - u) 
Define 

Then, using (10.4.20), (15.1.6) and (15.1.5) to expand k4 snh(11/4) as an 
infinite product, we obtain 

which is an explicit relation betwen K and p. 
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The free energy is given by (10.8.47). Using (11.10.16), (11.10.23) and 
(11.10.25), this gives 

-flkBT= 2K + 2 
m =  1 m(l - pSm) (1 + p3m) 

The summand can be written as the sum of two rational functions of pm, 
having denominators 1 - p8", 1 + p3", respectively. Taylor expanding in 
powers of pm, then summing over m and taking exponentials, gives 

For some purposes this form is more convenient than (11.10.27): it gives 
a power series in p in which all coefficients are integers. 

From (10.10.19) and (10.10.24), using (11.10.23) and (11.10.25), the 
spontaneous magnetization and polarization are 

m 

To summarize: if K is given, then p is defined by (11.10.26) subject to 
the inequality 0 < p < 1, and f, Mo, Po are then given by (11.10.28) - 
(11.10.30) (Baxter et al. 1975). 

It is possible to eliminate p and express exp(-flkBT), Mo, Po as 
algebraic functions of exp(-2K). The results are rather cumbersome and 
not particularly illuminating: they are given in Baxter and Wu (1973,1974). 

Disordered Phase 

If 0 < K < Kc, then a ,  b, c, d are not in the principal regime (10.7.5); 
rather they are in the disordered regime I11 of Section 10.11. In this regime 
there is no spontaneous magnetization or polarization, so 

To obtain the free energy, we must use the rearrangement procedures 
(i)-(iii) of Section 10.11. These now imply the interchange of wl and w4 
in (10.2.16), which corresponds to replacing a, b, c, d by 



From (11.10.16) it follows that 

a,, b,, c,, d, = sinh 2K, 2 sinh2 K, 2 cosh2 K, sinh2K. (11.10.33) 

Like a, b, c, d, these new weights satisfy a,d, =b,c, and a, = d,. In fact 
(11.10.33) can be written as 

where K* is defined by (11.10.5b). 
These are the same as the original Boltzmann weights (11.10.16), except 

that K therein has been replaced by K*, and each is multiplied by sinh 2K. 
The dimensionless free energy ly = flkBT is therefore 

q ( K )  = - In sinh 2K + ly(K*) , (11.10.35) 

which is the duality relation (11.10.5a). Using this and the ordered-phase 
result (ll.lO.26), (ll.lO.28), it follows that if p is defined by 

then the free energy is given by 

The parameters k, A, u are now defined by (10.4.21), with a, 6, c,  d 
replaced by a,, b,, c,, d,. Since a,, . . . , d,  differs from the a , . . . , d in 
(11.10.16) only by a normalization factor and the choice of K, the equations 
(11.10.19)-(11.10.23) remain valid. From (10.12.5) it follows that in both 
the ordered and disordered phases 

Critical Behaviour 

At K = Kc the three-spin model has a critical point. Since f, Mo, Po are 
the same as for the square lattice eight-vertex model with p = 3x14, from 
(10.12.24) the critical exponents a ,  a' ,  /3, /3, are 

a = ~ = j  p = p = ~  e 12 . (11.10.39a) 

The correlation length 5 is the same as the correlation length of the 
eight-vertex model in the diagonal direction. This is not the row or column 
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correlation length of Chapter 10, but near the critical point it is expected 
that 5 diverges as in (1.7.25), with an exponent v that is independent of 
the direction in which C$ is measured. Assuming this is so, then from 
(10.12.24) it must be true for the three-spin model that 

This agrees with the scaling relation (1.2.16). If one accepts the other 
scaling predictions, then the critical exponents y, 6, q, and the interfacial 
tension exponent ,&, are 



POTTS AND ASHKIN - TELLER MODELS 

12.1 Introduction and Definition of the Potts Model 

We have seen in Section 10.3 that the eight-vertex model is a generalization 
of the Ising model. There are of course an infinite number of other such 
generalizations. In this chapter I shall consider two of these: the Potts 
model and the Ashkin - Teller model, both in two dimensions. Neither has 
been solved exactly, but they can be expressed as staggered vertex models, 
and quite a lot is known about their critical behaviour. 

R. B. Potts defined the former model in 1952, at the suggestion of C. 
Domb. He actually defined two models. The first is now known as the '2, 
model', and supposes that at each site of a lattice there is a two-dimensional 
unit vector which can point in one of N equally spaced directions. Two 
adjacent vectors interact with interaction energy proportional to their scalar 
product. 

The second model is the one that will be discussed here, and referred 
to simply as 'the Potts model'. This can be formulated on any graph 3 ,  i.e. 
on any set of sites, and edges joining pairs of sites. For the sake of generality 
it is useful to do this: later on we shall specialize to the case when 3 is a 
two-dimensional lattice. 

Let 2' have N sites, labelled 1 , 2 , .  . . , N. With each site i associate a 
quantity ui which can take q values, say 1 ,2 ,  . . . , q .  As in the Ising and 
eight-vertex model, let us call a a 'spin'. Two adjacent spins ui and o;. 
interact with interaction energy -J 6(q , q), where 



The total energy is therefore 

E = -J 2 G(ai, q) , (12.1.2) 
(iJ) 

where the summation is over all edges (i , j )  of the graph. It follows from 
(1.4.1) that the partition function is 

ZN = 2 e x p { ~  2 6(0,, q)} , (12.1.3) 
( i d  

where 

Here the a-summation is over all values of all the spins q , . . . , ON. Thus 
there are qN terms in the summation. 

For definiteness I have supposed that each ai takes the values 
1 , . . . , q, but any q distinct numbers would be equally good. In particular, 
for q = 2 we could let each ai take values +1 or -1. It is then true that 
6 (a ,  d) =a(l + a d )  ; substituting this expression into (12.1.3) and com- 
paring with (1.8.2), we see that the q = 2 Potts model (with K replaced 
by 2K) is equivalent to the zero-field Ising model. 

In the next seven sections I shall show how the two-dimensional Potts 
model can be solved at criticality (Temperley and Lieb, 1971; Baxter, 
1973d; Baxter et al . ,  1976). There are a few other exactly solved cases: 
q = 1 (which is trivial); q = 2 (the Ising model); the square-lattice model 
with q = 3 and K = - 03 (this is the three-colouring problem of Section 
8.13); and the triangular-lattice model with q = 4 and K = - 03 ,  which is 
a four-colouring problem (Baxter, 1970b). 

12.2 Potts Model and the Dichromatic Polynomial 

It has been shown (Kasteleyn and Fortuin, 1969; Fortuin and Kasteleyn, 
1972; Baxter et al . ,  1976) that ZN can be expressed as a dichromatic 
polynomial (Tutte, 1967). 

The argument is quite simple: set 

Then (12.1.3) can be written as 

[ l  + u S(ai, a,)] . (12.2.2) 
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Let E be the number of edges of the graph 3. Then the summand in 
(12.2.2) is a product of E factors. Each factor is the sum of two terms (1 
and u 6(ui, a;.)), so the product can be expanded as the sum of 2E terms. 

Each of these 2E terms can be associated with a bond-graph on 3. To 
do this, note that the term is a product of E factors, one for each edge. 
The factor for edge (i , j )  is either 1 or u 6(ai, q): if it is the former, leave 
the edge empty, if the latter, place a bond on the edge. Do this for all 
edges (i , j ) .  We then have a one-to-one correspondence between bond- 
graphs on 2 and terms in the expansion of the product in (12.2.2). 

Consider a typical graph G, containing I bonds and C connected com- 
ponents (regarding an isolated site as a component). Then the correspond- 
ing term in the expansion contains a factor u', and the effect of the delta 
functions is that all sites within a component must have the same spin a. 
Summing over independent spins, it follows that this terms gives a contri- 
bution qCu' to the partition function ZN. Summing over all such terms, i.e. 
over all graphs G, we therefore have 

The summation is over all graphs G that can be drawn on 3. The expression 
(12.2.3) is a dichromatic polynomial (Whitney, 1932; Tutte, 1967). 

Note that q in (12.2.3) need not be an integer. We can allow it to be any 
positive real number, and this can be a useful generalization. For instance, 
regarding ZN as a function of q and u (as well as N), we see that 

and this is just the mean number of components in the percolation problem, 
where each edge has probability p = ul(1 + u) of being occupied. This is 
a famous unsolved problem (Essam, 1972). 

If K = -m, then adjacent spins must be different, so from (12.1.3) it is 
apparent that ZN is the number of ways of colouring the sites of 3 with 
q colours, no two adjacent sites having the same colour. This is a polynomial 
in q, known as the 'chromatic' polynomial. We see from the above that 
it is given by (12.2.3), with u = -1. 

The edges of regular lattices can be grouped naturally into classes. For 
instance, the square lattice has edges which are either horizontal or vertical. 
It is then often convenient to generalize the Potts model so as to allow J 
(and hence K and u) to have different values, depending on the class to 
which the corresponding edge belongs. If J,  is the value of J for class r, 
then the required generalization of (12.2.3) is readily seen to be 
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where the summation is over all graphs G, C is the number of connected 
components in G, 1, is the number of bonds on edges of class r (r = 
1 7 2 , 3 ,  . . . ) ,  and 

K, = J,JkBT, u,  = exp(K,) - 1 . (12.2.6) 

12.3 Planar Graphs: Equivalent Ice-Type Model 

The Medial Graph 3' 

The remarks of the previous two sections apply to any graph 2, whatever 
its structure or dimensionality. From now on let us specialize to 3 being 
a planar graph, i.e. one which can be drawn on a plane in such a way that 
no two edges cross one another, and no two sites coincide. 

We can associate with 3 another graph %', as follows. Draw simple 
polygons surrounding each site of 3 so that: 

(i) no polygons overlap, and no polygon surrounds another, 
(ii) polygons of non-adjacent sites have no common corner, 
(iii) polygons of adjacent sites i and j have one and only one common 

corner. This corner lies on the edge (i , j). 

Let us take the corners of these polygons to be the sites of Y, and the 
edges to be the edges of 2'. Hereinafter let us call these polygons the 
'basic polygons7 of 3'. 

We see that there are two types of sites of 3'. Firstly, those common 
to two basic polygons. These lie on edges of 3 and have four neighbours 
in 2'. We term these 'internal' sites. Secondly, there can be sites lying on 
only one basic polygon. These have two neighbours and we term them 
'external' sites. (The reason for this terminology will become apparent 
when we explicitly consider the regular lattices.) 

The above rules do not determine 2' uniquely, in that its shape can be 
altered, and external sites can be added on any edge. However, the topology 
of the linkages between internal sites is invariant, and the general argument 
of the following sections applies to any allowed choice of 3'. (For the 
regular lattices there is an obvious natural choice.) The graph 3' is known 
as the 'medial' graph of 2 (Ore, 1967, pp. 47 and 124): a typical example 
is shown in Fig. 12.1. 

It is helpful to shade the interior of each basic polygon, as in Fig. 12.1, 
and to regard such shaded areas as 'land', unshaded areas as 'water'. Then 
2' consists of a number of 'islands7. Each island contains a site of 3. 
Islands touch on edges of 3, at internal sites of 3'. 
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a 

Fig. 12.1. A graph 2 (open circles and broken lines) and its medial graph 2' (full 
circles and solid lines). The interior of each basic polygon is shaded, denoting 

'land'. 

Polygon Decompositions of 3' 

We now make a one-to-one correspondence between graphs G on 2 and 
decompositions of 2' as follows. 

If G does not contain a bond on an edge (i , j ) ,  then at the corresponding 
internal site of 2' separate two edges from the other two so as to separate 
the islands i and j ,  as in Fig. 12.2(a). If G contains a bond, separate the 
edges so as to join the islands, as in Fig. 12.2(b). Do this for all edges 
of 2. 

The effect of this is to decompose 2' into a set of disjoint polygons, an 
example being given in Fig. 12.3. (We now use 'polygon' to mean any 
simple closed polygonal path on 2'). 

Fig. 12.2. The two possible separations of the edges at an internal site of 2' (lying 
on the edge (i , j) of 2). The first represents no bond between i and j ,  the second 

a bond. 
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Clearly any connected component of G now corresponds to a large island 
in 2', made up of basic islands joined together. Each such large island will 
have an outer perimeter, which is one of the polygons into which 2' is 
decomposed. A large island may also contain lakes within; these correspond 
to faces of G and also have a polygon as outer perimeter. 

Fig. 12.3. A graph G on Y (full lines between open circles represent bonds), and 
the corresponding polygon decomposition of Y'. To avoid confusion at internal 
sites, sites of 2' are not explicitly indicated, but are to be taken to be in the same 

positions as in Fig. 12.1. 

Each polygon is of one of these two types. Thus 2' is broken into p 
polygons, where 

C being the number of connected components in G, and S the number of 
internal faces. 

The graph G has N sites and 1 bonds (where I =II + l2 + l3 + . . .) . The 
numbers C, S, N, 1 are not independent, but must satisfy Euler's relation 

(Ore, 1967 p. 48: vf therein is the total number of faces, including the 
external infinite face, so vf = S + 1.) 

Eliminating C and S from the equations (12.2.5), (12.3.1) and (12.3.2), 
it follows that 

ZN = qNI2 qpI2 X:X;X? . . . , (12.3.3) 
P* 
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where 
Xr = q-b, , 

and the suffix 'pd' means that the sum is now taken to be over all polygon 
decompositions of 3'. Here p is the number of distinct polygons in the 
decomposition, and 1, is the number of internal sites of class r where the 
edges have been separated as in Fig. 12.2(b). 

Arrow Coverings of 3' 

The summand in (12.3.3) can be thought of as a product of various factors: 
a factor qt for every polygon in the decomposition (for example, there are 
four polygons in the decomposition shown in Fig. 12.3), and a factor x, for 
every site of class r where the edges of 2' have been separated as in Fig. 
12.2(b). 

Fig. 12.4. Polygon corners of 2' at which an observer moving in the direction of 
the arrows turns through an angle a to his left, or equivalently an angle -a to his 

right. Note that -n< a< n, and the angle between the edges is n -{a[. 

The x, factors are 'local', in that each depends only on what is happening 
at the appropriate site. The qa factors are not local in this sense, but we 
make them so by the following device. 

Define quantities A and z by the equations 

qb = 2 cosh A, z = exp(U2n) . (12.3.5) 

Consider a polygon decomposition of Y, such as that in Fig. 12.3. Each 
polygon is made up of edges of T', and has as many corners as it has edges. 
For instance, the polygon on the left side of Fig. 12.3 has 10 edges and 10 
corners. Each polygon corner is the intersection of two polygon edges. 

Place arrows on the edges of 2' so that at each polygon corner there is 
one pointing in and one pointing out. Give each corner a weight z", where 
a is the angle to the left through which an observer moving in the direction 
of the arrows turns when passing through the corner. Since edges cannot 
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overlap, a must lie in the interval -n < a < n. Two typical examples are 
shown in Fig. 12.4. 

Still considering a particular polygon decomposition of Y ' ,  form the 
product over all corners of these weights z". Then sum this combined 
weight over all allowed arrangements of all the arrows. 

The result has to be $I2. To see this, note that the arrows round a 
polygon must all point the same way: either all anti-clockwise or all 
clockwise. In the former case, the observer turns through a total angle 2n, 
so the product of the corner weights for this polygon is z2". In the latter 
case the angle is -2n and the combined weight is z - ~ " .  Both possibilities 
can occur independently for each polygon, so each polygon gives a total 
contribution z2" + z-*". From (12.3.5) this is just 2 cosh A, i.e. qt. There 
are p polygons, so the total sum must indeed be qp!'. 

This means that we can write (12.3.3) as 

where the suffixes 'pd' and 'ac' denote that the outer sum is over all polygon 
decompositions of 3 ' ,  and the inner sum is over all allowed arrow coverings 
of the edges of 3'. The product is over all polygon corners m, a;, being 
the corresponding angle a (as defined above). The weights zem are local 
properties of the corners m; so is the rule that at each corner there must 
be one arrow in and one arrow out. 

Ice-Type Model on 9' 

Consider a particular internal site of %', lying on the edge (i , j )  of 3. Let 
a ,  /3, y, 6 be the angles between the four edges of Z', as indicated in Fig. 
12.5. There are two possible ways of separating the edges, as shown in 
Fig. 12.2. In each case there are four possible arrangements of arrows. 
The resulting eight possibilities are shown in Fig. 12.6, together with the 
product of the corresponding x, and zUm factors. This product is the total 
contribution of this site configuration to the combined summand in (12.3.6). 

Note that in each case there are two arrows into the site, and two arrows 
out of it. Thus the 'ice rule' of Section 8.1 is satisfied at all internal sites. 
If we ignore the way in which the edges are separated, then we obtain the 
usual six arrow arrangements allowed at a site (or vertex), as shown in 
Fig. 12.7. 

The next trick is to interchange the two summations in (12.3.6). Start 
with the undecomposed graph 3'. Place arrows on its edges in all the ways 
that they can occur above. This means that the ice rule must be satisfied 



12 POTl'S AND ASHKIN - TELLER MODELS 

Fig. 12.5. A typical internal site of 2, showing the angles between edges. Note 
that cu and y lie inside basic polygons ('islands;) of Y, while /3 and 6 lie outside. 

Fig. 12.6. The two possible separations of edges at an internal site of Y, and the 
eight allowed arrangements of arrows thereon. The product of the corresponding 
x, and z" factors is shown underneath, using the notation of Fig. 12.5 and omitting 

the suffix of x,. 

at each internal site, and that there must be one arrow into (and one arrow 
out of) each external site. 

Every such arrow covering can occur in the combined summation in 
(12.3.6), but some occur more than once. This is because arrow arrange- 
ments 5 and 6 in Fig. 12.7 can each arise in two ways. Arrangement 6 
comes from either of the two right-hand possibilities in Fig. 12.6, arrange- 
ment 5 from the next two. 

1 2 3 4 5 6 

Fig. 12.7. The six possible arrangements of arrows at a site of 3'. Note that this 
figure is oriented so that the shaded areas ('land') are to the right and the left. 



Suppose a particular allowed arrow covering of 2' contains 1 vertices of 
types 5 and 6. Each vertex of type 1, 2, 3 or 4 corresponds to a unique 
separation of the edges at that vertex, but each vertex of type 5 or 6 
corresponds to two possible choices of the edge separations. Thus the 
arrow covering corresponds to 2' polygon decompositions, and occurs 2' 
times in (12.3.6). 

However, each choice can be made independently, so there is no problem 
in calculating the total contribution of this arrow covering to (12.3.6): one 
simply sums the appropriate two weights in Fig. 12.6. Thus (12.3.6) can 
be written as 

ZN = qN'2 2 n (weights) , 
ac 

where now the sum is over all allowed arrow coverings of 2 ' ,  and the 
product is over all sites of 2'. Each external site contributes a weight z" 
to this product, where a is the angle in Fig. 12.4. Each internal site 
contributes a weight bk, where k(=1 , . . . , 6 )  is the arrow arrangement 
at the site, as listed in Fig. 12.7, and 

Here r is the class of the internal site, and a ,  p, y, 6 are the angles shown 
in Fig. 12.5. It is important to note that the angles a and y lie inside basic 
polygons ('islands') of 2, while P and 6 lie outside. 

The sum in (12.3.7) is over all arrow coverings of 9' such that each site 
has as many arrows pointing in as it has pointing out. For the internal sites 
this is the ice rule. Indeed, comparing (12.3.7) with (8.1.1) and (8.1.3), 
we see that q-N'2ZN is the partition function of an 'ice-type' (or 'six-vertex') 
model, generalized to allow different weights on different sites, and to 
allow 'external' sites of coordination number two. Thus the Potts model 
on any planar graph 3 can be expressed as an ice-type model on the medial 
graph 2'. 

Four-Colour Problem 

As was remarked shortly after (12.2.4), if v = -1 then ZN is the number 
of ways of colouring the planar graph 2 with q colours. It is fascinating 
to wonder whether the ice-type formulation (12.3.7) has any bearing on 
the famous four-colour problem (Ore, 1967; Saaty and Kainen, 1977), 
which was only recently solved (Appel and Haken, 1976, 1977; Appel et 
al., 1977) after tantalizing mathematicians for over a century. 
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Certainly q = 4 is a very special case: A in (12.3.5) is real for q 3 4; for 
q < 4 it is pure imaginary. In particular, for q = 4 and v = -1 we have 
that z = 1 and x, = -&. The weights in (12.3.8) are therefore real, but 
ii)3 and are negative. To obtain an alternative solution to the four-colour 
problem we would need to show that the negative contributions to the sum 
in (12.3.7) are numerically less than the positive ones. 

Another intriguing point which suggests that our transformation may be 
relevant is the following. It is conjectured from numerical and other studies 
that the real zeros of the colouring polynomial of an arbitrary planar lattice 
cluster round limit points when the lattice becomes large. These limits are 
supposed to occur at the 'Beraha numbers' q = [2~os (n /n ) ]~ ,  n = 
2 , 3 , 4 ,  . . . . (Beraha et al., 1975, 1978; Beraha and Kahane, 1979; Tutte, 
1970, 1973, 1974). From (12.3.5) we see that this corresponds simply to 
our parameter A having the values id2 ,  i d3 ,  i d4 ,  etc. 

12.4 Square-Lattice Potts Model 

Equivalent Ice-Type Model 

For the interior of regular lattices there is an obvious natural choice of 2 ' ,  
namely to take the sites of 2' to be the mid-points of the edges of 2 and 
to take two sites of 2' to be adjacent if any only if the corresponding edges 
of 3 meet at a common site and bound a common face. All sites of 2' are 
then 'internal' except at the boundaries, which is the reason for our 
terminology. The square lattice ( 2 )  is shown in Fig. 12.8, together with 
its resulting medial graph 2'. It has two classes of edges, horizontal and 
vertical, which we can call classes 1 and 2, respectively. Define a parameter 

Then from (12.3.7), (12.3.8) and (12.3.5), we see that q - N ' 2 ~ N  is the 
partition function of an ice-type model with weights 

r being the class of the site of 2 ' ,  and the six arrow arrangements being 
labelled as in Fig. 12.7. 

We can eliminate the fractional powers of eA by associating additional 
mutually inverse weights with the tips and tails of some of the arrows. With 
every arrow on a SW- NE edge, associate a further weight s-' with the 
site into which it points, and a weight s with the site it points out of. 
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Fig. 12.8. The square lattice 3 (open circles and broken lines) and its medial lattice 
2' (full circles and lines). The two classes of edges of 3', horizontal and vertical, 

are indicated by the numbers 1 and 2, respectively. 

Obviously these weights cancel from Z N ,  but the individual vertex weights 
ws, w6 are modified: those on sites of type 1 are multiplied by s2, s - ~ ,  
respectively; those on sites of type 2 are multiplied by s - ~ ,  s2. 

It must be noted that the weights in (12.4.2) are labelled as in Fig. 12.7, 
where the shaded areas are to the right and left. This is the way sites of 
type 1 are drawn in Fig. 12.8, but for sites of type 2 it is necessary to turn 
one of the figures through 90". 

It is more convenient to use the same direction throughout. Let 
0 1 , .  . . , w6be the weights of the six arrow configurations shown in Fig. 
12.9, always using the same orientation for this figure as for Fig. 12.8. For 
sites of type 1 this is the original labelling; for sites of type 2 we have that 
wl , . . . , w6 = &, @, a, a l ,  a6 ,  a5. Allowing also for the multiplications 
by s2 and s - ~  mentioned above, we obtain: 

x x x x x x  1 2 3 

4 5 6 

Fig. 12.9. The six possible arrangements of arrows at a site of the square lattice, 
using the same orientation for all sites. 
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The weights of the external sites at the right and left of Fig. 12.8 are 
now always one. Those at the bottom and top are exp(U2) if the arrows 
turn to the left, exp(-3J2) if they turn to the right. 

Alternative Derivation of the Equivalence 

The equivalence of the square-lattice Potts model to this ice-type model 
was first obtained by Temperley and Lieb (1971). They used operators 
which form a rather elegant and interesting algebra. For this reason it 
seems worthwhile outlining this alternative approach. 

Consider the Potts model on the square lattice 2?. Let 3! have m rows 
and n columns. Then in the usual way (Sections 2.1,7.2,8.2) we can write 
the partition function as 

there being m Vs and m - 1 Ws. Here is the qn-dimensional column 
vector whose entries are all unity, V is the transfer matrix that adds a row 
of horizontal edges to the lattice, and W adds a row of vertical edges. Both 
V and W are qn by qn matrices,with indices a ={q , . . . , a,) and d = 
(4 , . . . , d,), and with elements 

(Note that we do not impose cyclic boundary conditions on either the rows 
or columns of 2.) 

Let us define matrices Ul , . . . , U2n -1 by 

Thus U2i is diagonal, with diagonal elements q46(ai , a+ l); while U2i- 1 is 
of the form 

Uzi-l = e @ e @ .  . . @ e @ g @ e @ .  . . B e ,  (12.4.7) 

e being the unit q-by-q matrix, and g (occuring in position i in the product) 
being the q-by-q matrix with all entries equal to q-f. 



From (12.4.5) and (12.4.6) it is readily observed that 

where 9 is the unit qN-by-qN matrix and u2 = exp(K2) - 1, as in (12.2.1). 
The expression (12.4.8a) can be put in a form similar to (12.4.8b) by 

using the fact that u,? =qtlJi . Alternatively, (12.4.8b) can be put in a form 
similar to (12.4.8a). We obtain 

n - 1 

V = I-J (9 + qq-l~luzj) ,  (12.4.8~) 
j =  1 

where ul = exp(K1) - 1 and 

exp K$ = (u2 + q)/u2 = (eK2 + q - l)l(eKz - 1) . (12.4.9) 

The matrices U1, . . . , U2n-1 satisfy the relations 

UiUi+lUi = U ; ,  i = 1 ,  . . . ,  2n - 2 ,  (12.4.10) 

UiUi-lUi = U;, i = 2 ,  . . .  ,2n - 1 ,  

These relations define the algebra generated by U1 , . . . , U2, - 1 .  In par- 
ticular, they define all the eigenvalues of the complete transfer matrix VW 
(but not their degeneracies). They therefore define the maximum eigen- 
value, and hence the large-m behaviour of the partition function. 

Indeed, they define ZN even for finite m. To see this, define the matrix 

Using the explicit representation (12.4.6a), or (12.4.7), we see that R is 
the qn by qn matrix, all of whose entries are equal to q-"". Thus 

where 5 is the column vector in (12.4.4), all of whose entries are one. It 
is now obvious that for any qn by qn matrix X,  

where z(X) is a scalar. 
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More specifically, t(X) is q-"I2 gTxt. From (12.4.4) it follows that 

Now forget that V, W, UI , . . . , UZ, -1 were introduced as qn by qn mat- 
rices, and regard them simply as operators satisfying (12.4.8) and (12.4.10). 
Let X be any sum of products of Ul , . . . , Uzn and the identity operator 
9. Then from (12.4.10) and (12.4.11) it can be established that (12.4.13) 
is true, and z(X) can be evaluated. Since VWVW. . . V can be written as 
such a sum of products, it follows from (12.4.14) that ZN can in principle 
be calculated in this way. 

Of course I do not claim that this programme can readily be carried out 
for arbitrarily large m and n; only that it can in principle be done. This 
means that we do not have to use the representation (12.4.6): any set of 
operators Ul,.  . . , U2n-1 that satisfy (12.4.10), and for which R is not 
identically zero, will be an equally good representation. 

Temperley and Lieb (1971) showed that one such alternative rep- 
resentation is to take U1 , . . . , Uzn-l to be 4" by 4" matrices, with 
indices a = {al , . . . , a2") and a' = (4 , . . . , min), where each a; and 4 
takes the values -t 1 and -1, and the elements of U, are 

f o r i = l , .  . . ,2n - 1 ,  where 

h(+ , +) = h(- , -) = 0, 

and A is given by (12.3.5). 
Regard al ,  . . . , azn as representing a row of vertical, or rather near- 

vertical arrows: a;. = + if the arrow in column j points up, a;. = - if it points 
down. More specifically, let a1 , . . . , azn represent a typical row of arrows 
on the edges of Y, such as the top row of edges in Fig. 12.8, labelled 
1 , . . . ,2n .  Consider the operator 9 + x ~ U ~ ~ ,  using the a-representation 
(12.4.15). This acts on the arrows in positions 2j and 2j + 1, and can be 
thought of as a 'vertex transfer matrix'. Its non-zero entries are precisely 
the weights 0 1  , . . . ,016 in (12.4.3a), corresponding to the six arrow 
arrangements in Fig. 12.9. Thus it is the vertex transfer matrix of a site of 
type 1 in the ice-type model. From (12.3.4) and (12 .4 .8~)~ we see that V 
is just the product of these matrices, for j =1 , . . . , n - 1 . Thus the V in 
(12.4.8) is the transfer matrix for a row of sites of type 1 in the ice-type 
model. 
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Similarly, from (12.4. 
the transfer matrix for a 
that N = mn, it follows 

8b), (12.3.4) and (12.4.3b) we find that q-"I2w is 
row of sites of type 2 in the ice-type model. Noting 
from (12.4.14) that 

ZN = qNt2 X partition function of the ice-type model . (12.4.17) 

We can verify that external sites have weights given by the rules following 
(12.4.3). The equivalence (12.3.7) therefore follows from the two rep- 
resentations (12.4.6) and (12.4.15) of the operators UI, . . . , U2, 

Some General Comments on the Ice-Type Model 

For general values of xl and x2, the Potts model has not yet been solved. 
It is one of the most tantalizing unsolved models. For instance, as was 
remarked in Section 8.12, the homogeneous square-lattice ice-type model 
can be solved by the Bethe ansatz method of Chapter 8, even if the 
'zero-field' restrictions (8.1.7) are violated. Then the definition (8.3.21) of 
A becomes 

and the eigenvectors of the transfer matrix depend only on this A and the 
horizontal electric field E' .  

The ice-type model we are considering here is not homogeneous: its 
weights are different on the two sub-lattices (types 1 and 2, respectively). 
Even so, from (12.4.3), (12.4.18) and (12.3.5) we see that 

A = - cosh A = -4  q" (12.4.19) 

for both sites of type 1 and type 2. (Indeed, from (12.3.8) this relation is 
true for arbitrary planar graphs.) Thus A is uniform, but unfortunately the 
Bethe ansatz method of Chapter 8 still fails to work. 

An intriguing point is that the ansatz fails even for q = 1 and q = 2, 
whereas the free energy can be calculated for these cases by other methods, 
the first case being trivial and the second being the Ising model. It is also 
worth noting that in this equivalence the Ising model corresponds to y in 
(8.8.1), i.e. A = -cos y, having the value n14. This contrasts with the fact 
that the Ising model is also equivalent to the free-fermion model, as was 
shown in Section 10.16. The free-fermion model is an eight-vertex gen- 
eralization of an homogeneous six-vertex model with A = 0 and p = d 2 .  
There is therefore a relation between these p = n14 and y = n12 vertex 
models. 
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Duality 

One advantage of this ice-type formulation of the Potts model is that it 
makes it very easy to show that the square lattice model satisfies a duality 
relation. 

To see this, note from (12.4.3) that the weights on sites of type 2 are 
similar in form to those on sites of type 1: in fact we can interchange them 
by replacing xl, x2 by x;', x;' , respectively, and then multiplying all type 
1 weights by x2, all type 2 weights by XI. 

On the other hand, for a large lattice %", we are free to choose which 
sub-lattice we designate as 1, and which as 2 (a simple way of saying this 
is to say that we can replace the black squares of a chequerboard by white 
ones, and vice versa). This affects the boundary conditions, but we do not 
expect this to affect the way ZN grows exponentially with N. Keeping only 
such exponential factors, and regarding ZN as a function of xl and x2 (q 
being fixed), it follows that 

More precisely, we expect the large-lattice limit 

111 = - lim N-' In ZN (12.4.21) 
N+ m 

to exist. As in (6.2.10) and (1.7.6), this is the dimensionless free energy 
per site, being related to the usual free energy f by 1C, = f l k ~ T .  Like Z N ,  
q can be regarded as a function of xl and x2. Then (12.4.20) gives 

V(XI , ~ 2 )  = -ln(xlx2) + ~(x ; ' ,  x;') . (12.4.22) 

This is a duality relation, relating a high-temperature Potts model to a 
low-temperature one. It was first obtained by Potts (1952). We could also 
have obtained it by interchanging K1 and Kg in (12.4.8a) and (12.4.8d), 
and replacing each Ui by Ui+l: apart from boundary conditions and scalar 
factors, this merely interchanges the two transfer matrices V and W. 

We remarked in Section 12.1 that the q = 2 Potts model is equivalent 
to the Ising model: the relation (12.4.22) is then the square-lattice Ising 
model duality relation (6.2.14). 

Location of the Critical Point 

Now suppose that J1 and J2 are both positive. This means that the system 
is ferromagnetic: adjacent spins 'like' to be equal. From (12.2.6) and 
(12.3.4), K1, K2, ul, 0 2  and xl, x2 are all positive. 



Obviously (12.4.22) relates the value of Il, at a point (xl , x2) to its value 
at (xzl , x;'). This mapping takes the domain 0 < xlx2 < 1 to the domain 
x1x2 > 1. Every point on the line xlx2 = 1 is self-dual. 

We expect the ferromagnetic Potts model to be disordered at high 
temperatures (xl and x2 small), all q possible spin-states being equally 
likely. At low temperatures (xl and x2 large) we expect it to be ordered, 
one of the spin-states being preferred by all the spins. Somewhere in 
between we expect there to be a critical temperature T, at which this 
spontaneous symmetry breaking just starts to occur. In the (xl , x2) plane 
this must be a line, separating the disordered and ordered regions. We 
expect V(xl , x2) to be analytic, except possibly on this line. 

We now argue as in Section 6.2. If v(xl , x2) is non-analytic on a line 
inside the domain 0 < ~1x2 < 1, then from the duality relation (12:4.22) it 
must also be non-analytic on a line inside xlx2 > 1. The simplest possibility 
is that it is non-analytic only on the self-dual line xlx2 = 1. (For an isotropic 
system, with xl = x2, this corresponds to requiring that the critical tem- 
perature be unique.) Hintermann et al. (1978) have shown that this is in 
fact the case: the critical points of the square-lattice Potts model occur 
when 

~1x2 = 1 . (12.4.23) 

12.5 Critical Square-Lattice Potts Model 

Suppose that the condition (12.4.23) is satisfied, i.e. x2 = llxl. Then from 
(12.4.3) it is evident that the weights of type 2 are all equal to the 
corresponding weights of type 1, divided by xl. Multiplying all the six 
weights at any given site by some factor is a trivial modification of the 
model: it merely multiplies the partition function by the same factor. The 
system is therefore effectively homogeneous: more precisely, using (12.3.7) 
and noting that there are N sites of type 2 in %', 

N/2 -N  ZN = q xl Z$N7 (12.5.1) 

where ZiN is the partition function of the ice-type model on the lattice 3' 
with 2N sites, each with Boltzmann weights given by (12.4.3a). 

Free Energy 

Since it is homogeneous (i.e. all sites have the same weights), this ice-type 
model can be solved by the methods of Chapter 8. In fact, as was remarked 
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at the end of Section 8.1, vertices of type 5 and 6 must occur in pairs, 
being respectively sinks and sources of horizontal arrows. Thus the weights 
m5 and c06 occur only in the combination w5@6. This means that the partition 
function is unchanged by replacing both w5 and w6 by their geometric 
mean. From (12.4.3a) and (8.3.3) (noting that the vertex ordering in Fig. 
12.9 is the same as that in Fig. 8.2, after an appropriate rotation), it follows 
that ZiN is the partition function of a zero-field ice-type model on Y, with 
weights 

a = 1, b = xl, c = (1 + 2x1 cosh A + xT)&. (12.5.2) 

The dimensionless free energy of the Potts model is defined by (12.4.21). 
From (12.5. I) ,  (1.7.6) and (12.5.2), it is 

q = -1n(q4lxl) + 2f lk~T,  (12.5.3) 

where flkBT is the dimensionless free energy of the ice-type model. This 
has been calculated in Chapter 8. From (8.3.21) and (12.3.5), 

so there are two cases to consider: 0 > A > -1, and A < -1. In the former 
case we see that 0 < q < 4, and we use the results of Section 8.8; in the 
latter case(q > 4), we use those of Section 8.9. Since q is continuous, the 
case q = 4 can be handled by taking the appropriate limits. Doing this, we 
find that 

where xl and x2 satisfy the criticality condition (12.4.23), q is regarded as 
a constant, and the function @(x) is defined as follows: 

x =  sin ylsin(p- y), O < y < p ,  

" sinh ( n  - p) t sinh 2yt 
= 'lm t sinh m cosh pt 

dt ; 

$(x) = lm y-' exp(-y) sech y sinh 2ry dy : 

q > 4: q" 2 cosh A, A > 0 ,  

x = sinh @lsinh(A - B), 0 < 13 < A , 
m 

@(x) = 13 + n-' exp(-nA) sech nA sinh 2n13 
n = l  
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For all values of q,  this function @(x) satisfies the identity 

Let yi, q, p, be the values of these parameters y, z, /3 when x = x,. Then 
the criticality condition (12.4.23) implies that 

Indeed, yl and y2 are the expressions $(p + w) and f(p - w) in Section 
8.8, while P1 and are the $(A + v )  and i(A - u )  in Section 8.9. The A of 
this chapter is the same as that of Chapter 8. 

The integral in (12.5.6a) can be evaluated explicitly when p is a rational 
fraction of n (e.g. d 4 ,  n/3 ,2n/5). For the isotropic model, with xl = 
x2 = 1, some of these cases have been tabulated by Temperley and Lieb 
(1971). 

Internal Energy and Latent Heat 

We can also calculate the internal energy of the Potts model at its critical 
point (Potts, 1952; Baxter, 1973d). To do this, we first return to considering 
the general Potts model, not necessarily satisfying the criticality condition 
(12.4.23). From (12.1.2), (12.1.3) and (1.4.4), the total average energy is 

a 
(E) = ~ B T ~  - In ZN , 

aT 

in agreement with (1.4.6). The square-lattice partition function depends 
on T via xl and X*, and from (12.1.4), (12.2.6) and (12,3.4), x, and T are 
related by 

Regarding ZN as a function of xl and x2 (q and N being kept constant), 
it follows that 

L 

a 
( E )  = -q-4 Jr exp(Jr/kBT) -In Z N  . 

r = l  
(12.5.10) 

ax, 

Now use the expression (12.3.7) for ZN, where the vertex weights are 
given by (12.4.3). For a given arrow covering of the edges of Y, let 
nk(ni) be the total number of sites of type 1 (type 2) that are in the arrow 
configuration k shown in Fig. 12.9. Here k = 1 , . . . ,6. Then (12.3.7) can 
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be written more explicitly as 

the sum being over all arrow coverings of 9' that satisfy the ice rule at 
each site. 

From (12.5.10), (12.5.11) and (1.4.4), it follows that 
2 

( E )  = -9-' 2 J, exp(JrlkBT) I,, 
r = l  

(12.5.12) 

where 

(nj) and (ni) being as usual the average values of n, and n;. 
We can calculate Il and I2 when the criticality condition (12.4.23) is 

satisfied, i.e. xlx2 = 1. Then ZN is given (for large N) by (12.4.21) and 
(12.5.5), i.e. 

the function @(x) being defined by (12.5.6), q being regarded as a constant. 
Using this expression for ZNin (12.5.11), and differentiating logarithmically 
with respect to xl (remembering that x2 = llxl), we find that 

$'(x) being the derivative of $(x). 
This is one equation relating Il and 12. We can obtain another by 

considering the symmetry relations between the 12 averages 
(nl), . . . , (nk). As we noted at the beginning of this section, when ~1x2 = 1 
we can renormalize the weights (12.4.3) so as to reduce them to the form 
(8.3.3), where a ,  b, c are given by (12.5.2). These renormalizations leave 
(nl) , . . . , (nk) unchanged, but they make it clear that the ice-type model 
(for xlx2 = 1) has two symmetries: it is translation invariant (sites of type 
1 have the same weights as sites of type 2), and it is unchanged by reversing 
all arrows (this is the 'zero-field' condition). 

It is rigorously known (Brascamp et al., 1973) that if c > a + b, then 
each of these symmetries is spontaneously broken. As is explained in 
Section 8.10, the system is anti-ferroelectrically ordered and there is a 
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spontaneous staggered polarization Po. By considering a system in an 
infinitesimal staggered electric field (or with staggered fixed-arrow bound- 
ary conditions), we can define Po as (zi). Here zi is the polarization of the 
electric dipole on edge i: it is defined as in Section 8.10, being + 1 ('right') 
if the arrow points in the standard direction of Fig. 8.3, -1 ('wrong') if 
it points in the other. 

This Po is the same for all the 4N edges of 2 ,  so 

4 N  Po = average number of 'right' arrows minus the 
average number of 'wrong' arrows . (12.5.16) 

Each arrow adjoins just one site of type 1, and each site of type 1 is the 
meeting-place of four arrows (a 'vertex'). Choose the standard configur- 
ation of Fig. 8.3 to correspond to all vertices of 2' of type 1 being in the 
arrow arrangement 6 of Fig. 12.9. Then by comparing these figures it 
becomes apparent that arrow arrangements 1 to 4  each contain as many 
wrong arrows as right ones, arrangement 5 contains 4 wrong arrows, and 
6 contains 4 right ones. Thus (12.5.16) can be written as 

Although the two symmetries of sub-lattice interchange and arrow- 
reversal are both spontaneously broken for c > a + 6, the combined sym- 
metry is not. For instance, the ground state shown in (8.3.3) is unchanged 
by reversing all arrows and then interchanging sites of type 1 with sites of 
type 2. It follows that 

The equations (12.5.17) and (12.5.18) are still true when \ a  - b\ < c < 
a + 6. In this case the ice-type model is disordered in the sense that there 
is no spontaneous symmetry breaking (though the correlation length is 
infinite, as remarked in Section 8.10). This means that (n5) = (n6), SO PO 
in (12.5.17) is then zero. 

There are N  sites of type 1, each site must be in one of the six possible 
arrow arrangements, so nl +. . . + n6 = N .  Forming the expression 
xlIl + x212, where I1 and I2 are defined by (12.5.13), using the symmetry 
relations (12.5.18), together with (12.5.17) and (12.4.23), it follows that 

xlll + ~ 2 1 2  = N{1 - 2 xi  XI) Po), (12.5.19) 

where 

C(x) = sinh Al(1 + x2 + 2x cosh A) . (12.5.20) 
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This is the second equation for I1 and 4 that we needed. Remembering 
that x2 = l/xl, from (12.5.20) and (12.5.6d) we can readily establish that 

X I  &I) = x2 C(x2) , (12.5.21) 

XI G1(xl) + x2 G1(x2) = 1 . 

Solving (12.5.15) and (12.5.19) for I1 and 12, using the properties (12.5.21), 
it follows that 

Zr = N[@'(xr) - C(xr) PO] , (12.5.22) 

for r = 1,2.  From (12.5.12), the internal energy per site U = (E)IN of the 
square lattice Potts model is therefore 

I have introduced a f sign to allow for the fact that the sign of the RHS 
of (12.5.17) is not yet determined. If the ice model symmetries are spon- 
taneously broken in favour of arrow arrangement 6 (5) on sites of type 1 
(2), then the RHS of (12.5.17) is positive, and Po therein is the usual 
spontaneous staggered polarization. On the other hand, if the symmetries 
are broken in favour of arrow arrangement 5 (6) on sites of type 1 (2), 
then Po is negated. From (12.4.3), the former situation occurs (for A. > 0) 
as x1x2 approaches unity from below, the latter as xlx2 approaches unity 
from above. The sign in (12.5.23) should therefore be chosen positive if 
T approaches the critical temperature T, from above, negative if it 
approaches T, from below. 

The spontaneous polarization PO has been evaluated (Baxter, 1973c) and 
the relevant results are given in Section 8.10, notably in (8.10.9), (8.10.2) 
and (8.9.1). Using (12.5.4), we see that there are two cases to consider: 

(i) 

(ii) 

0 < q s 4: 0 > A 3 -1, A pure imaginary. 
The ice-type model is disordered in the sense that there is no spon- 
taneous symmetry breaking (though the correlation length is 
infinite). Thus PO is zero, and U is continuous across T = T,. (We 
still expect U to be non-analytic at T = T,: certainly this is so for 
q = 2, when the Potts model becomes the Ising model.) 
q > 4: A < -1, A. is real and is to be chosen positive. There is 
spontaneous symmetry breaking; Po is positive, being given by 

Po = n [tanh mA.I2. 
m = l  



From (12.5.23), the Potts model therefore has a first-order transition 
at T = T,, with latent heat 

2 

L = 2q-* 2 Jr exp(J,lk~T) Kx,) Po. 
r = l  

(12.5.25) 

For the isotropic model, with J1 = J2 = J and XI = x2 = 1, we can 
calculate $'(xl) from (12.5.21). Using (12.5.9) and (12.5.23), we obtain 
the simple formula 

Here U,, is the average of the internal energy just below and just above 
T,, i.e. U,, = i(U- + U+). For q S 4, where there is no discontinuity in U, 
this is the internal energy at T,. This result was obtained by Potts (1952) 
in his original paper. 

12.6 Triangular-Lattice Potts Model 

We can carry out a similar programme for the Potts model on the triangular 
and honeycomb lattices, i.e. we can locate the critical points, and at these 
points we can calculate the free energy and the internal energy (Baxter et 
al., 1978). 

Let ZL and Zfl be the partition functions of the Potts model on the 
triangular and honeycomb lattices, respectively, where each lattice has N 
sites. These partition functions are given by (12.1.3), except that for each 
lattice there are three types of edges. Let us label them 1,2 ,3 ,  and let 
K1, K2, K3 be the corresponding values of K. Then each partition function 
depends on K1, K2, K3, as well as on N and q. 

The triangular lattice Y is drawn in Fig. 12.10, together with its medial 
graph 2' (which is a KagomC lattice). From (12.3.7) and (12.3.8) we have 
that 

N/2 z I Z m ,  K2, K3) = 9 , (12.6.1) 

where Z1 is the partition function of an ice-type model on Y', with weights 

Here r = 1, 2 or 3 depending on the type of the site of 2 ' ;  the six allowed 
arrow arrangements are the first six shown in row r of Fig. 11.2. The lattice 
Y1 has 3N sites; t and x, are defined by 

t = exp(83), x ,  = q-t[exp(~r)  - 11. (12.6.3) 
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Fig. 12.10. The triangular lattice Y (open circles and broken lines) and its medial 
Kagom6 lattice 3' (full circles and lines). 

Triangular-Honeycomb Lattice Duality 

Alternatively, consider the lattice XD that is dual to 2. This is an honeycomb 
lattice of 2N sites, the sites lying in the unshaded triangular faces of %' in 
Fig. 12.10. The medial graph of %D is also 2' (apart from boundary effects), 
but now the shaded and unshaded faces in Fig. 12.10 are interchanged. By 
considering the Potts model on %D, and again using (12.3.7) and (12.3.8), 
we find that 

av(L1 , L2, L3) = qNZfr, (12.6.4) 

where 2" is the partition function of an ice-type model on 2 ' ,  with weights 

The corresponding arrow arrangements are ordered as in (12.6.2), t is 
again given by (12.3.5) and (12.6.3), and 

Y ,  = q-'[exp(~,) - 11. (12.6.6) 

Suppose that y, =x;'. Then the weights (12.6.5) are the same as those 
in (12.6.2), except that they are all multiplied by y,. Multiplying all weights 
of type r by any factor cu merely multiplies the ice-model partition function 
by $J. From (12.6.1) and (12.6.4), it follows that 

where 
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This is a duality relation, mapping a low-temperature (high-temperature) 
Potts model on the triangular lattice to a high-temperature (low-temper- 
ature) one on the honeycomb lattice. For the Ising model case, when 
q = 2, it is equivalent to the relation (6.3.7). 

Location of the Critical Point 

We can associate mutually inverse weights with the tips and tails of arrows, 
and incorporate these into the vertex weights. Obviously this leaves Z' 
unchanged, but alters , . . . , a6. If we use the same weights for all edges 
of the same type (e.g. for all horizontal edges of z'), then fil , . . . , are 
unchanged, is multiplied by a factor a+, and w6 is divided by &, where 
r is the type of the corresponding site, and C Y ~ C Y ~ C Y ~  = 1. 

We may ask whethei we can use this freedom to make the ice-type 
model satisfy the 'zero-field' conditions fil = &, & = 64, w5 = a6,  for 
r = 1, 2, 3. The first two conditions are automatically satisfied. The third 
implies that the product of the three weights us (for r = 1 , 2 , 3), is the 
same as that of the three weights (36. These products are unchanged by the 
additional arrow weights, so from (12.6.2) we must have 

From (12.3.5) and (12.6.3), t is related to q by 

Expanding both sides of (12.6.9), it follows that 

This is a necessary condition for the ice-type model to be reducible to 
zero-field form. It is also sufficient. 

What is intriguing is that (12.6.11) is also the condition for the triangular 
Potts model (or the dual honeycomb model) to be critical. This is not 
obvious: unlike the Ising model, the Potts model does not in general have 
a star-triangle relation, so we cannot establish a triangular - triangular 
duality relation like that of Section 6.5. However, Kim and Joseph (1974) 
showed that there is a star- triangle relation when (12.6.11) is satisfied 
(they actually considered the isotropic case, when xl = x2 = x3, but the 
argument readily generalizes). The resulting mapping takes the triangular 
Potts model back to itself (with the same interaction coefficients K1, K2, 
K3). Thus the model is self-dual at the particular temperature specified by 
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(12.6.11). Kim and Joseph conjectured that this self-dual point is also the 
critical point. Baxter et al. (1978) generalized this argument to a triangular 
Potts model with additional three-site interactions on alternate triangular 
faces. They showed that this more general model always has a 
triangular - triangular duality relation, and that at the self-dual point the 
three-spin interaction vanishes and (12.6.11) is satisfied. Hintermann et al. 
(1978) have verified that the critical temperature is indeed this self-dual 
temperature. 

Here I shall use the variables XI, x2, x3, but is should be noted that it is 
quite natural to work instead with PI, a, a, where /3, is the value of p in 
(12.5.6) when x = x,. The condition (12.6.11) then takes the simple linear 
form 

P I + P Z + P ~ = ~ .  (12.6.12) 

(In fact /3, corresponds to u, in Section 11 . l ,  and (12.6.12) to (11.1.12).) 

Critical Free Energy 

Provided the criticality condition (12.6.11) is satisfied, we can calculate 
the free energy of the triangular lattice Potts model (and of the dual 
honeycomb-lattice model). One way to do this is to shrink the up-pointing 
triangles of the KagomC lattice down to points. As is explained in Baxter 
et al. (1978), the ice-type model then becomes a '20-vertex' model on a 
triangular lattice. Kelland (1974b) has investigated the conditions under 
which such a 20-vertex model is solvable by the Bethe ansatz method of 
Chapter 8. It turns out that these conditions are precisely that the model 
correspond to the KagomC lattice six-vertex model with weights giveniby 
(12.6.2) and (12.6.11). Thus Kelland's results enable us to calculate the 
free energy when, and only when, the 20-vertex model is equivalent to a 
critical triangular-lattice Potts model. 

(There are also solvable 'free-fermion' cases of the 20-vertex model, but 
they are solved by other methods [Sacco and Wu, 19751.) 

We ccn also obtain the free energy by using the results we obtained in 
Chapter 11. When the restriction (12.6.11) is satisfied, we can arrange the 
mutually inverse 'tips and tails' arrow weights so that (12.6.2) becomes 

f i ~ ,  . . . , fi6 = a,, a,, br, br, cr, (12.6.13) 
where 

= 1, b, = x,, cr = (1 + ~ , t ~ ) * ( l  + ~ , t - ~ ) & ,  (12.6.14) 

and again r = 1 , 2  or 3 depending on the type of the site of 2' that is being 
considered. The vertex arrow configurations corresponding to a,, b,, c, are 
shown in Fig. 11.2. 



The ice-type model is now a zero-field six-vertex KagomC-lattice model. 
This is a special case of the eight-vertex model defined in Section 11.1, the 
weights dl, d2, d3 being zero. Furthermore, when (12.6.11) is satisfied, we 
can verify that the six 'star-triangle' relations (11.1.7) are all satisfied. 

The free energy is therefore given by (11.4.5). Remembering that the 
KagomC lattice 2' has 3N sites, this equation implies that (for N large) 

2' = 2",4~1) Z;(X~) z;(x3) , (12.6.15) 

where Z~(X, )  is the partition function of a square-lattice ice-type model, 
with weights given by (12.6.14), all sites being of type r. Using the results 
of Chapter 8, or simply referring back to (12.5.3) - (12.5.6), we can verify 
that the dimensionless free energy per site of such a square-lattice model 
is 

- N-' In 2 % ~ )  = - @(x) . (12.6.16) 

From (12.6.1) and (12.6.15), the dimensionless free energy per site of the 
critical triangular Potts model is therefore 

Critical Internal Energy 

The equations (12.5.8)- (12.5.13) can readily be generalized to the tri- 
angular lattice, giving 

3 

(E) = - q - a  Jr  exp(J,lk~T) I,, (12.6.18) 
r = l  

where, using (12.6.1) - (12.6.3) 

Here r = 1, 2 or 3, and nj in (12.6.19) is the number of sites of type r in 
3' that are in the arrow arrangement j of Fig. 11.2. 

The ratio (nj)lN is therefore the probability that a site of type r is in 
arrow arrangement j. This is a local correlation for this site, so from 
(11.3.3) it depends only on a,, b,, c,, and hence only on x,. (As usual, we 
regard q,  and therefore A and t, as constant.) 

In fact, I, must have the same value as for a square lattice of N sites, 
in which all sites have weights (12.6.2), r being the same for all sites. But 
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this I, has been calculated in (12.5.22). From (12.6.18), the internal energy 
per site U = (E)IN of the triangular lattice Potts model is therefore 

3 

U = q - 3  Jr exp(J,/k~T) [ - ~ x , )  2 c(xr)Po] . (12.6.20) 
r = l  

12.7 Combined Formulae for all Three Planar Lattice Potts Models 

The critical free energy and internal energy of the honeycomb lattice Potts 
model can readily be obtained from those of the triangular lattice, by using 
the duality relation (12.6.7). The results are similar in form to those of the 
square and triangular lattices. In fact we can combine them into single 
formulae, just as we did in Section 11.8 for the Ising model. For all three 
lattices the criticality condition is 

the dimensionless free energy per site is then 

and the internal energy per site is 

the upper (lower) signs being chosen if the critical temperature is 
approached from above (below). 

The product in (12.7. I ) ,  and the sums in (12.7.2) and (l2.7.3), are over 
all edges round a particular site: thus r has three values for the honeycomb 
lattice, four for the square lattice, and six for the triangular lattice. The 
Jr is the interaction coefficient for the rth edge in this sum, so with an 
obvious notation we have J3 = J1 and J4 = J2 for the square lattice; and 
J4, J5, J6 = J1, J2, J3 for the triangular lattice. As usual, xr is defined by 
(12.3.4), i.e. 

The parameter A is defined by (12.3.5) (it is pure imaginary if q < 4), 
and the functions $(x), c(x) are defined by (12.5.6) and (12.5.20); Po is 
zero for q S 4, while for q > 4 it is given by (I 2.5 .U) .  

Let 4 be the coordination number of the lattice (3 for the honeycomb, 
4 for the square, and 6 for the triangular lattice). Then r in (12.7.1)- 
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(12.7.3) runs over q values. Define 

Then for an isotropic model, where J1 = J2 = . . . = J ,  the criticality con- 
dition (12.7.1) becomes 

exp(-JlkBT) = sinh(il - 6) lsinh(A + 6) . (12.7.6a) 

When q = 2, then il = i d4 ,  and this equation reduces to the Ising model 
formula (11.8.45a). 

We can complete the comparison with (11.8.45) by noting that the 
methods of Chapter 4 can readily be generalized to the q-component Potts 
model on the Bethe lattice of coordination number q. The critical tem- 
perature of this model is given by 

12.8 Critical Exponents of the Two-Dimensional Potts Model 

We have calculated the free energy f and internal energy LI of the planar 
Potts models, but we have done so only for the zero-field model at the 
critical temperature T,. (More accurately, we have calculated U in the limit 
when T approaches T, from above, or from below.) 

This tells us that the transition is first-order (with non-zero latent heat) 
for q > 4, and is continuous (no latent heat) for q s 4. It does not tell 
what the critical exponents are for q 6 4. To obtain these directly we would 
have to solve the Potts model for general temperatures, which has not been 
done. (This is a very tantalising problem as I remark in Section 14.8.) 

However, we do have some information. When q = 2, the Potts model 
becomes the Ising model, which was solved by Onsager (1944) and Yang 
(1952). The critical exponents a ,  /3 and 6 are given in (7.12.12), (7.12.14) 
and (7.12.16). They are 

Alexander (1975) has argued that the three-state Potts model and the 
hard hexagon model (which each have three ordered states) should be in 
the same universality class and have the same critical exponents. From the 
hard hexagon results (14.7.12), (14.7.13), this implies that 
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Similarly, Domany and Riedel (1978) argue that the four-state Potts 
model and the three-spin model (each with four ordered states) should 
have the same exponents, so from (11.10.39), 

a= 2 ,, p =  A, 6 =  15 w h e n q = 4 .  (12.8.1~) 

We have seen in Sections 12.3-12.5 that the critical Potts model is 
equivalent to a zero-field six-vertex model, with weights given by (12.5.2). 
We can regard this as a special case of the eight-vertex model, in which 
d = 0. The A of (10.15.1) is given by (12.5.4): for q < 4 we see that 
0 > A > -1. From (10.16.8) we see that this corresponds to a critical 
eight-vertex model, with p given by A = -cos p. From (12.5.4) this implies 

This p is the parameter that enters the formulae (10.12.24) for the critical 
exponents of the eight-vertex model. Den Nijs (1979) argued that the 
exponents of the Potts model should also depend in a simple way on p, or 
more precisely on 

(This y lies between 0 and 1. Den Nijs and others refer to it as y y  .) He 
conjectured that the critical exponent a of the Potts model (for q G 4) is 

Similarly, Nienhuis et al. (1980), and Pearson (1980) have independently 
conjectured that 

The scaling relation (1.2.12) and (1.2.13) then predict that 

For q = 1, 2, 3, 4, the parameter y has the values %, 3, 9, 0, respectively. 
The conjectures (12.8.4)-(12.8.6) therefore agree with the values in 
(12.8.1), and also predict that 

a== - 2  ,, p  = &, 6 = 186 when q = 1 .  (12.8.7) 

(As we remarked in (12.2.4), the q = 1 case is the percolation problem.) 
The conjectures are also consistent with numerical estimates of the expo- 
nents (Blumberg et a l . ,  1980; Blote et a l . ,  1981), and with a 
renormalization-group perturbation expansion about q = 4 (Cardy et a l . ,  
1980). Very recently, Black and Emery (1981) have verified (12.8.4) by 
using renormalization-group methods: it seems likely that (12.8.5) and 
(12.8.6) are also exactly correct. 



12.9 Square-Lattice Ashkin - Teller Model 

Ashkin and Teller (1943) introduced their model as a generalization of the 
Ising model to a four component system. Each site of a lattice 2t is occupied 
by one of four kinds of atom: A, B, C or D. Two neighbouring atoms 
interact with an energy: @ for AA, BB, CC, DD; el for AB, CD; e2 for 
AC, BD; and ~1 for AD, BC. 

Fan (1972b) showed that this model can be expressed in terms of Ising 
spins. With each site i associate two spins: s; and a;. Let (s; , q) = (+ , 
+) if there is an A atom at site i; (+ , -) if a B atom; (- , +) if C; and 
(- , -) if D. Then the interaction energy for the edge (i , j) is 

As usual, we want to calculate the partition function. From (1.4.1), this 
is 

ZAT = X .v X a exp[- (;,I) C. ~ ( i  , j ) / k ~ ~ ]  , (12.9.3) 

where kg is Boltzmann's constant, T is the temperature. The summation 
inside the exponential is over all edges (i , j) of the lattice; the outer sums 
are over all values of all the spins sl, s2, s3, . . . and q, q, 03, . . . . 

We shall find it convenient to use the dimensionless interaction 
coefficients 

K = JIkBT, K' = J ' I ~ B T ,  (12.9.4) 

K4 = JJksT, KO = J o l k ~ T ,  

and the edge Boltzmann weights 

From (12.9.2), we see that 
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Equivalence to an Alternating Eight-Vertex Model 

The above considerations apply to any lattice 3 ,  planar or not. Now let 
us specialize to the case when 3 is the square lattice, with N sites. Then 
from (12.9.1) it is apparent that we can think of the Ashkin -Teller (AT) 
model as two square-lattice king models (the s-model and the a-model), 
coupled via a four-spin interaction. 

This is similar to the zero-field eight-vertex model, whose Hamiltonian 
is given by (10.3.1) with J ,  = J h  = 0. However, the geometry is different: 
for the eight-vertex model the spins are arranged as in Fig. 10.4, the s- 
spins occupying the full circles, and the a-spins the open circles. In the AT 
model the spins si and a;: both lie on site i. 

Even so, Wegner (1972) shows that the AT model could be expressed 
as an alternating eight-vertex model. The trick is to apply the duality 
transformation of Section 6.2 to the a-spins only. 

To do this, note that from (12.9.1), (12.9.3) can be written as 

2, = 7 e x p [ ~ )  (Ksisj + KO) ZN(L) I (12.9.7) 

where 

the edge-coefficient Lii being given by 

L, = K' + K4sis,. (12.9.9) 

Here N is the number of sites of the square lattice 3 ;  L is the set of 
coefficients L,, one for each edge of 3 .  

Clearly each L, depends on the spins si and s,, but for the moment let 
us regard sl , . . . , s~ as fixed, and consider the expression on the RHS of 
(12.9.8). This is a standard square-lattice Ising model partition function, 
except that the system is inhomogeneous, having interaction coefficients 
L, that vary from edge to edge. 

Now look at the duality relation (6.2.14). Using (6.2.10) (and ignoring 
boundary effects), this states that if Z d K  , L) is the partition function of 
a square-lattice Ising model with interaction coefficient K for vertical edges, 
L for horizontal edges, and with N sites, then 

Z d K *  , L*) = [2 exp(-K - L) cosh K* 

X cosh L*]~zN(K,  L) . (12.9.10) 

The dual coefficients K*,L* are defined by (6.2.14a). 



This relation applies to an homogeneous system. However, it is quite 
straightforward to generalize the working of Section 6.2 to an inhomoge- 
neous system, with interaction coefficient Li on edge (i , j). The result is 

where 
tanh L; = exp(-2Lij). (12.9.12) 

Here L denotes the set of all edge coefficients Lij, and L* the set of La;  
Z d L )  is the original partition function for the lattice 3 ,  as defined in 
(12.9.8); ZdL*) is the partition function for the lattice gD that is dual to 
3 ;  L$ is the interaction coefficient of the edge of gD that is dual to the 
edge (i , j) of 3 .  

Fig. 12.11. The lattice 2 (solid circles and lines) and its dual (open circles and 
broken lines); (k, 1) is the edge of Y D  that is dual to the edge (i, j) of %;La and 

L,, are the corresponding interaction coefficients of these two edges. 

Let k, 1 be the sites of zD such that (k ,1) is the edge dual to (i , j), as 
indicated in Fig. 12.11. Then 

z ~ L * }  = 2 e x p [ ~  ( i d  L:M] , (12.9.13) 

where tl , . . . , tlv are spins on the sites of XD. 
Using (12.9.11) to express ZdL)  in terms of ZdL*), substituting the 

result into (12.9.7) and using (12.9.13), we obtain 

(12.9.14) 

the product being over all edges (i , j) of 3 ,  with 

wij = 2-4 sech L; exp[Li + KS,S, + KO + L$tktl]. (12.9.15) 
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Remembering that Lq is given by (12.9.9), where sisj = ?I ,  and that L; 
is given by (12.9.12), we can write Wq as 

where A, B, C, D are defined by 

From (1.4.11, (12.9.14) and (12.9.16), ZAT is therefore the partition 
function of a model with Hamiltonian 

Now take 2 to be the lattice of solid circles and lines in Fig. 10.4. Then 
2, is the lattice of open circles and broken lines. The s-spins lie on 2 ,  the 
t-spins on 3,. We see that (12.9.18) is the Hamiltonian of a model with 
interactions between neighbouring s-spins, and between neighbouring t- 
spins, with a four-spin interaction between spins on crossing edges. 

This Hamiltonian has the same general form as (10.3.1), with J, = Jh = 

0, with S' = kBTC, and with an extra constant energy -kBTD per edge. 
To avoid confusion, let us refer to the J and J' in (10.3.1) and Fig. 10.4 
as Jsv and JhV: they are of course not the same as those in equations 
(12.9.1) - (12.9.4) above. 

There is one significant difference between (12.9.18) and (10.3.1): in 
(12.9.18) A and B are associated with the solid and broken edges, respec- 
tively, of Fig. 10.4; in (10.3.1) J g V  and Jhv are associated with the SW -NE 
and SE-NW edges of Fig. 10.4. To put (12.9.18) into the form (10.3.1) 
we must therefore allow J ~ v  and Jiv to alternate from site to site. We can 
choose (JgV/kBT, Jiv/kBT) to be (A , B) on one sub-lattice (i + j even in 
(10.3.1)): it is then ( B ,  A) on the other sub-lattice (i + j odd). The 
Ashkin - Teller model is therefore equivalent to an alternating, or 'stag- 
gered' eight-vertex model. From (10.3.9) (including the extra constant 
energy -DlkBT), the Boltzmann weights of this eight-vertex model are 
equal to the a, b, c, d of (12.9.17) on one sub-lattice. On the other sub- 
lattice they are equal to a ,  b, d, c. 

It is of course intriguing that the Ashkin - Teller model should be equiv- 
alent to a staggered eight-vertex model. In many ways the equivalence is 
reminiscent of that found in Section 12.4 between the Potts model and a 



staggered six-vertex model. Indeed, both equivalences can be applied to 
the q = 4 Potts model (which is a special case of the Ashkin - Teller model, 
with el = e2 = e3): they lead to the same vertex model. 

The form of the staggering in this eight-vertex model is particularly 
simple, consisting merely of the interchange of the weights c and d. From 
(10.15.la) and (10.15.6), it follows that A ,  T, k and il are not staggered, 
each having the same value for both sub-lattices. The staggering affects 
only the elliptic function parameter u ,  which is negated on going from one 
sub-lattice to another. Unfortunately it is still not possible to put k, A, u 
into the form (10.17.7), which are the most general conditions under which 
the eight-vertex model has been solved. Thus the general Ashkin - Teller 
model remains unsolved. 

Even so, the equivalence of the AT model to a staggered eight-vertex 
model does have some interesting consequences, as I hope to indicate in 
the remainder of this section. 

Duality 

Obviously, the partition function of the staggered eight-vertex model is 
unaltered by interchanging c and d on all sites (this merely interchanges 
the two sublattices). Write ZAT as a function of the Boltzmann weights 
COO , . . . , a in (12.9.6). Then from (12.9.17) it follows that 

This is a duality relation, relating a high-temperature AT model to a 
low-temperature one. It was obtained by Fan (1972a), who conjectured 
that the critical temperature might be given by the self-duality condition: 

However, Wegner (1972) remarked that this is precisely the condition for 
the corresponding eight-vertex model to be homogeneous; since then 
c = d. The homogeneous eight-vertex model has been solved in Chapter 
10. It is not in general critical (even when c = d), so nor is the AT model 
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under the condition (12.9.21). (The spins sl, s2 , . . . occur in both models, 
and it is reasonable to suppose that either model is critical if and only if 
the correlation (sisj) decays as an inverse power of the distance rii between 
sites i and j, rather than decaying exponentially. This means that if one 
model is critical, then so is the other.) 

Indeed, it is apparent that when J 4  = 0 in (12.9.1), then the AT model 
factors into two independent Ising models, one for the s-spins with coef- 
ficient J ,  the other for the a-spins with coefficient J'. Provided J # J ' ,  these 
will have different critical temperatures. The AT model therefore then has 
two critical temperatures. They lie on either side of the self-dual temper- 
ature defined by (12.9.21), and the mapping (12.9.20) takes one to the 
other. 

Wegner (1972) argued that in general there should still be two such 
critical temperatures for J4 f 0, and Wu and Lin (1974) have considered 
the possible location of the critical surfaces in (wl/w0 , wIw0 , wCo3/w0) space. 
One currently unsolved problem is to locate these surfaces exactly. Pre- 
sumably universality holds on these surfaces (except on certain special lines 
to be discussed below), in which case the critical exponents must be those 
of the J4 = 0 case, i.e. of the Ising model. 

Other Symmetry Properties 

In addition to (12.9.19), ZAT satisfies various other symmetry relations. It 
is unchanged by permuting J ,  J ' ,  J 4  in (12.9.1), since this corresponds 
merely to permuting si, ai, siai (any two of which can be regarded as 
independent spins) at each site. It is also unchanged by negating J' and J4, 
since this corresponds to negating alternate a-spins. From (12.9.4) and 
(12.9.6) it follows that 

ZAT(W~ 7 wj wk 7 WI) = ZAT(WO 7 w1 7 w2 ~ 3 )  (12.9.22) 

for all permutations i, j, k, 1 of 0, 1, 2, 3. Thus ZAT is unchanged by 
permuting the weights wo , . . . , w3. 

Another way of obtaining the duality and symmetry relations (12.9.19) 
and (12.9.22) is to define the eight-vertex 'w-weights' wl, WZ, w3, w4 as in 
(10.2.16). The symmetry relations (10.2.17) are true even for an inhomo- 
geneous eight-vertex model. Applying them, using (12.9.17), we again 
obtain (12.9.19) and (12.9.22). 

Critical Isotropic AT Model 

If J = J ' ,  then the above argument that the AT model should have two 
critical temperatures breaks down. This is. a particularly interesting case: 
let us refer to it as the 'isotropic' AT model. From (12.9.6) we see that it 



corresponds to imposing the condition 

0 1  = 02 (12.9.23) 

on the AT model weights. 
This still corresponds to a staggered eight-vertex model, in which the 

weights c, d are interchanged on alternate sites, so in general has not been 
solved. However, if the self-duality condition (12.9.21) is satisfied, then 
c = d and the eight-vertex model becomes homogeneous. Using (10.2.16), 
its 'w-weights' are 

From (10.2.17), ZAT is unaltered by interchanging w2 and w4. Let a', b', 
c', d' be the resulting new eight-vertex weights. Then we see that 

a' = b' = 2 b l ,  c' = 21(wl + w3), d' = 0 .  (12.9.25) 

Since d' = 0, the model reduces to a six-vertex model (in fact to an F- 
model). Let f be the free energy per site of the AT model, defined as in 
(1.7.6) by 

- f lk~T = lim N-' In ZAT . 
N+ m 

(12.9.26) 

Remembering that the vertex model has twice as many sites as the original 
AT model, from (8.3.3), (8.8.9), (8.8.17), (8.9.7) and (8.9.9) it follows 
that when the restrictions (12.9.21) and (12.9.23) are satisfied, then f is 
given by the following equations: 

" tanh ,LLX sinh (n  - p)x 
-flkBT = 2 1n(2*ol) + 

- xs inhm 
dx ; (12.9.27a) 

m 

-flkBT = 2 ln(2b1) + A. + 2 2 m-'exp(-mA.) tanh mA . (12.9.27~) 
m = l  
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Critical Exponents 

The homogeneous eight-vertex model is critical if and only if the two 
middle numbers of the set I wll, I wzl, 1~31, 1~41, arranged in decreasing 
order, are equal. In this case the symmetry relation (10.2.17) can be used 
to map it into a six-vertex model of the type discussed in Section 8.8, i.e. 
with -1 < A < 1. The critical exponents are then given by (10.12.24). Let 
us give them a superfix '8V to denote 'eight-vertex', and give the 'magnetic' 
exponents (corresponding to introducing a field - m a i )  a suffix 'm'. The 
'electric' exponents (corresponding to a field - D a i q ,  where i, j are 
nearest-neighbours) already have a suffix 'e'. Then from (10.12.24) 

a&' = 2 - 2y-', pkv = (8y)-', (12.9.28) 

gv = (2 - Y)/ (~Y)  , 

where 

p being the parameter defined in Section 8.8. [This y is the 
renormalization-group exponent that we used in (12.8.3).] 

Applying these general considerations to the self-dual isotropic AT 
model, it follows from (12.9.24) that the model is critical provided that 
@ < wl. Its free energy is then given by (12.9.27a), the ,u therein being 
the same as that in (12.9.29). 

As with the Potts model, we have only evaluated the free energy f at the 
critical point: we are not in a position to see how f varies with temperature 
or field, so we cannot directly determine any critical exponents. Certainly 
we cannot apply the homogeneous eight-vertex results (12.9.28) to the 
AT model, because the models are equivalent only at criticality. 

Even so, Kadanoff (1977, 1979) and Kadanoff and Brown (1979) have 
used operator algebras and scaling theory (Kadanoff, 1976) to relate the 
critical exponents of the eight-vertex and isotropic Ashkin - Teller models. 
Knops (1980) obtained the same relations by using renormalization-group 
arguments; den Nijs (1981) has extended this approach, as well as justifying 
(1979) Enting's (1975) conjecture that 6, = 15 for the AT model. Zisook 
(1980) and Zittartz (1981) have checked some of these relations by devel- 
oping perturbation expansions. 

Altogether, they find that the Ashkin - Teller exponents are 
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As with the eight-vertex model, there are two sets of critical exponents: 
'magnetic' exponents corresponding to a field - m u i ,  and 'electric' expo- 
nents corresponding to a field -EZqsi. I use the suffix m for the former, 
e for the latter. Thus P,,, is the exponent of the order parameter (q), Pe of 
(~1~1) .  

The same arguments that give (12.9.30) also imply the scaling relations 
(1.2.12)-(1.2.16), so we can use these to obtain y,, a,, q,, ye, a,, rl, and 
v. Both the eight-vertex and Ashkin - Teller models violate universality, 
having exponents that vary continuously with the parameter y. Both models 
satisfy the relations 

d m =  (2- cx-P,)IP,= 15,  (12.9.31) 

p, = (1 - a)/4 . 

The criticality conditions (12.9.21) and (12.9.23) can be written in terms 
of the interaction coefficients K, Kt ,  K4. From (12.9.6) they are 

K' = K, exp(-2K4) = sinh 2K, (12.9.32a) 

the restriction ~ ( t 3  < w1 is equivalent to 

and the definition of ,u in (12.9.27a) can be written as 

cos ,u = i[exp(4K4) - 11 , (12.9.33) 

where 0 < p < 2x13. 

Phase Diagram of the Isotropic AT Model 

In fact (12.9.32) is not the only critical line of the isotropic AT model. The 
complete phase diagram has been obtained by Ditzian et al. (1980) and is 
surprisingly rich. It is shown in Fig. 12.12. There are give regions in (K4 , K) 
space: in I the system is ferromagnetically ordered, (q), (sl) and (qsl) all 
being non-zero; in I1 these order parameters are all zero and the system 
is disordered; in I11 there is partial ordering, (qsl) being non-zero, but 
(q) and (sl) vanishing; IV is similar to 111, except that the order is anti- 
ferromagnetic, (qsl) alternating from site to site; V is similar to I ,  except 
that (q) and (sl) are anti-ferromagnetically ordered. 

The line EF, which is the boundary between regions I and 11, is the 
critical line (12.9.32) discussed above. This is a line of continuously varying 
exponents, ,u in (12.9.29) varying from 0 at F to 2x13 at E. F is the point 
(Kt, Kt) ,  where Kt = iln 3 = 0.2746. . .; E is where K4/K = -1, K- 03.  
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The line E'F' is also one of continuously varying exponents, and is 
obtained from E F  simply by negating K. Indeed, negating all spins si and 
ai on one sub-lattice of 2 is simply equivalent to negating K, so the whole 
of Fig. 12.12 is symmetric about the K4 axis. 

Fig. 12.12. Phase diagram of the isotropic Ashkin - Teller model, in (K4, K) space. 

The line E F  continues onto the broken line FG. This is the self-dual line 
with 03 > wl: the system is not critical on this line segment; instead there 
are two critical lines FB and FC bifurcating from F. Their positions are not 
precisely known, but B must be the point (Kc, 0), and C the point 
(CQ , &Kc), where Kc is the Ising-model critical value of K, given by 

sinh 2Kc = 1, Kc = 0.4406. . . . (12.9.34) 

The lines FB, FC map into one another under the duality relation (12.9.20). 
The critical exponents thereon are expected to be fixed, having Ising-model 
values. 

Similarly, the position of the critical line EDE' is not precisely known, 
but D is the point (-Kc, 0) and the exponents are also expected to be 
those of the Ising model. 



CORNER TRANSFER MATRICES 

13.1 Definitions 

Notation 

In Chapters 7-10, much use has been made of the row-to-row transfer 
matrix V. Multiplication by this matrix corresponds to adding a row to the 
lattice. Each element of V is the total Boltzmann weight of a row of the 
lattice, as in (7.2.2) and (8.2.2). 

Another useful concept is the 'corner transfer matrix' (CTM), which 
corresponds to adding a quadrant to the lattice. In this section I shall define 
four such CTMs (one for each corner), and shall call them A, B, C, D. 
I shall also define four corresponding normalized matrices A,, B,, C,, D,; 
and four normalized and diagonalized matrices Ad, Bd, Cd, Dd. Here n and 
d are not indices, but merely denote 'normalized' and 'diagonalized', 
respectively. 

The ( a ,  d )  element of one of these matrices will be denoted by a further 
double suffix crd: e.g. Bad and (An)ad are the ( a ,  d )  elements of B and 
A,, respectively. 

The IRF Model 

Corner transfer matrices can be defined for any planar lattice model with 
finite-range interactions, but for definiteness let us consider a square lattice 
model with interactions round faces. For brevity I shall call this the 'IRF' 
model. It is defined as follows. 

To each site i of the square lattice associate a 'spin' ai. In this chapter 
363 
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we shall suppose that each a;: has value +1 or -1; in the next chapter it 
will be more convenient to let then have values 0 or 1; in general they can 
take any desired set of values. 

Let the total energy be 

where the summation is over all faces of the lattice, and for each face the 
i, j ,  k, 1 are the surrounding sites, arranged as in Figure 13.l(a). From 
(1.4.1), the partition function is 

~ = z n w ( q , ~ r , , o k , ~ i ) ,  (13.1.2) 

where the product is over all faces of the lattice, the sum is over all values 
of all the spins, and 

w(a , b , c , d) = exp[-&(a , b , c , d)lk BT] . (13.1.3) 

This w(a , b , c , d) is the Boltzmann weight of the intra-face interactions 
between spins a, b, c ,  d. 

Let N be the number of sites of the lattice and define 

K = lim z " ~ .  
N- m 

Then from (1.7.6), the free energy per site is 

Fig. 13.1. (a) The ordering of the sites i, j ,  k, 1 round a face of the square lattice; 
(b) the quadrant lattice whose partition function is the A,,,, in (13.1.8). 
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Also, from (1.4.4) the expectation value of a particular spin q is 

The object of statistical mechanics is to calculate quantities such as K 

and (q) in the limit of a large lattice. They are expected to be independent 
of the way in which the lattice becomes large, so long as it does so in all 
directions. 

The function w(a , b , c , d) is at this stage arbitrary, so this IRF model 
includes many models of particular interest in statistical mechanics. For 
instance, it includes the case of diagonal interactions together with a 
four-spin interaction in each face: this is the spin formulation (10.3.1) of 
the eight-vertex model. More generally, it includes the eight-vertex model 
in both 'magnetic' and 'electric' fields, and the Ising model in a field. 

Ground State 

The system will have one or more 'ground-states': these are configurations 
of all the spins on the lattice for which the energy %, given by (13.1.1), is 
a minimum. More generally, they can be defined as the configurations 
which give the largest contribution to the sum-over-states in (13.1.2). 

For a ferromagnetic Ising-type system there arc at most two ground 
states: either all spins up, or all spins down. For a system which includes 
anti-ferromagnetic interactions, the ground state may consist of an alter- 
nating pattern of spins. This state is not translation-invariant, even though 
the energy function (13.1.1) is. There must be at least two ground states 
in this case, since applying a translational shift changes the spin configur- 
ation but not its energy. 

In this chapter I refer often to the 'ground-state'. By this I mean a 
particular ground state, and it is important that the same ground state of 
the complete lattice be used throughout. For instance, formulae for (q) 
are given in (13.1.11), (13.1.14) and (13.5.15): if the ground state is not 
translation invariant, then (q) may depend (for sufficiently low tempera- 
ture) on which ground state is used. In this case the translation invariance 
symmetry is 'spontaneously broken'. 

The Matrices A, B, C, D 

Consider the lattice in Fig. 13.l(b). Label the left-hand spins 
01,. . . , om, and the top ones 4 , .  . . , dm, as indicated. Clearly q and 
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4 are both the upper-left corner spin, so 

Fix the boundary spins, i.e. those on the sites shown as triangles in Fig. 
13.l(b), to have their ground-state values. For instance, for the ferro- 
magnetic Ising model they can all be chosen to be +l. 

Let o denote all the spins {q , . . . , a,}; and d all the spins 
(4 , . . . , dm}. Define 

where the product is now over the tm(m + 1) faces in Fig. 13.l(b), and 
the sum is over all spins on sites denoted by solid circles. Note that the 
spins q , . . . , dm are not summed over, so the RHS of (13.1.8) is a function 
of a a n d  d. 

Define B,,d in the same way as only with Fig. 13.l(b) rotated 
anti-clockwise through 90°, so that q , . . . , a, lie on the bottom edge, and 
4 , . . . , dm on the left. Similarly, define Co,d, Da,d by rotating Fig. 13.l(b) 
twice more through 90". 

Now consider the lattice shown in Fig. 13.2. Divide it by two cuts into 
four quadrants of equal size, as indicated. Let q be the centre spin, and 

Fig. 13.2. The lattice with partition function (13.1.10). Boundary spins (on sites 
denoted by triangles) are fixed at their ground state values; q is the centre spin; 
o is the set of all spins (including s) on the lower half of the vertical heavy line; 
d is the set of spins (including a) on the right half of the horizontal heavy line; 

and similarly for d', d". 



let a, d ,  6, d" be the sets of spins (including q) on the corresponding 
half-cuts in Fig. 13.2. Then from the definition of A, B, C, D, the product 

is the product of the Boltzmann weights of all the faces, summed over all 
spins other than those on the cuts. The partition function Z of the lattice 
is Fig. 13.2 is therefore 

Z = E Ao,d Bd,d Cd',d" Dd",o. 
u ,d ,d ,d '  

(13.1.10) 

The summation is over all spin-sets a ,  . . . , d", subject only to the 
restriction that q =uj = di = &, since each of these is the centre spin. 
However, this restriction can be ignored since from (13.1.8b) the summand 
vanishes unless it is satisfied. It follows that 

Z = Trace ABCD . (13.1.11) 

From (13.1.6), the average value of q is the ratio of the RHS of 
(13.1.10), with an extra factor q in the summand, to its value without this 
factor. It follows that 

(q) = Trace SA BCDITrace A BCD , (13.1.12) 

where S is the diagonal matrix whose element ( a ,  a) is q. 
The matrices S, A, B, C, D are all block-diagonal, their elements 

( a ,  d )  being zero unless q =d. The matrix S commutes with A ,  B, C 
and D. In particular, for the Ising-type models where each o;. has value 
+1 or -1: 

where I here is the identity matrix. In this case, (q) is the magnetization 
M. 

In (13.1.11) it is apparent that multiplication by A corresponds to 
introducing the lower-right quadrant, or 'corner', of the lattice. I therefore 
call A the 'lower-right corner transfer matrix'. Similarly B, C, D are 
respectively the upper-right, upper-left, lower-left CTMs. 

The Normalized Matrices A,, B,, C,, D, 

Let s ,  s t ,  s", s" be the values of the spin-sets a, 6, d', d" in Fig. 13.2 when 
all the spins are in the ground state configuration. 
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and define 

These matrices A,, B,, C,, D, are the normalized corner transfer mat- 
rices. Their ground-state elements, e.g. (A,),,, are unity. We shall find 
them useful when considering the limit m + a ~ .  

Many formulae involving CTMs are independent of the normalization 
of A, B, C, D: an obvious example is (13.1.12). Thus A, B, C, D therein 
can be replaced by A,, B,, C,, D,. 

The Diagonal Matrices Ad, Bd, Cd, bd 

It is often useful to use the diagonal forms Ad, Bd, Cd, Dd of A, B, C, D 
(and of A,, B, , C, , D,), normalized so their maximum entries are unity. 
These are defined by 

where d, /3: y: S' are scalars; P ,  Q, R, T are non-singular matrices; and 
Ad, Bd, Cd, Dd are diagonal matrices whose maximum entries are unity. 

The matrix P is the matrix of eigenvectors of A,B,C,D,, Q of 
B,C,D,& etc., and all matrices can be chosen to commute with S, i.e. 
to have the block-diagonal structure in (13.1.13). Then (13.1.12) can be 
written as 

(fi) = Trace S A ~ B ~ C ~ D ~ ~ T I ' Z ~ C ~  AdBdCdDd. (13.1.17) 

For definiteness, I shall suppose that Ad, Bd, Cd, Dd are arranged so that 
their maximum entries are in the position (1 , 1). Then 

The eigenvector matrices P,Q,R,T are not uniquely defined, since the 
normalization of the eigenvectors is arbitrary. This means that P ,  Q, R, 
T can be post-multiplied by diagonal matrices. This affects Ad, Bd, Cd, Dd, 
but not their product. 



In some cases there is a natural unique choice of P ,  Q, R ,  T. For instance, 
for a ferromagnetic isotropic reflection-symmetric model (e.g. the isotropic 
nearest-neighbour Ising model), A, B, C, D are all equal and symmetric. 
It is then natural to take P, Q, R,  T to be equal and orthornormal. Ad is 
then the matrix of eigenvalues of A, normalized to satisfy (13.1.18). 

Once the diagonal matrices Ad, Bd, Cd, Dd are known, the magnetization 
is easily obtained from (13.1.17). The main thrust of this chapter is to show 
that Ad, Bd, Cd, Dd can be evaluated quite easily for certain models (notably 
the eight-vertex model), provided the lattice is infinitely large. In Section 
13.8 it is also shown that self-consistent equations for Ad, Bd, Cd, Dd (and 
certain other matrices) can be written down. These equations are exact 
and infinite-dimensional, but they can be truncated to a finite set of 
approximate equations, and these can be used to obtain good numerical 
approximations to K, or long series expansions of K. 

13.2 Expressions as Products of Operators 

Consider the matrix Ui whose element ( a ,  d )  is 

As is indicated in Fig. 13.3, this corresponds to adding a single face to the 
lattice, going in the NE to SW direction. Indeed, Ui can be regarded as 
a 'face transfer matrix', or as a 'face operator'. It is analogous to the vertex 

Fig. 13.3. A picture of the effect of pre-multiplying by the matrix Ui defined by 
(13.2.1). This corresponds to introducing the square shown, with its appropriate 
weight function w ,  and summing over the spind.  We use the convention that spins 

on open circles are fixed, while spins on solid circles are to be summed over. 
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operator of (9.6.9), the only difference being that here we are thinking in 
terms of 'spins on sites', rather than 'arrows on edges'. 

Two operators Ui, Uj commute if i and j differ by two or more, i.e. 

The corner transfer matrix A can be written as a product of face operators, 
one for each of the 4m(m + 1) faces in Fig. 13.l(b). To allow for the faces 
near the boundary, define U", to be the operator Um given by (13.2.1) with 

fixed to have the value s, i.e. 

Similarly, define U:+ to be Urn+ 1 with am+ 1, am + 2, dm+ replaced by s, 
t, Z, i.e. 

(Uz+ = 6(u1 , 4 )  . . . 6(um, dm) w(s , t , z , urn) . (13.2.3b) 

Thus V:+ is a diagonal matrix. 
Let s, t , . . . , y,  z and s t ,  t' , . . . y' be the boundary spins, arranged 

as in Fig. 13.l(b). Then it is easy to see that 

A = UY"U$5$" form = 2 ,  (13.2.4) 

= ~ " ~ " ' ' U ~ U ~ L G ' Y ~ U Y ~ Y ' ~  form = 3 , 

and in general that 
A = p ' t  2 $p. . . 9zzl, 

where 

13.3 Star - Triangle Relation 

In Section 9.6 it was shown, using the 'electric' language of arrow spins on 
edges, that two six-vertex model transfer matrices commute provided the 
'star - triangle' relation (9.6.8) is satisfied. This result was generalized to 
the eight-vertex model in Section 10.4, and in Section 11.5 it was expressed 
in the 'magnetic' language of Ising spins. 

This last formulation can of course be derived directly. In fact it can be 
written down (but not necessarily solved) for any IRF model. Let the 
square lattice have N columns and be wound on a cylinder, so that column 
1 follows column N. Then the row-to-row transfer matrix V has elements 
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where ON+ 1 = a, dN+ = 4, (T = (01 , . . . , uN}, d = (4 , . . . , dN), and 
the weight function w(a , b , c , d) is now arbitrary. 

Let V' be similarly defined, with w replaced by w'. Then the elements 
of the matrix product V V' are 

(V  V'),d = C Vad'Vb'd 
d' 

where 
s(a ,a" ,a t lb  , b V ,  b ' )  = w(a , b  ,bV,a")  wt(a",b",  b t , a ? .  (13.3.3) 

In fact s(a , a" , a ' [  b , b" , b ' )  is the weight of the two adjacent squares 
shown in Fig. 13.4. 

a' altr/ ' 
a b 

Fig. 13.4. The adjacent squares, the lower with weight function w, and the upper 
with weight function w'.  Their combined weight is the s(a , a" , a' lb , b" , b ' )  of 

(13.3.3). 

For given values of q , . . . UN and 4 , . . . , dN, the R H S  of (13.3.2) is 
a matrix product. Let S(a , a t ( b  , b ' )  be the two-by-two matrix (for two- 
valued spins) with element s(a , a" , a' I b , b , b ' )  in row a" and column 
b". Then (13.3.2) can be written 

( V v ) o d = T r a c e S ( q , d I q , d 2 ) S ( ~ 2 , d 2 1 ~ 3 7 4 )  

Define St similarly, but with w and w' interchanged in (13.3.3). Then 
V'V is given by (13.3.4), with S replaced by St.  Clearly V and V' will 
commute if there exist two-by-two matrices M(a , a ' )  such that 

S(a ,at lb , b') = M(a , a t )  Sr(a , a'lb , b ' )  [M(b , b ' ) ]  -', (13.3.5) 

since the matrices M will cancel out of (13.3.4). 



Post-multiply (13.3.5) by M(b , b'). Write the element (c , d) of M(a , a') 
as wV(c , a , d , a ' ) ,  and write the two-by-two matrix products explicitly. 
Then (13.3.5) becomes 

for all values of a ,  a', a", b, b', b". 

Fig. 13.5. Graphical representation of the generalized star- triangle relation 
(13.3.6): the partition functions of the two graphs are the two sides of the 

equation. 

This equation can be represented as in Fig. 13.5. Define the operators 
Ui as in (13.2.1), and similarly define U: and by replacing w therein by 
w' and w", respectively. Then (13.3.6) is equivalent to the operator relation 

f o r i = 2 ,  . . . ,  m -  1. 
Clearly this is a generalization to the IRF model of the star - triangle 

relations (6.4.27), (9.6.10) of the Ising and eight-vertex models. 
For a given function w, (13.3.6) in general only admits trivial and 

uninteresting solutions for w' and w". One obvious one is 

which corresponds merely to the fact that V commutes with itself. 

Solvable Cases 

We are interested in finding classes of commuting transfer matrices, and 
therefore in finding functions w such that (13.3.6) has infinitely many 
solutions for w' and w". (One can of course always multiply w' and w" by 
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scalar factors, since these must cancel out of (13.3.6): this is not to be 
regarded as a new solution.) 

We have already found one such family of solutions, namely the zero- 
field eight-vertex model. In fact (13.3.6) is the equation (11.5.8), with 
q , . . . , q replaced by b', a ' ,  a", a, 6, b", c; W2 by w; W3(a , b , c , d) 
by w"(c , d , a , b), and Wl(a , b , c , d) by wl(b , c , d , a). 

Let us define p, k, A, u such that 

w ( a , b , a , b )  =psnhi l  

w(a , b , - a ,  -6) = pk snh A snhu snh(A - u) (13.3.9) 

w ( a , b , a ,  -b) =psnh(A-u) 

for a = + 1 and b = + 1. Here snh u is the elliptic function of argument 
u and modulus k, defined by (10.4.20) and (15.1.6). 

Now define w', w" by (13.3.9), but with u replaced by u', u", respectively. 
Then from (11.5.3) and (11.1.10), these u, u', u" correspond to the u2, 
A - ul, u3 in Chapter 11. From (11.1.12) it follows that the star-triangle 
relation (13.3.6) is satisfied provided 

Regard p, k, A as fixed, and u as a complex variable. Then 
w(a , b , c , d) is a function of u, as well as of the four spins a, 6, c, d. 
Write it as w[ula , b , c , dl, or simply w[u]. Then the solution of (13.3.6) 
is 

Equivalently, writing the operator Ui as a function Ui(u) of u, from (13.3.7) 
it follows that 

for all complex numbers u and u". This is the relation (9.7.14), expressed 
in terms of spins-on-sites, rather than arrows-on-edges. 

Rotating the lattice through 90" is equivalent to replacing a, 6, c, d by 
b, c, d, a, and from (13.3.9) this corresponds to replacing u by A - u. Thus 

w [A - u] = weight function w after rotating lattice 
through 90". (13.3.13) 

Suppose, as in (10.7.la), that 

p>O, O < k < l ,  O<A<Z1, (13.3.14) 
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where I' is the complete elliptic integral of the first kind of modulus 
k t  = (1 - k2)*. Then from (13.3.9) 

for all values of the spins a, b, c, d. From (13.1.3), the Boltzmann weights 
w must be non-negative if the energies are real, so the 'physical' values of 
u are those lying on the interval (0,  A) of the real axis. 

In the next chapter, similar properties will be found for a restricted hard 
square model: the relations (13.3.8) are changed, but again it is possible 
to express the function w in terms of a complex variable u (and certain 
'constants' k and A) so that equations similar to (13.3.9)-(13.3.15) are 
satisfied. It is therefore interesting to consider the consequences of 
(13.3.10)-(13.3.15). 

The star- triangle relation (13.3.6) implies that the two row-to-row 
transfer matrices V and V' commute. This result can be generalized to a 
column-inhomogeneous model of the type discussed in Section 10.17. Let 
the Boltzmann weight function w be different for different columns of the 
lattice, but in such a way that k and A are the same for all columns. For 
the matrix V, let ul , . . . , UN be the values of u for columns 1 , . . . , N. 
Similarly, let ui , . . . , uh be their values for V'. Then the derivation 
(13.3.1)-(13.3.6) of the commutativity of V and V' still applies, provided 
that u", and hence w" and M, is the same for all columns. From (13.3.10), 
it follows that 

V V' = V'V if u,! - uj is independent of j . (13.3.16) 

This in turn implies that the normalized eigenvectors of V depend only on 
the differences of ul , . . . , UN. 

Product Relation for CTMs 

Now consider the lattice shown in Fig. 13.6, in which faces to the right of 
the centre line have weight function w[u], while those to the left have 
weight function w[v], and all faces have the same value of k, and of A. 

Let a = {q , q , . . . ) and d ={d ,o$, . . . ), where 4 =q. Then a 
and d together denote all the spins on the bottom row of the lattice. 
Define 

where the product is over all the M faces of the lattice and the sum is over 
all spins on solid circles in Fig. 13.6. 



We consider two possible boundary conditions. Firstly, apply the bound- 
ary conditions of Figs. 13.1 and 13.2. Then it is obvious from the definition 
(13.1.7) of A,  and the corresponding definitions of B and C, that 

where the dependence of B on the parameter u, and of C on u, is explicitly 
exhibited. 

Fig. 13.6. Lattice with weight function w[u]  for faces to the right of the heavy line, 
W [ U ]  for faces to the left. Its partition function is the q, in (13.3.17). 

Secondly, suppose instead that cylindrical boundary conditions are used, 
and fix the top row of spins to have values. . . , s; , si , sl , s2 , s3 , . . . . Let 
s =is1 , s2 , . . . ) and s'' ={$I , si , . . . ), with si =sl. Then 

where r is the number of rows, V is the row-to-row transfer matrix of this 
section, aand d together form the row-index of Vin (13.3.19) while s and 
s' form the column-index. 

In the limit of r large it follows that v is, apart from a normalization 
factor, the maximal eigenvector of V. From the remark following (13.3.16), 
this eigenvector depends on u and v only via their difference u - v. Thus 

where r'(u , u) is a normalization factor, independent of a and d, and 
[X'(u - u)l0d depends on u and u only via their difference u - v. For later 
comparison with (13.3.18), it is useful to regard [X'(u - v)]ad as the 
element ( a ,  d )  of a matrix X' (u - v). Since q = 4,  X'(u - u) can be 
taken to have the block-diagonal structure (13.1.13): it is not the transpose 
of X(u - u). 
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13.4 The Infinite Lattice Limit 

To proceed further we must go to the limit when the lattice is infinitely 
large and the matrices are infinite dimensional. It is not easy to be mathe- 
matically rigorous in handling this limit, although tools are available 
(Ruelle, 1969). Here I shall rely heavily on physical intuition, much of it 
gained from considering low-temperature series expansions, where one 
perturbs about the ground state of the system. 

The parameter a in (13.1.14) is itself a partition function, namely that 
of the lattice in Fig. 13.l(b), with all boundary spins fixed at their 
ground-state values. There are 4m(m + 1) faces, so from (13.1.4) we expect 
that 

If a fixed number of the boundary spins a, d are changed from their 
ground-state values, we expect this only to introduce an extra multiplicative 
factor which tends to a finite non-zero limit as m -+ a. That is, we expect 
that the limit 

exists, provided there exists an integer r (independent of m) such that 

cri = si and c$ = s; for i 2 r .  (13.4.3) 

However, (13.4.2) is simply the element ( a ,  a ')  of the matrix A, defined 
by (13.1.14) and (13.1.15). We therefore expect that 

exists, and in this sense that the matrix A, should tend to a limiting 
infinite-dimensional matrix as m +  a. Similarly, we expect B,, C,, D, to 
tend to limits. 

Arrange the columns of P, Q, R,  T so that the diagonal entries of 
AdBdCdDd in (13.1.16) are in numerically decreasing order. Then 
Ad, Bd, Cd, Dd can be chosen so that each has its entries in numerically 
decreasing order. For a wide class of choices of the function 
w(a , b , c , d), and for sufficiently low temperatures, it appears that a/, 
/3', y', a', P, Q, R,  T, Ad, Bd, Cd, Dd in (13.1.16) can all be chosen to tend 
to limits as m + m. This is in the sense that matrix elements such as P,. 
and (Ad)jj tend to limits, for fixed j and a fixed spin-set asatisfying (13.4.3). 

(High temperature regimes can be handled by using 'free-spin' boundary 
conditions, but let us concentrate on the low temperature case.) 



For the ferromagnetically ordered eight-vertex model it will be found 
in Section 13.7 that Cd =Ad, Db = Bd. and that the largest six diagonal 
elements of Ad (in the limit m+ m), are 

where s = (xz)*, and x,z are the elliptic function parameters defined by 
(10.4.23), (10.7.9) and (10.7.18). (The elements of Bd are given by inverting 
z.) At low temperatures s is small: it increases to one as the temperature 
increases to its critical value. 

More generally, for any IRF model at sufficiently low temperature, it 
seems that each of the corner transfer matrices has a discrete eigenvalue 
spectrum as m + co. This is in the sense that for any E > 0 there are only 
a finite  lumber of eigenvalues numerically larger than e. 

This is quite different from the eigenvalue spectrum of the row-to-row 
transfer matrix V. If the lattice has N columns, then V usually has a unique 
maximum eigenvalue, then a band of N eigenvalues all close together, then 
another band of hN(N - 1) eigenvalues, etc. These bands become con- 
tinuous in the limit N- co. The normalized matrix of eigenvalues of V 
does not tend to a limit as N+ a. 

13.5 Eigenvalues of the CTMs 

Now let us return to Section 13.3 and suppose that w is such that the 
star- triangle relation (13.3.6) does admit a one-parameter class of sol- 
utions for w' and w"; that the members of this class are w[u], where u is 
any complex number, and (13.3.9)-(13.3.12) are satisfied. 

The relations (13.3.18) and (13.3.20) are then true. For a finite lattice, 
Vod is different in the two equations, since different boundary conditions 
are imposed on the lattice. However, in the limit of an infinite lattice, we 
expect the boundary conditions to be irrelevant. Eliminating vod, using 
(13.1.15) and absorbing the factors a and /3 into zt(u , u), gives 

where B,(u), C,(v) are the normalized corner transfer matrices of the 
infinite lattice. 

Three equations analogous to (13.5.1) can be obtained by successively 
rotating the lattice through 90" intervals. In particular, rotating clockwise 
through 90" gives 



where z(u , u) is some scalar factor and X(u - u) is a matrix that depends 
on u and v only via their difference u - v. I shall now regard (13.5.2) as 
the archetypal equation, and (13.5.1) as one of its rotated analogues. 

There are problems with this equation, due to the infinite dimensionality 
of the matrices. The sum-over-elements involved in the matrix product on 
the LHS is probably not convergent, giving a divergent factor. However, 
this factor is common to all elements of A,(u) B,(u), so can be absorbed 
into t(u , u) and plays no role in the subsequent analysis. What I do expect 
to be true is that if s ,  s" are the ground-state values of the spins a, d' in 
Fig. 13.2, and if there exists an integer r (independent of m) such that 

q = sj and c$' = s)' for j 2  r ,  (13.5.3a) 

and if A,(u), B,(u) are again defined for finite m, then the limit 

should exist and depend on u,v only via their difference u - v. 
Also, I expect that there exist representations in which the appropriately 

normalized infinite dimensional matrices A,(u), B,(v) exist, together with 
the product A,(u) B,(v). 

From now on I shall therefore treat (13.5.2) as a normal matrix equation. 
Further, I shall assume that A,(u), B,(u) are not identically singular for 
all u,v, and shall as required assume completeness of eigenvector sets. 
Obviously all this is very non-rigorous. Even so, the assumptions appear 
to be justified, and the results to be exactly correct. 

Symmetric Case 

There is a wealth of information in (13.5.2). It is most easily explored when 
there is no spontaneous breaking of the translation invariance of the lattice, 
and when 

w ( a , b , c , d )  = w ( c , b , a , d )  = w ( a , d , c , b ) .  (13.5.4) 

In this case (which includes the ferromagnetic eight-vertex model), the 
boundary spins s,  t , . . . , z in Fig. 13.1 are all equal, A and B are symmetric 
matrices, and C = A ,  D = B. Also since B is obtained from A by rotating 
the lattice through 90°, from (13.3.13) it follows that 

B,(v) - v) , (13.5.5) 
for all values of v. 

Replacing v by A - v in (13.5.1) therefore gives 
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Interchanging u and u, and eliminating X, gives 

t ( u , A - u ) A , ( u ) A , ( v ) = t ( u , A - u ) A , ( u ) A , ( u ) .  (13.5.7) 

By considering a representation in which A,(u) is diagonal, it can be seen 
that (13.5.7) implies 

From (13.5.9) and (13.5.6), the matrices An(u), A,(u), X(u + u - A) 
therefore commute and have common eigenvectors, independent of u and 
u. For some physical value of u, say $A, letpl,  p2,ps , . . . be the eigenvectors 
of A,(u) arranged so that the corresponding eigenvalues 
al(u), a2(u), as(u) , . . . are in numerically decreasing order. Let 
x1(u), x2(u), X ~ U )  , . . . be the corresponding eigenvalues of X(u). Define 

Then Ad(u), Xd(u) are diagonal matrices whose top-left entries are unity. 
Putting (13.5.6) into diagonal form by pre-multiplying by P-' and post- 
multiplying by P ,  the (1, l )  element gives 

and the equation then becomes 

Any given diagonal entry of (13.5.12) is a scalar equation of the same 
form, and must be true for all real numbers u, u in the interval (0 , A). 
Differentiating logarithmically, it is readily verified that the general solution 
is, for r = 1 , 2 , 3  , . . . , 

where m,, ar are constants, independent of u. 
For a given model, the values of m,, a; can be determined from periodicity 

considerations and by considering special cases: this will be done in the 
next section for the ferromagnetically ordered eight-vertex model. 

Using (13.5.5) and the fact that C = A, D = B, it is obvious that A,(u), 
B,(u), C,(u), D,(u) all commute with one another, so the P,Q,R,T in 
(13.1.13) can all be taken to be P. Then 
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Let Sr be the eigenvalue of S corresponding to the eigenvector pr. Substi- 
tuting the expressions (13.5.13) and (13.5.14) for the eigenvalues into 
(13.1.17), it follows that 

(01) = r = l  5 srm; e x p ( 2 d ) / E  r =  I m: exp(ZarA) . (13.5.15) 

Asymmetric Case 

It is still possible to obtain explicit forms for Ad, Bd, Cd, Dd from (13.5.2) 
(and its rotated analogues), even if the symmetry conditions (13.5.4) and 
(13.5.5) are not satisfied. It is merely a little more tedious. 

First replace u, v in (13.5.2) by A -  v, A - u and then eliminate 
X(u - v). This gives 

Set u equal to some fixed value uo, and suppose that An(uo) is invertible, 
so that (13.5.16) can be solved for Bn(u). Substitute the result back into 
(13.5.1) and post-multiply by B;'(A -uo) Ail(uo). The result is 

d ( u )  d(A - v) = @(u , v) Y(u - v) , (13.5.17) 
where 

d ( u )  = An(u) Ail(uo) , 

This equation (13.5.17) is precisely of the form (13.5.6), with v replaced 
by A - v. It can be solved by exactly the same methods, giving 

where P is independent of u and A ~ ( u )  is diagonal. The columns of P are 
arranged so that for physical values of u (or at any rate for some particular 
physical value), the diagonal entries of Ad(u) are in numerically decreasing 
order. The top-left entry in Ad(u) is unity. The (r , r) entry is 

where m,, cu, are independent of u. 
From (13.5.19) and the first of the three equations (13.5.18), it follows 

that 
M u )  = adu)  PAAu)  Q - I  , (13.5.21) 
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where Q, like P, is independent of u. [In fact Q =A;'(U~)P.] Substituting 
this form for A,(u) into (13.5.16), setting u = uo, solving for B,(v), replac- 
ing u by u, and using the fact that Ad(A - U) and Ad(uO) commute, gives 

where bl(u) is a scalar factor, and R is independent of u. 
Now consider the first rotated analogue of (13.5.2), namely (13.5.1). 

Substituting the form (13.5.22) of B,(u) into (13.5.1) is precisely analogous 
to substituting the form (13.5.21) of A,(u)into (13.5.2) and (13.5.16). The 
result analogous to (13.5.22) is 

where cl(u) is a scalar, and T is independent of u. 
Similarly, the C,(u) D,(u) analogue of (13.5.2) gives 

where dl(u) is a scalar, and W is independent of u. 
Substituting the forms (13.5.24), (13.5.21) of D,(u), A,(u) into the 

Dn(u) A,(u) analogue of (13.5.2) gives 

where t"(u , v) is a scalar factor. Since Ad(u) is diagonal, with element 
(1,l) equal to unity, it follows from the (1,l) element of (13.5.25) that 
t"(u , v) can be taken to be unity. It is then readily apparent that the 
element (r , s) of W-'P satisfies 

Thus W-'P is a block-diagonal matrix, independent if u. 
Post-multiplying P, Q, R, T, W above by constant matrices with this 

block-diagonal structure, we can reduce W-'P to the unit matrix, and 
(13.5.21)-(13.5.24) to the form 

where Ad(u), Bd(u), Cd(u), Dd(u) are: all diagonal matrices, with elements 
given by (13.5.20). For each integer r, the value of a; is the same for all 
four matrices, but mr may be different. In every case al = 0, ml = 1. 

As for the symmetric case, the values of ar and the m, can be obtained 
from periodicity conditions and special cases: this will be done in the next 
chapter for a restricted hard square model. 



Substituting these forms (13.5.27), (13.5.20) into (l3.l.l7), we again 
obtain the formula (13.5.15) for the magnetization, except that now m: is 
to be replaced by the product of the values of mr for A,, B,, C, and D,. 

13.6 Inversion Properties: Relation for ~ ( u )  

When u = 0 it is apparent from (13.3.9) that 

w ( a , b , c , d )  =psnhAb(a,c) .  (13.6.1) 

Suppose the boundary conditions are such that s = t  = . . . = z and s t  = 

tt = . . . = y'. Then from (13.2.1) 

Ui = psnhA 91, (13.6.2) 

where 9 is the identity matrix and i = 1 , . . . , m - 1. Further from (13.2.3), 
(13.6.2) is also true for the boundary matrices U", , U","+l that occur in 
(13.2.4)-(13.2.6). It follows that 

A(0) = (p snh ')91 , (13.6.3a) 

and hence from (13.1.14) and (13.1.15) that 

Setting u = 0 in the first of the equations (13.5.27), it follows that 

Q = ado) PA@) , (13.6.4) 

and hence that 

A,(u) = [al(u)lal(0)] PAdu)Adl(0) P-l. (13.6.5) 

From (13.5.13), the matrix Ad(u) Adl(0) is diagonal, with elements 

[Ad(u)Adl(0)]r,r = exp(-a&) (13.6.6) 

a, being independent of u. 
Let %!d be the diagonal matrix with entries a*, m2, a 3 ,  . . . , and set 

X =  P X ~ P - ' .  (13.6.7) 

Then from (13.6.5) and (13.1.15) it follows that 

A(u) = t(u) exp(-uX) , (13.6.8) 

where, noting that a can depend on u, 

t(u) = (~al(u)Ja~(O). 



As m- 03 we expect al(u) and 2 to tend to limits. From (13.4.1), the 
partition function per site is therefore 

K(U) = lim [ t ( ~ ) ] ~ ' ~ ( "  + ') . (13.6.10) 
rn-t  m 

These equations have been derived for the physical values of u ,  namely 
those on the interval (0 , A )  of the real axis. For these we expect the various 
large-rn limits to exist. In particular, we expect that if the diagonal elements 
of Ad(u) Az1(O) are arranged in numerically decreasing order, the largest 
being normalized to unity, then any given element will tend to a limit as 
rn -+ m.  This means that @I, a2, a3 , . . . are non-negative and that X is 
non-negative definite. 

However, it seems that these equations can be extended to small negative 
values of u, and that the resulting values of K(u) are those obtained by 
analytically continuing the function from positive values. 

[For u negative, this K(u) is not that given by (13.1.4). This is because 
the order of the eigenvalues of exp(-uX) is reversed and it is now the 
smallest eigenvalue that is normalised to unity, instead of the largest.] 

Suppose therefore that (13.6.8) is true for sufficiently small values of u, 
positive or negative. Then obviously 

This result can be obtained directly. From (13.3.9) it is readily established 
that 

for all spins a,b,c,d and all complex numbers u, where 

and for generality I now allow the normalization factor p in (13.3.9) to be 
some given function of u (but k and A continue to be regarded as constants). 

From (13.6.12) and (13.2.1) it follows that 

This is true for i = 2 , . . . , m - 1 and also for Urn, provided s  is fixed. 
It is not true for V:+l defined in (13.2.3b), but without doing violence to 
the boundary conditions this diagonal matrix can be replaced by one for 
which it is true. Since we are supposing that s =t = . . . = z and s t  =t '  = 
. . . = y', from (13.2.4)-(13.2.6) it follows that 



384 13 CORNER TRANSFER MATRICES 

which is of the same form as the previous result (13.6.11). Comparing 
them, we obtain 

Taking 4m(m + 1 )  roots in this equation, using (13.6.10) and (13.6.13), 
gives 

K ( U )  K( -U)  = p(u)  p(- U )  [snh2 A - snh2 u ]  . (13.6.17a) 

A similar equation can be obtained by rotating the lattice through 90". 
From (13.3.13) this is equivalent to replacing the functions ~ ( u ) ,  p(u) by 
K(A - u ) ,  p(A - u ) ,  respectively: (13.6.17a) then gives 

Let us set 

p = p(u)  = p' k% ( ih)  O ( i u )  O (iA - i u )  , (13.6.18) 

where p' is a constant. This ensures that the parametrization (13.3.9) of 
the Boltzmann weights is the same as (10.4.24) (with p replaced by p ' ) ,  
and that the weights are entire functions of u .  Using the formula (15.4.19), 
(13.6.17) becomes 

where h ( u )  is defined by (10.5.16), i.e. 

We have in fact already encountered the second equation (13.6.19). 
From (13.1.5), (10.8.46) and (10.4.23), the function A ( v )  in Chapter 10 
is related to ~ ( u )  by 

where N is the number of columns in the lattice of Chapter 10. Replacing 
u in the second equation (13.6.19) by i (A  + o) ,  and taking Nth powers, the 
equation becomes 

where the function $(u)  is defined by (10.5.24). However, this is precisely 
the relation (1 0.8.43). 

The relations (13.6.19) are therefore certainly true for the eight-vertex 
model, which gives me greater confidence in the assumptions used to derive 
them. Analogous relations have been used by Stroganov (1979) for two 
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special cases of the '81-vertex' model, and yet others will be used in the 
next chapter for a modified hard squares model. 

More generally, for any IRF model we can always define an 'inverse' 
weight function iC such that 

for all spins a, b, c, d. ~ e f i n e u ,  by (13.2.1), with w replaced by E.  Then 
(13.6.23) implies 

for i = 2 , . . . , m. Write K as a function K [ W ]  of W .  Define K[E] as the 
analytic continuation from w to E. Then one can use arguments similar to 
those above to establish that 

[Probably the simplest way is to consider the diagonal-to-diagonal transfer 
matrix (UlU3U5 . . . UN-1) (U2U4U6. . . UN). Then K can be defined as the 
Nth root of the eigenvalue whose corresponding eigenvector has no negative 
entries. Inverting each Ui inverts all the eigenvalues, and hence inverts 
K. I 

This equation (13.6.25) is the generalization of (13.6.17a). The gener- 
alization of (13.6.17b) is obtained by rotating the lattice through 90", i.e. 
by using the NW to SE inverse of w ,  instead of the NE to SW inverse iC. 

In the next section it will be shown for the eight-vertex model that 
(13.6.17), together with some simple analyticity and periodicity properties, 
determines the function K ( u ) ,  and hence the free energy. It is fascinating 
to speculate whether (13.6.25) does the same for any IRF model, e.g. the 
Ising model in a magnetic field. Unfortunately it seems that K is then a 
much more complicated function and that (13.6.25), while true, is no 
longer sufficient to determine K. 

13.7 Eight-Vertex Model 

Free Energy 

Let us use the definition (13.6.18) of p(u) and regard p' as a constant. 
Then the parametrization (13.3.9) of the Boltzmann weights is the same 
as that in (10.4.24), but with p therein replaced by p'. If (13.3.14) and 
(13.3.15) are satisfied, then the system is in an ordered ferromagnetic 



phase. We can therefore use the results of Section 10.8 to obtain the free 
energy, and hence 4 u ) .  From (13.6.15) and (10.8.44), 

(x3n + qnx-") (2" + z-") 
In K(U) = 1n(pty/x) -. 2 

n = i  n(l - q") (1 + x2") 
, (13.7.1) 

where q, x, z are given by (lO.4.23), (10.7.9) and (lO.?'.l8), i.e. 

Since p', k, A are regarded as constants, so are q and x. The parameter 
z varies with u. From the result (13.7.1) it can be seen that 

In K(U) = analytic in a domain containing the vertical 
strip 0 S Re(u) S A, periodic of period 2il. (13.7.3) 

These analyticity and periodicity properties, together with the 'inversion' 
relations (l3.6.17), actually define ~ ( u ) .  

To see this, note that (13.7.3) implies that In ~ ( u ) ,  regarded as a function 
of z, is analytic in the annulus x c z  c x-'. It therefore has a Laurent 
expansion which converges in a domain containing this annulus, i.e. there 
exist coefficients c,, independent of z and u, such that 

Also, from (10.8.6), 

In h(u) = In y + nu121 - xnz"ln(l - q") , 
"SO 

(13.7.5) 

where the sum is over all integer values of n, positive or negative but not 
zero, and u must lie in the strip 0 <Re(u) < I'. 

The equations (13.6.17) are equivalent to (13.6.19). Take logarithms of 
both sides of (13.6.19a). There exists a strip about the imaginary axis in 
the complex u plane inside which all functions can be expanded by using 
(13.7.4) or (13.7.5). This gives 

= 2 ln(ptylx) - n 2 +O (x3" + qnx-") znln(l - q") . (13.7.6a) 

In both sums n runs from - w to w ,  but n = 0 is excluded in the second. 
Similarly, (13.6.19b) gives 

= 2 1n(p1yix) - 2 (x" + q " ~ - ~ ~ ) z " l n ( l  - qn),  (13.7.6b) 
n + O  



for a vertical strip about Re(u) = A. Equating coefficients of zn in (13.7.6a) 
and (13.7.6b), the resulting equations can be solved for c, to give 

co = 1n(p1 ylx) , (13.7.7) 
c, = c-" = -(x3" + qnx-")l[n(l + x2") (1 - qn)] forn $0 .  

Substituting these expressions into (13.7.4) gives the result (13.7.1) of 
Chapter 10. 

The analyticity and periodicity properties (13.7.3) could have been 
guessed from low-temperature series expansions, and ~ ( u )  then obtained 
by the above reasoning. Provided one is prepared to make these initial 
assumptions, this method is undoubtedly the simplest way yet known for 
evaluating ~ ( u ) ,  and hence for obtaining the free energy of the eight-vertex 
model. 

Magnetization 

The ground state of the ordered ferromagnetic phase can be taken to be 
the configuration in which all spins have value 51.  Since w(a , b , c , d) is 
symmetric with respect to interchange of a and c, or b and d, it follows 
that the corner transfer matrices A, B, C, D are symmetric and that 
C = A and D = B. This case has been discussed in (13.5.4)-(13.5.15). 
From (13.5.10) and (13.5.5). 

The matrix Ad(u) is diagonal, with elements of the form (13.5.13), where 
ml = 1 and al = 0. From (13.6.3b) it follows that mr = 1 for all r ,  so the 
diagonal elements of Ad(u) are 

The al ,  a 2  , . . . are constants, independent of u. 
The Boltzmann weights (13.3.9) are periodic functions of u, of period 

4iI. There seems to be no problem in extending the reasoning of Section 
13.5 to all complex numbers u in the vertical strip 0 < Re(u) < A (if we 
look at low-temperature series expansions, u only enters them via integer 
or half-integer powers of the z in (13.7.2)). This implies that Ad(u) is also 
periodic of period 4iI, so from (13.7.9) it follows that 

where nl, nz , . . . are integers. 
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These integers can be obtained by considering the case when k+ 0 while 
3JI' and u remain fixed. The first and third weights in (13.3.9) then remain 
comparable with one another, while the other two become relatively 
negligible. From (15.1.6) and (13.7.2), 

From (13.2.1) and (13.2.3), the matrices Ui are therefore diagonal, with 
entries 

for i = 2 , . . . , m + 1, where am+ 1 and am+2 are to be given the ground 
state value of + l .  From (13.2.4)-(13.2.6), the matrix A is also diagonal, 
so Ad(u) is obtained by normalizing this matrix to have maximum element 
unity. This gives 

Comparing this with the general formula (13.7.10), and replacing the 
single index r by the multiple index a ={s , a2, . . . , a,), we see that 

m + 1 

nu = 4 E (i - I )  (I - ai-lai+l). 
i = 2  

(13.7.14) 

It follows that (13.7.13) is true throughout the ferromagnetic ordered 
phase, in the limit of m large. By this I mean that if we consider the rth 
largest diagonal element of Ad(u) (for u positive), and let m-+ m while 
keeping r fixed, then this element tends to a limit, and this limit is given 
by (13.7.13). If a i s  the spin set corresponding to this rth largest element, 
then there must be an integer j, independent of m, such that 

a;.= +1 for i > j .  (13.7.15) 

It is convenient to introduce a new set of spins pl , . . . , p.,,, by 

(taking a,+ = am+2 = +1 as before). Then Ad(u) is a diagonal matrix 
whose rows and columns are labelled by p ={pl,. , . , pm), and whose 
diagonal entries are 



Also, since q = ~ 1 ~ 3 ~ 5  . . . , the S in (13.1.13) is diagonal and has entries 

The matrices Ad(u )  and S are now direct products of two by two matrices. 
Set 

Then, using (13.7.8) and (13.1.16), 

These equations are true only in the limit m+ a, when there are 
infinitely many terms in each of the direct products. I first conjectured 
them in 1976 (Baxter, 1976), but could not then prove them. 

Substituting them into (13.1.17) gives 
m 

(4) = I-J (1  - ~ ~ " ~ ) l ( l  + x~~ -2)  , 
n = l  

(13.7.21) 

which is the formula (10.10.9) for the spontaneous magnetization of the 
eight-vertex model. We have therefore established this result, originally 
conjectured by Barber and Baxter (1973). 

This reasoning does not easily generalize to the spontaneous polarization: 
the formula (10.10.24) is still a conjecture. 

13.8 Equations for the CTMs 

In this section I return to the general IRF model of Sections 13.1 and 13.2, 
and show that there are equations which relate K and the CTMs, and in 
principle determine them. They have not so far proved particularly useful 



for exactly solvable models, but they have been used very successfully to 
obtain high-order series expansions (Baxter and Enting, 1979; Baxter et 
al., 1980) and good numerical approximations (Baxter, 1968; Kelland, 
1976; Tsang, 1979; Baxter and Tsang, 1980). 

Define 

A* = $;'"$y'u. . . 
(13.8.1) 

A** = gy'u . . . ~ ~ Y Y ' Z  
m + l .  

Then from (13.2.5) and (13.2.6), 

For simplicity, suppose that the ground state is translation invariant, so 
that s ,  t, u , . . . and s', t' , . . . are all equal. (This is not essential, but 
for a non-translation invariant system we must keep track of the boundary 
conditions appropriate to the various corner transfer matrices, and this 
complicates the notation.) Then eliminating 95 and 95 between the equa- 
tions (13.8.2) gives 

These A* and A** are themselves corner transfer matrices, only with 
the spins shifted and rn reduced. In fact 

where the A on the RHS of (13.8.4a) is defined by (13.1.8) with rn replaced 
by rn - 1, and the A in (13.8.4b) has rn replaced by rn - 2. 

Let us refer to the lattice quadrant in Fig. 13.l(b) as being of size 'rn by 
m'. Then (13.8.3) defines A for an rn by rn quadrant in terms of its values 
for rn - 1 by m - 1 and rn - 2 by rn - 2 quadrants. It is a recursion relation. 

There are of course analogous recursion relations for B, C and D, 
obtained from (13.8.3) by rotating the lattice successively through 90" 
intervals. 

Recursion Relation for Ad, Bd, Cd, Dd 

We are interested in calculating the diagonal formsAd, Bd, Cd, Dd . There 
are at least two reasons for this: for those models which have been solved 



exactly, the diagonal forms have a very simple structure, e.g. (13.7.20); 
for other models only approximate calculations can be performed. In such 
approximations the corner transfer matrices must be truncated to man- 
ageable size. As will be discussed at the end of this section, it seems that 
a very good way to do this is to work with the diagonal forms of the 
matrices. 

Rather than calculate the original CTMs A, B, C, D from (13.8.3) and 
its analogues, and then use (13.1.15) and (13.1.16) to obtain 
Ad, Bd, Cd, Dd, we can make the substitutions (13.1.15) and (13.1.16) 
directly into (13.8.3). 

First let us establish some notation. For any 2"-' by 2"-' matrix X, 
with elements Xq, define a 2" by 2" matrix X*, with elements 

Here the rows of X* are labelled by the double index (q , i) the columns 
by (4 , j ) .  In obvious notations we can write 

el being the unit two-by-two matrix. 
Similarly, for any 2m-2 by 2m-2 matrix X, define a 2" by 2" matrix X** 

by 

xz&iin;~ = =(a1 , d) 6(02,d2) Xij , (13.8.6a) 

These definitions are consistent with the equations (13.8.4) for A* and 
A * * , being the obvious generalizations thereof. 

Let P*, Q*, A$ be so defined, using the matrices P, Q, Ad appropriate 
to the m - 1 by m - 1 lattice quadrants. Similarly, define P**, Q**, A$* 
in terms of the m - 2 by m - 2 quadrants. Let zm = ad, where a, d are 
the scalar factors in (13.1.15) and (13.1.16), evaluated for an m by m 
quadrant. Then substituting (13.1.15) and (13.1.16) into (13.8.3), using 
(13.8.4)-(13.8.6), we obtain 

KP,A~Q;~ = A ~ ,  (13.8.7) 
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A, = A$(QF)-'(A$*)-l U2P:A$, (13.8.8) 

P, = (P*)-'P, Q r =  (Q*)-'Q, 

Pr* = (P**)-IP*, Q: = ( Q * * ) - l ~ * ,  (13.8.9) 

All matrices in (13.8.7)-(13.8.10) are of dimension 2" by 2". We have 
used the fact that P is of the block-diagonal form (13.1.13), so that P** 
commutes with U2. The suffix r can be regarded as standing for 'ratio', and 
t for 'total calculated corner transfer matrix'. 

To understand this last remark, note that (13.8.7) is one of four relations 
which can be obtained from it by rotating the lattice through 90" intervals. 
This cyclicly permutes A, B, C, D and P,  Q, R, T. The four equations are 

These equations are precisely of the form (13.1.16). Since Ad, Bd, Cd, 
Dd are the diagonalized CTMs of the m by m lattice quadrants, it follows 
that A,, B,, C,, D, are also allowed representations of these CTMs. They 
are not in general diagonal, but appear to be 'more diagonal' than the 
original CTMs A,  B, C, D: for instance, there seems to be no problem 
with the convergence of the relevant matrix products in the infinite-lattice 
limits. Since A, is related to A by 

we can regard A, as a 'partially diagonalized' form of A. 
Suppose we have evaluated the 2"-' by 2"-I matrices Ad, Bd, Cd, Dd, 

P,, Q,, R,, T, appropriate to m - 1 by m - 1 quadrants, and the 2"-' by 
2m-2 matrices Ad, Bd, Cd, Dd appropriate to m - 2 by m - 2 quadrants. 

Then the definitions (13.8.5) and (13.8.6) give the 2" by 2m matrices 
A$, P:, Q:,A$* in (13.8.8), so we can evaluate A,. Similarly, using the 
rotation analogues of (13.8.8), we can evaluate B,, C,, D,. The equations 
(13.8.11) can then be solved for the 2" by 2" matrices Ad, Bd, Cd, Dd, 
P,, Q,, R,, T, appropriate to m by m lattice quadrants. 

(There is still some freedom, notably in the normalization of the column 
vectors of P,, Q,, R,, T,, but in any given example there is usually an 
obvious sensible choice of such factors. For instance, the simplest case is 
that of an isotropic reflection-symmetric model, when A = B = C = D is 
symmetric. We can then choose P, = Q, = R, = T, to be orthogonal, and 



Ad = Bd = Cd = Dd to have maximum eigenvalue unity. It is helpful to 
keep this simple case in mind.) 

Also, for large m we expect the d in (13.1 .l6) to tend to a limit, so 
from (13.4.1) it follows that zm = dm("+'), where K is the partition function 
per site. The definitions (13.4.1) and (13.8.10) of K are therefore equivalent. 

We can therefore use the equations (13.8.8) and (13.8.11) to calculate 
K and Ad, Bd, Cd, Dd, Pr, Q,, R,, Tr recursively for successively larger 
values of m. 

Truncated Equations 

Let us consider in a little more detail how we would solve (13.8.11), given 
A,, B,, C,, D,. Multiplying gives 

K ~ P ~ A ~ B ~ C ~ D ~ P ; '  = AtBtCtDI. (13.8.13) 

~ h u s  one has to diagonalize AtBtCtDt: K ~ A ~ B ~ C ~ D ~  is the diagonal matrix 
of eigenvalues ( K ~  being the largest), and P, is the matrix whose columns 
are the right-eigenvectors. Also, if P,, Q,, R,, T, are the inverses of P,, 
Q,, Rr, T,, respectively, thin P, is the matrix whose rows are the left- 
eigenvectors of A,B,C,D,. Similar results for Qr , . . . , T, can be obtained 
by cyclically permuting A, B, C ,  D, and the definition (13.8.8) of A, can 
be written as 

If one keeps all such eigenvalues and eigenvectors, then the diagonal 
matrices Ad, Bd, Cd, Dd double in size at each recursion. However, we 
expect these to tend to infinite-dimensional limits. This is in the sense given 
in Section 13.4, namely that if their diagonal elements are arranged in 
numerically decreasing order, then any given such element (e.g. the 6th 
largest) should tend to a limit. 

This suggests a self-consistent truncation of the equations, namely to 
keep only the larger half of the eigenvalues of A,B,C,D,, and the corre- 
sponding right- and left-eigenvectors. This means that we are solving the 
equations 

together with (13.8.14) and their rotated analogues. 
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If the number of eigenvalues thereby kept is n, then it follows from 
(13.8.5) and (13.8.14)-(13.8.16) that the dimensions of the various matrices 
are as follows: 

A,: 2n X 2n; P,: 2n X n; Q,: n X 2n; 

and the dimensions are unchanged by cyclically permuting A, B, C, D and 
P, Q, R ,  T. 

From (13.8.14), the matrices A,, B,, C,, D, are block-diagonal of the 
form (13.1.13). The diagonal elements of Ad (and of Bd , Cd , Dd) therefore 
fall into two sets: those from the block with S = +1, and those from the 
block with S =  -1. Label the elements i =  1 , .  . . , n ,  and let Ci= +1 (-1) 
if the element comes from the S = +1 (-1) block. Then using (13.2.1), the 
elements of the various matrices can be written as: 

Here the row- and column-indices are usually compound, and a vertical 
bar is used to separate them; e.g. P: has row-index (q , @ , i) , and 
column-index ( 4  , j). The extra factors ailaj and ajlai are introduced for 
later convenience. 

The matrix equations (13.8.14)-(13.8.16), together with their rotated 
analogues, are now finite-dimensional. Given a reasonable initial guess at the 
solution, they can be solved iteratively by calculating A,, B,, C,, D, 
from (13.8.14) and its analogues, then diagonalizing A,B,C,D, and selecting 
the n largest eigenvalues (and the corresponding eigenvectors) to obtain 
the K, Ad, Bd, Cd , Dd, P,, Q,, R,, T,, P,, Q,, R,, T, in (13.8.15) and its 



analogues. The equation (13.8.16) is then just a normalization condition 
on the various eigenvectors. 

Once a solution is obtained for a given value of n, then selecting the 
n + 1 largest eigenvalues of A,B,C,D, gives an initial guess for the next 
value of n. Thus one can in principle solve the equations systematically for 
n = 1 , 2 , 3 , .  . . , at any rate for sufficiently low temperatures, when the 
iterative procedure converges and the initial guesses are quite good. 

Accuracy of a Given Truncation 

The equations (13.8.14)-(13.8.16) cannot usually be solved analytically, 
but for finite n they can be solved numerically on a computer, or they can 
be used to obtain a low-temperature series expansion of the solution. In 
the latter case, one expands K and all the matrix elements in powers of 
some low-temperature variable x .  

Of course, for any finite value of n the resulting K ,  Ad, etc. do not have 
their true infinite lattice values, but we do expect them to converge thereto 
as n- ,  03. 

It is therefore of interest to estimate the relative error in K that is caused 
by using a finite-n truncation. Fortunately there seems to be a simple way 
of estimating this. 

Note from (13.1.11) and (13.1.17) that a significant variable is 

pl = Trace AdBdCdDd . (13.8.19) 

The n eigenvalues of AdBdCdDd are contained in the 2n eigenvalues of 
K - 4 ~ , ~ , ~ t ~ , ,  and the largest of each is unity. Let 

A = largest eigenvalue of K-~A,B,C,D, 
omitted from AdBdCdDd. (13.8.20) 

Then in some sense this A is a measure of the relative error in pl caused 
by truncating the equations to finite n. Since (q) is a derivative of In K and 
from (13.1.17) is proportional to pl, this suggests that 

relative error in K = A . (13.8.21) 

Of course this is a great over-simplification, since omitting one eigenvalue 
affects all the other eigenvalues, and indeed all matrix elements. However, 
in actual numerical calculations (13.8.21) seems in fact to be true (Tsang, 
1979; Baxter and Tsang, 1980; Baxter, Enting and Tsang, 1980). 

Further, in those series expansion calculations which have been per- 
formed (Baxter and Enting, 1979; Baxter et al., 1980), it has always been 
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found that if A - 9, where p is some positive integer, then the relative 
error in K is also of order xP. 

This means that quite long series expansions can be obtained from quite 
small values of n. For instance, from (13.7.20) and (13.7.19), for the 
zero-field eight-vertex model, 

where x is a parameter that is small at low temperatures, so can be used 
as the low-temperature expansion variable. 

From (13.8.22), the first 14 eigenvalues of AdBdCdDd, in numerically 
decreasing order, are 

Keeping the first three of these, the largest eigenvalue omitted is of 
order x6. Thus even the n = 3 truncation gives K correctly to order x5. Then 
n = 10 truncation gives K to order xl'. 

There are other examples for which the eigenvalues decrease still more 
rapidly: for the hard squares model, Baxter et al. (1980) were able to 
obtain the first 43 terms in the low-density expansion of K, using only 13 
by 13 matrices. 

Variational Principle 

The truncated equations (13.8.14)-(13.8.16) are in fact equivalent to a 
variational approximation for K. 

To see this, use the explicit forms (13.8.18) of the various matrices. Then 
(13.8.14) becomes 

cij(q) = E w ( & ,  5k , 5, 9 G I )  q i ~ k j .  
k 

(13.8.24) 

Using this, (13.8.15) and (13.8.16) become 

The three rotated analogues of these equations can be obtained by 
cyclically permuting a, b ,  c, d ,  and p ,  q ,  r, t, and the four arguments of 



the function w. The first such analogue of (13.8.25b) is 

~aifijbj = z w(ci ck, & &) gikakrklblqrj. 
k.1 

(13.8.27) 

Comparing this with (13.8.25a), and using the analogous comparisons, it 
is apparent that the equations permit solutions such that 

In both of these equations, i and j are integers from 1 to n. The first is true 
only if ti = ti, the second is true for all i and j. 

It is useful to introduce an obvious new matrix notation. Let a be the 
n by n diagonal matrix with elements ai S(i , j), p the n by n matrix with 
elements p ~ ,  etc. Then (13.8.29) and (13.8.30) become 

These equations, and their rotated analogues, can be derived from a 
variational principal. Define 

pl = Trace abcd , 

f i  = Trace abqcdt , 

pi = Trace bcrdap , 

and consider the quantity 

Kv = ~lP3/(~2&) 

Differentiating KV logarithmically with respect to any element of 
a , .  . . , t, we find that the derivative vanishes if (13.8.31) are satisfied, 
together with their rotated analogues. Further, from (13.8.31) it is readily 
verified that pl = pz = pl, =K-'B, SO 



We therefore have a variational principle for the partition function per 
site K: K is the stationary value of Kv. This is exact in the limit of n large, 
and a good approximation even for quite small n. 

The equations (13.8.31)-(13.8.34) can be obtained (at least for suffic- 
iently symmetric systems) from a variational approximation to the maxi- 
mum eigenvalue of the row-to-row transfer matrix V. This is the way they 
were originally derived (Baxter, 1968; Kelland, 1976; Baxter, 1978~). 

Matrices a, b, c, d not Necessarily Diagonal 

The equations (13.8.31) are formally unchanged by the transformation 

where a, p, y, S are any non-singular matrices that are block-diagonal in 
the sense that their elements (i , j) are non-zero only if 5;. = &. If the rows 
and columns of the various matrices are arranged so that & = +1 for i = 
1 , . . . , n', and Ci = -1 for i = n' + 1 , . . . , n, then it follows that a, P, 
y, 6 have the form 

the top-left block being n' by n ' ,  the loder-right being n - n' by n - n'. 
The transformation (13.8.35) therefore destroys the strict diagonality of 

a, b, c, d, but they remain block-diagonal of the form (13.8.36). (This is 
actually equivalent to dropping the original requirement that Ad, Bd, Cd, 
Dd be diagonal, but still insisting that they be of the form (13.1.13).) 

It can in fact be useful to work in a representation in which a, b, c, d 
are non-diagonal. In particular, in series calculations it is inconvenient to 
insist that a, b, c, d be completely diagonal, since this can introduce 
irrational coefficients. It is better to require merely that they be block- 
diagonal, all elements within a block having (to leading order) the same 
power-law dependence on the expansion variable x ,  and any element (i , j) 
being zero if Ci # 4. 



Graphical Interpretation 

The equations (13.8.31) can be interpreted graphically. Consider the first 
lattice quadrant shown in Fig. 13.7. Regard i as denoting the spins on the 
left-hand edge, and & as being the top such spin. Similarly, let j denote 
the spins on the upper edge, and 4 the left-hand such spin. Let ai, be the 

ai. 'ij C . .  'ii 

pil 'ii r . .  +i i 

Fig. 13.7. Lattice segments and their corresponding partition functions, or total 
weights. The i and j denote all the spins on the corresponding edges. 

element (i , j) of the matrix a. Since a is no longer necessarily diagonal, 
aij can be non-zero if i # j, but 

ay # 0 only if Ci = C, . (13.8.37) 

Since Ci and 4 both denote the top-left spin, they must be equal. Regard 
ad as the 'total weight' of the lattice quadrant. 

More generally, regard a,,, bii, cy, di,,py, qij, rij, tV as weights of the cor- 
responding lattice segments in Fig. 13.7, where in every case Ci is the spin 
at the circled end of the edge labelled i, and similarly for 4. 

Now consider the composite lattice segment shown on the left of Fig. 
13.8. This consists of four pieces, with 'weights' tik, akl, brm, qm,. Summing 
over all the spins internal to this composite segment is equivalent to 
summing over k, 1, m, remembering that f;G = & = Cm is the spin on the site 
denoted by the solid circle. But this simply gives (tabq)ii, so this is the 
total 'weight' of the left-hand figure in Fig. 13.8. 

Similarly, the weight of the right-hand figure is (ab)ij, so (13.8.31a) is 
represented graphically by Fig. 13.8(a). 
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Fig. 13.8. Graphical representation of equations (13.8.31a) and (13.8.31b). Each 
figure represents its total weight, which is given by multiplying the segment weights 

(e.g. tabq) and summing over spins on internal lines. 

Also, remembering that w is the Boltzmann weight of a square face of 
the lattice, (13.8.31b) is represented by Fig. 13.8(b). For infinitely large 
lattice segments these graphical equations have an obvious meaning: the 
partition function of a semi-infinite lattice is unchanged, apart from a 
normalization factor, by adding an extra column to the lattice; and this 
factor is independent of the choice of the spins on the left-hand edge. 

The quantities pl, f i ,  f i ,  pj are the weights of the composite lattice 
shown in Fig. 13.9, so the variational principle (13.8.33) can be interpreted 
graphically as indicated. 

Since KV is stationary with respect to small perturbations of av , . . . , tq 
from their exact values, (13.8.33) should give reasonably good approxi- 
mations to K even with quite simple choices of av , . . . , ti,. An obvious 
choice is to take them to be the exact Boltzmann weights of finite lattice 
segments. If each long edge in Fig. 13.7 is taken to have r sites, then from 
(13.8.34) and Fig. 13.9 an approximation to K is 

+ 
d t a  

: . . .  I . .  1 . . 

.. . I '  ' 

Fig. 13.9. Graphical representation of the variational principle (13.8.33) 



where Z,, is the partition function of a rectangular lattice of m rows and 
n columns. Appropriate boundary conditions should be applied: at low 
temperatures the boundary spins can be fixed at their ground-state values. 

For a given size of the matrices a , . . . , t, this approximation is nothing 
like as good as can be obtained by solving (13.8.31) and (13.8.32) exactly. 
Even so, it is moderately satisfactory, and has been discussed by Enting 
and Baxter (1977). 

Throughout this section I have supposed that the ground state is trans- 
lation invariant. If it is not, and the translation invariance is spontaneously 
broken, then one must define several corner transfer matrices A and a: 
one for every distinct position of the corner relative to the ground-state 
spin configuration of the infinite lattice. Similarly for the matricgs B, C, 
D , b  , . . . ,  t. 

The equations (13.8.31) can be extended to other planar lattices, notably 
the triangular lattice (Baxter and Tsang, 1980). (In some ways this is a 
simplification, since the equations are of lower degree.) 

They can also be extended to three dimensions: one obvious way being 
to write down the generalization of Fig. 13.9, which will involve a cube 
sliced into 27 pieces by 6 cuts! Unfortunately the resulting equatians are 
quite complicated and involve 'corner tensors' with three indices. There 
is no analogue of matrix diagonalization for these tensors, and as yet the 
equations have not been investigated. 



HARD HEXAGON AND RELATED MODELS 

14.1 Historical Background and Principal Results 

From an historical point of view, an excellent example of the use of corner 
transfer matrices is provided by the hard hexagon model. This is a two- 
dimensional lattice model of a gas of hard (i.e. non-overlapping) molecules. 
In it, particles are placed on the sites of the triangular lattice so that no 
two particles are together or adjacent. A typical allowed arrangement of 
particles is shown in Fig. 14.1. If we regard each particle as the centre of 
a hexagon covering the six adjacent faces (such hexagons are shown shaded 
in Fig. 14.1), then the rule only allows hexagons that do not overlap: hence 
the name of the model. 

For a lattice of N sites, the grand-partition function is 

where g(n , N) is the allowed number of ways of placing n particles on the 
lattice, and the sum is over all possible values of n. (Since no more than 
113 of the sites can be occupied, n takes values from 0 to Nl3.) We want 
to calculate Z, or rather the partition-function per site of the infinite lattice 

K = lim Z1lN 
N* m 

as a function of the positive real variable z.  This z is known as the 'activity'. 
This problem can be put into 'spin'-type language by associating with 

each site i a variable q. However, instead of letting ui take values $1 and 
-1, let it take the values 0 and 1: if the site is empty, then ui = 0; if it is 
full then a;: = 1. Thus ui is the number of particles at site i: the 'occupation 

402 



Fig. 14.1. A typical arrangement of particles (black circles) on the triangular lattice, 
such that no two particles are together or adjacent. The six faces round each particle 

are shaded: they form non-overlapping (i.e. "hard7') hexagons. 

number'. Then (14.1.1) can be written as 

where the product is over all edges (i , j )  of the triangular lattice, and the 
sum is over all values (0 and 1) of all the occupation numbers 
4, . . . ,  ON. 

'l'his form of Z is very similar to the Ising model partition function 
(1.8.2). In fact it was shown in Section 1.9 that the general nearest- 
neighbour Ising model in a field is equivalent to the lattice gas with 
nearest-neighbour interactions. The hard hexagon model is a limiting 
special case of the latter. 

We expect this model to undergo a phase transition from an homogeneous 
fluid state at low activity z to an inhomogeneous solid state at high 
activity z .  

To see this, divide the lattice into three sub-lattices 1 ,2 ,3 ,  so that no 
two sites of the same type are adjacent, as in Fig. 14.2. Then there are 

Fig. 14.2. The three sub-lattices of the triangular lattice: sub-lattice 1 consists of 
all sites of type 1, and similarly for sub-lattices 2 and 3. Adjacent sites lie on 
different sub-lattices. a close-packed arrangement of particles (black circles) is 
shown: all sites of one sub-lattice (in this case sub-lattice 1) are occupied, the rest 

are empty. 
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three possible close-packed configurations of particles on the lattice: either 
all sites of type 1 are occupied, or all sites of type 2, or all sites of type 3. 

Suppose we fix the boundary sites as in the first possibility, i.e. all 
boundary sites of type 1 are full, and all other boundary sites are empty. 
Then for an infinite lattice the second and third possibilities give a negligible 
contribution to the sum-over-states in (14.1.3). 

Clearly, sites on different sub-lattices are no longer equivalent. Let pr 
be the local density at a site of type r ,  i.e., using (1.4.4), 

(14.1.4) 

where 1 is a site of type r. 
When z is infinite, the system is close-packed with all sites of type 1 

occupied, so p, = 1, p2 = p3 = 0. We can expand each pr in inverse powers 
of z by considering successive perturbations of the close-packed state. For 
a site 1 deep inside a large lattice, this gives 

The system is therefore not homogeneous, since pl ,  pz, f i ,  are not all 
equal. This contrasts with the low-activity situation: starting from the state 
with all sites empty and successively introducing particles, we obtain 

To all orders in this expansion it is true that pl = pz = f i .  
The system is therefore inhomogeneous for sufficiently large z ,  and 

homogeneous for sufficiently small z.  [Assuming the series converge: pre- 
sumably a proof of this can be constructed using arguments similar to 
Peierls (1936).] There must be a critical value z, of z above which the 
system ceases to be homogeneous. Since the homogeneous phase is typical 
of a fluid, and the ordered inhomogeneous phase is typical of a solid, the 
model can be said to undergo a fluid - solid transition at z = z,. 

Two related quantities of interest are the mean density 

and the order parameter 

Note that R is by definition zero for z 6 z,. For z > z, we expect it to be 
positive. 



14.1 HISTORICAL BACKGROUND AND PRINCIPAL RESULTS 405 

Numerical Calculations 

Several approximate numerical calculations were made of this model before 
it was solved exactly (Baxter, 1980). They are interesting in that they led 
to the exact solution. 

Runnels and Combs (1966) calculated the maximum eigenvalue of the 
transfer matrix for lattices of finite widths. By extrapolating to an infinite 
width lattice they estimated z, = 11.12 ? 0.1. 

Gaunt (1967) developed the series expansions (14.1.5) and (14.1.6) 
to orders zP5, z8, respectively. From these he estimated 

He also observed that ~ ( z )  appeared to have only two singularities in the 
complex z-plane, at z = z, and at z = z ~ p ,  where NP stands for 'non- 
physical' and 

He speculated that z, and ZNP might be the two roots of some simple 
quadratic equation, so he formed their sum and product, giving 

Gaunt then conjectured that these numbers might be exactly 11 and -1, 
respectively, in which case z, is given by 

Unfortunately he did not publish this conjecture. This was a pity, since we 
shall see that it is exactly correct. 

Metcalf and Yang (1978) did some more finite width lattice calculations 
for the special case z = 1. They found that to four-figure accuracy 

and conjectured that In K was exactly 113. 
Baxter and Tsang (1979) also looked at the case z = 1, but used the 

truncated corner transfer matrix equations (13.8.31), modified appropri- 
ately for the triangular lattice. We argued that since z < z,, the CTM 
method should converge rapidly and give good numerical results. The 
results were indeed very encouraging for the CTM method: truncating the 
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matrices to 2 X 2, 3 x 3, 5 X 5, 7 x 7 and 10 x 10 gave 

0.333 242 721 976 1 , 
respectively. 

Table 14.1. The corner transfer matrix eigenvalues a1 , . . . alo, for the hard hexagon 
model with z = 1. The values are approximate, being calculated from finite 
truncations of the triangular lattice analogue of the matrix equation (13.8.31). 
The eigenvalues occur in groups of comparable magnitude, and it is sensible to 
include all members of a group. For this reason the truncations used are 2 x 2, 
3 x 3,s x 5,7 x 7 and 10 x 10. Each ai is given for successively larger truncations, 
and clearly each is tending rapidly to a limit. This limit is its exact value for the 
infinite-dimensional corner transfer matrix. 

Obviously Metcalf and Yang's conjecture was wrong, but some fasci- 
nating properties were emerging. In Table 14.1 are given the values of the 
eigenvalues ai of the corner transfer matrix A, normalized so that the 
largest is unity, for each truncation. 

These eigenvalues divide naturally into two classes, corresponding to the 
two diagonal blocks in (13.8.36). One of these blocks corresponds to the 
corner site being empty, the other to it being full. Let & = 0 if ai comes 
from the former block, and $ = 1 if ai comes from the latter. The values 
of [i are shown in Table 14.1. 



In Table 14.2 are given the values of alada!, a:asl(a2a$), a:ada! and 
a:a7/(a2a!). It appears that these quantities are tending towards one as the 
matrices became larger. This is consistent with the assertion that in the 
limit of infinitely large matrices (which is when the equations are exact) 

ai=a(&)xni f o r i s l ,  (14.1.14) 

where 

and ni is a non-negative integer. 

Table 14.2 Values of ada3, etc., for successively larger truncations. 

The reason this was fascinating is that the corresponding ai of the eight- 
vertex model are all integer powers of some variable x, or s, as in (13.7.20). 
If the hard-hexagon model has a similar property, then perhaps it also can 
be solved exactly. 

Dr Tsang therefore repeated the calculations for z = 0.7, and I used a 
series-expansion computer program to expand partially the first few ai in 
powers of z (for small z) and of z-' (for large 2). Again our results were 
fully consistent with (14.1.14). 

Exact Solution 

Indeed, at this stage it was not difficult to guess the exact solution for the 
functions K(Z) and R(z). Defining x as in (l4.l.l5), I expanded z to order 
30 in a power series in x (for z < 2,). Guided by the eight-vertex model 
results, I then put this expansion into the form 



It was then not hard to guess that 

where 
m 

The same computer run gave K to order 29 in x. Writing it as a product 
like (14.1.16), it was not quite so obvious, but still very plausible, to guess 
that to all orders 

where 

These infinite products are of the type that occur in the elliptic theta 
functions (15.1 S ) .  For large z,  I computed z, K, R only to relative order 
9 in their x-  expansions. Even so, this was enough to suggest that these 
functions could be written in terms of similar theta function products, 
namely 

As x decreases from 0 to -1, the z in (14.1.18) increased from 0 to z,, 
where z, is given by (14.1.11). Also, as x increases from 0 to $1, the z in 
(14.1.22) decreases from to z,. This suggests that the guesses (14.1.18) 



and (14.1.20) apply throughout the fluid phase 0 < z < zc (with 
0 > x > -I) ,  while (14.1.22)-(14.1.24) apply throughout the solid phase 
z > zc (with 0 < x < 1). The guesses also agree with Gaunt's conjecture 
(14.1.11) for the position of the critical point. 

Having guessed the exact answer, the next step was to look for a way 
of deriving it. This calculation is given in Sections 14.2-14.7, and itself 
uses corner transfer matrices. It is not mathematically rigorous, in that 
certain analyticity properties of K are assumed, and the results of Chapter 
13 (which depend on assuming that various large-lattice limits can be 
interchanged) are used. However, I believe that these assumptions, and 
therefore (14.1.18)-(14. I.%), are in fact correct. 

14.2 Hard Square Model with Diagonal Interactions 

As is shown in Section 10.4, the first step in the solution of the eight-vertex 
model had been to set up a class of commuting row-to-row transfer matrices. 
Guided by this, I looked for lattice models whose transfer matrices com- 
muted with that of the hard hexagon model. This led me to draw the 
triangular lattice as in Fig. 14.3(a). The hard hexagon model then becomes 
a square lattice model, in which nearest-neighbour sites, and next-nearest 
neighbour sites on NW - SE diagonals, cannot be simultaneously occupied. 

I then generalized this model to one in which nearest-neighbour sites 
cannot be simultaneously occupied, and diagonally adjacent particles inter- 
act. This is a special case of the IRF model of Chapter 13: the partition 
function is given by (13.1.2), where each ai takes the values 0 or 1, and 

= 0 otherwise 

( a )  ( b )  
Fig. 14.3. (a) The triangular lattice, drawn as a square lattice with one set of 
diagonals. (b) The diagonals associated with the interaction coefficients L, M in 

(14.2.1). 



Here a, b, c, d each take values 0 and 1; m is a trivial normalization factor; 
t cancels out of the partition function; L and M are diagonal interaction 
coefficients, as indicated in Fig. 14.3(b); z is the activity. The hard hexagon 
model is regained by taking m = 1, L = 0 and M = - 03.  

Star - Triangle Relation 

Consider two such models, one with weight function w, the other with 
weight function w'. As is shown in Section 13.3, their row-to-row transfer 
matrices will commute if there exists a third function w" such that the 
star-triangle relation (13.3.6) is satisfied, for all values 0, 1 of a, a', a", 
b, b', 6". Take w' (w") to be given by (14.2.1), with z, L,  M, t replaced 
by z', L', M', t' (z" , L" , M" , t"). For convenience, interchange L' and 
M', invert t', and define 

s = (Z Z' ~ " ) ~ l ( t  t' t") . (14.2.2) 

Then (13.3.6) reduces to just seven distinct equations, namely 

which for the moment we shall refer to simply as (a)-(g). Forming 
eL'(a)-eL(b) gives the simple corollary 

( ~ ' 4  eL' - 24 eL) z"l = (eL' - eL) s . (14.2.3h) 

Multiplying (c), (f), (g), by s, s-', s-', respectively, we see that the 
equations are homogeneous and linear in the five expressions 

zNt, S, s2, s3 eL", s-l Z" e"', (14.2.4) 

with coefficients that are independent of s, z", L", M". 
For any five equations (or four eqpations not involving M"), the deter-. 

minant of these coefficients must vanish: requiring this is equvalent to 
eliminating s, z", L ,  M" between the equations. Doing this, we are left 



with the three equations 

where 
A~ = Z - ~ ( I -  z e L + M  1 ,  

and Ai, A;, A4 are defined similarly, z, L, M being replaced by z', L',  M'. 
[The equations (a), (b), (d), (e) give A1 =A; ; (h), (c), (d), (e) give 

A2 =A;; (h), (d), (el, (f), (g) give A3 =A;.] 
The three equations (14.2.5) are a sufficient condition for the star- 

triangle relation (14.2.3) to have a solution for s, z", L ,  M .  A corollary 
3f (14.2.6) is 

Suppose A1, A2, Ag, are given: normally (14.2.7) will then define 
z4exp(L + M). The first equation (14.2.6) then gives zt, and the second 
gives L and M. It follows that in general the only solutions of (14.2.5) are 
z',  L', M' = z, M, L or z, L ,  M: these are not very interesting or useful, 
since they imply merely that the transfer matrix commutes with itself and 
its transpose. 

However, suppose AI, Az, A3 satisfy the constraints 

Then (14.2.7) no longer defines ztexp(L + M), so (14.2.6) has infinitely 
many solutions for z, L ,  M. The transfer matrices corresponding to these 
solutions all commute. 

From (14.2.6) the constraints (14.2.8) are both satisfied if 

Set A = A1, i.e. 
A = z-t(l - z eL+"' - (14.2.10) 

If two models differ in their values of z, L, M, but have the same value 
of A and both satisfy (14.2.9), then their transfer matrices commute. 

Note that (14.2.9) is satisfied for all z in the limit L + 0 and M -+ - w  , 
which is the hard hexagon model. It is not so satisfied if L,  M+ 0, which 
is the hard square model. Indeed, numerical solutions by Baxter et al. 
(1980) give no indication for hard squares of any simple property like 
(14.1.14) for the eigenvalues of the corner transfer matrix. 
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Elliptic Function Parametrization 

Eliminating z between (14.2.9) and (14.2.10) gives 

Given A ,  this is a symmetric biquadratic relation between eL and eM. As 
is shown in Section 15.10, such a relation can be parametrized in terms of 
elliptic functions, the general form being 

eL = @(u), eM = $(u - A), (14.2.12) 

where the function @(u) is defined by 

@(u) = 5 H(u + a)  H(u - a)l[H(u + b) H(u - b)] . (14.2.13) 

Here H(u) is the elliptic theta function of argument u and modulus k, as 
defined by (15.1.5); k, A, E, a ,  b are constants. (We have replaced the 
symbols u,  I ,  q,  A, ,u of Section 15.10 by u, k, A, a ,  b, and have chosen the 
lower sign in (15.10.14).) 

From (15.2.3), @(u) is periodic of periods 21 and 2iZ', i.e. 

where 1 and I' are the complete elliptic integrals of the first kind of moduli 
k and k' = (1 - k2)&, respectively. 

[Given L, it follows that the first equation (14.2.12) has many solutions 
for v, obtainable from one another by incrementing u by integer multiples 
of 21 and 2iZ, and possible negating. However, all of these still give only 
two distinct solutions for eM in (14.2.12): this is correct, since (14.2.11) is 
quadratic in this variable.] 

Let vo be a value of u for which eL = 1. Then from (14.2.12) and 
(14.2.13), 

E = H(vo + b) H(u0 - b)l[H(uo + a)  H(u0 - a ) ] .  (14.2.15) 

From this and (14.2.14), it follows that @(v) - 1 vanishes when u = 

uo + 2mZ + 2inZ1, so it contains a factor H(u - uo). Since it is even, it also 
contains a factor H(u + uo). Arguing as at the end of Section 15.3, or 
simply applying the identity (15.3.10), it follows that 

To relate A, a ,  b, uo, consider some special values of L and M. If 
eL = 1, then (14.2.11) gives eM = 0 or w .  From (14.2.16), u is either uo 
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or -uo. Associating these values of eM and v, respectively, it follows from 
(14.2.12) and (14.2.13) that we can choose 

If eL = 03,  then (14.2.11) gives both solutions for eM to be 1, while 
(14.2.12) gives v = b or -6. The RHS of (14.2.16) must therefore vanish 
for u = -A + 6, and this gives the extra condition 

The general solution of this is vo = -A + mZ + i d ' ,  where m and n are 
integers. However, simultaneously incrementing u, vo, a, -b by mI + inI' 
leaves @(u) and @(u - A) unchanged, so without loss of generality we can 
choose 

Substituting these forms of eL and eM back into (14.2.11) [using (14.2.12) 
on the LHS, (14.2.16) on the RHS], we obtain the relation 

A-~IP(A) H2(3A) H(v + 2A) H(v - 3A)IH4(2A) 

= H4(2A) H(u + A) H(u - 2A) - H2(A) H2(3A) H(u) H(u - A). (14.2.20) 

This has to be an identity, true for all complex numbers u.  Setting 
u = 3A and u = 0 gives 

These conditions ensure that the ratio of the RHS of (14.2.20) to the 
LHS is an entire doubly periodic function of v, equal to one when v = 0. 
From Liouville's theorem the ratio is therefore equal to one for all complex 
numbers v, and the identity is established. 

Setting u, u, x, y = 0, A, 2A, 3A in (15.3.10), we obtain the identity 

H3(2A) H(4A) - H(A) H3(3A) = H3(A) H(5A) , (14.2.23) 

so the condition (14.2.21) is equivalent to 

The solutions A = 2mI + 2inI' (where m, n are integers) of this equation 
are spurious, since from (14.2.12) and (14.2.14) they imply that eL = eM. 
It follows that 

A = (2mZ + 2in11)/5 , (14.2.25) 

where m and n are integers, not both divisible by 5. 
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We can choose A to have any of these values. From now on let us take 

(Other choices merely lead to related parametrizations; for instance A = 
2i11/5 is equivalent to using elliptic functions of conjugate modulus.) 

Rather than work with the variable v and the elliptic theta function 
H ( v ) ,  it is convenient in this chapter to transform to the variable 

u = nvI2Z 
and the function 

m 

el(u , q 2 )  = sin u (1 - 2 q2" cos 2u + q4n) ( I  - 2n) 
n = 1 

(This notation is non-standard: the usual elliptic 81 function contains the 
factor 2q'. Since el enters our equations only via ratios of the form 
Bl(u , q2)/e1(u' , q2) ,  this factor is irrelevant. It is convenient to remove it 
here, since we shall sometimes want q2 to be negative: our present definition 
ensures that Bl(u , q 2 )  then remains real.) 

Using this definition to replace the functions H in (14.2.13), (24.2.15), 
(14.2.22) by 81, and writing Ol(u , q2)  simply as 8 1 ( ~ ) ,  we finally obtain the 
parametrization 

where we have used the identity O1(u) = B1(n - u ) .  From (14.2.9) it follows 
that 

z = @(?I @(u)  B;'(: - u ) / [ @ ( : )  @(? + u ) ]  . (14.2.31) 

We can use this parametrization to explicitly solve the full set of star - 
triangle relations (14.2.3). Let L', M',  z' be given by (14.2.29) and 
(14.2.31), with u replaced by u'.  Similarly, let L", M", z" by obtained by 
replacing u by u". Take q2 to be the same throughout. Then all the equations 
(14.2.3) are satisified, provided only that 
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Regions in the L, M Plane 

We are interested in values of L and M such that z ,  as given by (14.2.9), 
is positive. These values lie in the unshaded regions in Fig. 14.4, the shaded 
regions corresponding to negative values of z. 

Fig. 14.4. The six regimes in the (L, M) plane, as listed in (14.2.37). Shaded areas 
are unphysical, since (14.2.9) gives z therein to be negative. Regimes I ,  111, V are 
disordered, I 1  and VI have triangular ordering, IV has square ordering. The system 
is critical on the ( I ,  11), (111, IV) and (V,  VI)  boundaries, where [A1 = A,. the 

values of u on the (L, M) axes are indicated. 

We can regard (14.2.29) as a mapping from the variables L, M to the 
variables q2, u. This is rather like a transformation from Cartesian to polar 
coordinates: q2 increases from -1 to +1 as we go out radially from the 
origin through an unshaded region, while u increases as we move anti- 
clockwise round the origin. The three cases - d 5  < u < 0,0 < u < d5, and 
nl5 < u < 2x15 correspond respectively to the unshaded parts of the 
lower-right, upper right and upper-left quadrants. 

We therefore take L, M to satisfy the restriction 
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where z is given by (14.2.9). We also take q2 and u to satisfy 

The mapping from (L , M) to (q2,  u)  is then one-to-one. 
When q = 0 it is obvious from (14.2.28) and (14.2.30) that A = -+A,, 

where 

We shall need to distinguish the cases when q2 > 0 from those when 
q2 < 0. This leads us to divide the unshaded areas in Fig. 14.4 into six 
regions: 

I: A > A,, q2< 0,  -nl5< u <  0 ,  

V: A > A,, q2 < 0, nl5 < u < 2nl5 , 

VI: 0 < A < A,, q2 > 0, n15 < u < 2x15. 

Regions V and VI differ from I and I1 only in the interchange of L and 
M. This is equivalent to merely rotating the lattice through 90", so without 
loss of generality we hereinafter consider only regimes I, 11, I11 and IV. 

We can classify these regions as disordered or ordered by considering 
the following limits: 

In these limits the dominant contribution to the partition function comes 
from the following states, respectively: 

I. the vacuum. 
11: a state such as that shown in Fig. 14.5(a), in which every third site 

is occupied. Forming a triangular lattice by adding diagonals as in 
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Fig. 14.3, this state becomes that of Fig. 14.2. There are three such 
states, corresponding to occupying any one of the three sub-lattices 
of the triangular lattice. 

111: the vacuum. 
IV: a close packed square-lattice state such as that shown in Fig. 14.5(b), 

in which every second site is occupied. There are two such states. 

Fig. 14.5. (a) Typical ground-state in regime 11, (b) in regime IV. Solid circles 
denote particles. The other ground states can be obtained by uniform translations, 
giving three ground-states of type (a), two of type (b). If we add diagonals to the 
lattice as in Fig. 14.3.(a), then the particles in (a) occupy one of the three sub- 
lattices of the resulting triangular lattice. We therefore refer to (a) as 'triangular 
ordering', (b) as 'square ordering'. 

The heavy lines divide each lattice into four quadrants, corresponding as in Fig. 
13.2 to the corner transfer matrices A ,  B, C, D (the shape of the outer boundary 
has been changed: this is irrelevant in the thermodynamic limit). The 4, 9, 4, . . . 
in (14.4.26) are the ground-state values of the a, fi, s, . . . in the figures, so both 

figures correspond to taking k = 2 in (14.5.1). 

The states in I1 and IV are ordered, in that the translation invariance 
of the lattice is spontaneously broken. We expect this to persist for finite 
values of L, M, z sufficiently close to the appropriate limits. 

More strongly, we shall calculate the order parameter R given by (14.1.8). 
It is zero in regimes I and 111, positive in regimes I1 and IV. Thus I and 
I11 are disordered regimes, while I1 and IV are ordered. 

We shall also find that R vanishes on the boundary between regimes I 
and 11, and between I11 and IV, and that the free energy is singular across 
this boundary. The system is therefore critical on this boundary, i.e., when 
q2 = 0 and A = *A,. 
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Boltzmann Weights 

From (14.2.1), the Boltzmann weights of the allowed spin configurations 
around a face are: 

wl= w(O,O,O,O) = m ,  

Using the expressions (14.2.29), (14.2.31) for L, M and z,  we can choose 
m and t so that 

@ = (m'lt') el(u) el - e, - , I ( 1  ('5")i4 

The parameters m' and tr are related to the original m and t. They enter 
the working rather trivially, the partition function for a lattice of N faces 
being proportional to mrN, and independent of t'. 

Conjugate Modulus Parametrization 

We shall assume and use certain analyticity and periodicity properties of 
the partition-function-per-site (K), and of the eigenvalues of the corner 
transfer matrices. These properties are most easily expressed and under- 
stood by making a 'conjugate modulus' transformation from our variables 
qZ and u to new variables x and w. [This variable w is not to be confused 
with the Boltzmann weight function w(a , b , c , d ) . ]  



We use the relations (15.7.2) and (15.1.5) to write the infinite product 
in (14.2.28) in terms of the conjugate name q'. We shall find it convenient 
to express the results in terms of the function 

Basically this is merely another way of writing the elliptic theta function. 
A useful symmetry property is 

We shall sometimes write f(w , q) simply as f(w), the particular nome q 
being understood. 

If q2 is positive we can convert (14.2.28) directly from (15.7.2a). If it is 
negative we first split the product in (14.2.28) into terms with n even and 
with n odd, and then use (15.7.2a) and (15.7.2d). This gives the identities 

Let us define parameters x, w, a as follows: 

IandIV (-1 < q 2 <  0): q2 = -exp(-E) 

x = -exp(-dl%), w = exp(2nul~) (14.2.43) 

I1 and I11 (0 < q2 < 1): q2 = exp(- E) 

x = exp(-4d/%), w = exp(-4nuls) . 

Then by using the identities (14.2.42) in (14.2.30) and (14.2.39), we can 
define m' and t' so that 

I and IV (-1 < x < 0): 



I1 and I11 (0 < x < 1): 

Here f(w) = f(w , x') is the function defined by (14.2.40), with q therein 
replaced by x5. The parameter r is proportional to t ' ,  and is at our disposal; 
a = +1 is chosen to ensure that w;! is positive. 

From (14.2.33) and (14.2.39), it follows that 

I: 1 > w > x 2 ;  11: 1 < w < x-'; (14.2.45) 

111: l > w > x ;  IV: 1 < w < x - ~ ;  

IandIII :  a = + 1 ;  I1 and IV: a = -1 . (14.2.46) 

One advantage of this parametrization is that x is small in the limit of 
extreme order or disorder. This means that the infinite product in the 
definition (14.2.40) of f(w ,x5) is rapidly convergent, and it is easy to 
compare our results with high-density or low-density series expansions. 

14.3 Free Energy 

To recapitulate, the parametrization (14.2.44) comes from solving the 
star - triangle relation (13.3.6). If two models have the same value of x, 
but different values of u and r, then their row-to-row transfer matrices 
commute. The Boltzmann weights are entire functions of u. 

These properties are very similar to those of the eight-vertex model 
(Section 10.4). Further, we put (14.2.3) into a symmetric form by inter- 
changing L' and M', which from (14.2.29) is equivalent to replacing u' by 
( d 5 )  - u'. If we had not done this, then (14.2.32) would have been 

This is the same equation as (13.3.10). It follows that (13.3.16) and 
(13.5.16)-(13.5.27), with A replaced by ~ 1 5 ,  are valid for this model. 

We now seek to calculate the free energy by the matrix-inversion trick 
given in Section 13.6. To do this we need analogues of the eight-vertex 
model equations (l3.6.l7a), (13.6.17b) and (13.7.3). 



First Inversion Relation 

Define the single-face transfer matrix Ui as in (13.2.1), where the Boltzmann 
weights w(a , b , c , d) are given by (14.2.38). Restrict the spin-set a =  
{q , . . . , om) to take only values in which no two adjacent spins are both 
unity. This restriction corresponds to ignoring forbidden spin configurations 
and can be written as 

Restrict d ={d, . . . , dm) similarly. Then for m = 3 there are five allowed 
values of a and d ,  namely (0 , 0  , O), (0 , 0  , I), (0 , 1 , O), (1 , 0  ,0), and 
(1 , 0  , 1). With this ordering, U2 is the five-by-five matrix 

(From now on we restrict all transfer matrices to act only between 
allowed states of a line of spins, i.e. states satisfying the restriction (14.3.2). 
This reduces the size of the matrices. This reduction is peculiar to the 
generalized hard-hexagon model, and is connected with its solvability, 
since it reduces the number of conditions implicit in the star - triangle 
relation (13.3.7).) 

Clearly U2 can be arranged as a block-diagonal matrix consisting of the 
blocks 

More generally, so can any matrix Ui, for m 2 3 and 2 s i s m - 1. It 
follows that if we define 

and define Ui in the same way as Ui, but with wl , . . . , w5 replaced by 
&,  . . . , 6, then 

uiUi = 9 , (14.3.6) 
where 9 is the identity matrix. 



From the definition (14.2.40) of f(x , q), with q = x5, we can establish 
the identity 

(The proof is similar to that of (15.3.10): take the ratio of the LHS to the 
RHS, and regard this as a function of w; show that it is analytic for 0 < 
I w I < w , and is unchanged by replacing w by x5w; it is therefore bounded, 
and by a simple generalization of Liouville's theorem it is therefore a 
constant; setting w = 1 gives this constant to be unity.) 

The Boltzmann weights mi (for i = 1 , . . . , 5 )  are defined by (14.2.44) 
as functions of r and w (regarding x as a given constant), so we can write 
them as oi(r ,  w). Substituting these definitions into (14.3.5) and using the 
identity (14.3.7), we find that 

where the factor l j  is given by 

I and IV: l j  = f2(x2)llf(x2w) f (x21w)] (14.3.9) 

11 and 111: l j  = f2(x)lCf(xw) f(xlw)] . 
Thus replacing q , . . . , 0 5  by 1.3~ , . . . , ii,g is equivalent to inverting r and 
w in (14.2.44), and multiplying each weight by 5. 

Obviously we can now regard each matrix Ui as a function of r and w. 
Since Ui is linear in the weights ol , . . . , og, (14.3.8) implies that ui = 
l j  Ui(r-' , w-I). The relation (14.3.6) therefore gives 

This is a relation satisfied by the face transfer matrices U2, U3,.  . . , 
defined as functions of r and w by (13.2. I) ,  (14.2.38) and (14.2.44). In fact 
it is the inversion relation (13.6.24). Define K to be the Nth root of the 
eigenvalue of the diagonal-to-diagonal transfer matrix (U1U3. . . UNW1) 
X(U2U4 . . . UN), choosing the eigenvalue corresponding to the eigenvector 
with all entries non-negative. Then it is easily seen that K is independent 
of r (changing r is merely equivalent to a diagonal similarity transformation 
on the transfer matrix). It is still a function of w, and it follows from 
(14.3.10) that it satisfies 

This is the 'inversion' relation (13.6.25). When w has the 'physical' values 
in (14.2.45), then the Boltzmann weights ol , . . . wg are all positive and 
K is the partition-function per site, as in (13.1.4). For other values of w 
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(notably those obtained by passing through the point w = I) ,  it seems that 
this K is the analytic continuation of the 'physical' ~ ( w ) .  

Second Inversion Relation 

The inversion relation (14.3.11) and (14.3.12) is the analogue of the 
eight-vertex model relation (13.6.17a). We still need the analogue of 
(13.6.17b). This is a second inversion relation, obtained by working in the 
SE - NW direction, instead of the SW - NE. 

Remember that w(q , q , uk , q) is the Boltzmann weight of the intra- 
face interactions between spins on sites i, j, k, 1, where i, j, k, 1 are arranged 
as in Fig. 13.l(a). Clearly, rotating the lattice through 90" is equivalent to 
replacing w(a , b , c , d) by w(b , c , d , a). From (14.2.40) this is in turn 
equivalent to interchanging wz with q, and m4 with m5. 

Let Vi be the SW - NE face transfer matrix. It is given by (13.2.1), with 
w(a , b , c , d) replaced by w(b, c, d, a). Its inverse vi can be obtained 
similarly to the inverse of Ui: all we have to do is interchange the suffixes 
2 and 3, and the suffixes 4 and 5, in the equation (14.3.5). Doing this and 
repeating the working as far as (14.3.10), we obtain 

in regimes I, 11, 111, IV, respectively, and 

G(x) and H(x) being defined as in (14.1.19). 
Actually, there are an infinite number of relations of the form (14.3.12), 

corresponding to multiplying wo by an integer power of x5n. The particular 
ones given above ensure that wo is as close as possible to 1, while lying on 
the same side of unity as the physical values of w given in (14.2.45). 

Just as (14.3.10) implies (14.3.11), so does (14.3.12) imply the relation 
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Analyticity of Hw) 

For 'physical' values of w, i.e. those satisfying (14.2.45), the function ~ ( w )  
in (14.3.11) and (14.3.15) is the partition function per site (13.1.4). For 
other values it seems that it is the analytic continuation of the 'physical' 
K(w). More strongly, from series expansions it seems that 

ln[w-"w)] = analytic in an annulus 

a < I w I < b containing the (14.3.16) 

points w = 1 and w = wo. 

Here y = 0, 5, 0, i in regimes I ,  11, 111, IV, respectively. 
This analyticity property is the analogue of the relation (13.7.3) for the 

eight-vertex model. I have not proved it, but it seems to be correct: 
arguments in its favour can be deduced from the corner transfer matrix 
equations (13.8.31); it also leads to results in regime I that agree with 
(14.1.18)-(14.1.20), and hence with the original order 29 hard hexagon 
series expansions mentioned in Section 14.1. Hereinafter I shall assume 
that (14.3.16) is correct. 

Calculation of K(w) 

The equations (14.3. l l ) ,  (14.3.12) and (14.3.16) are the analogues of 
(13.6.17a), (13.7.17b) and (13.7.3). Just as the latter set can be solved for 
the free energy of the eight-vertex model, so can the former be solved for 
the free energy of our generalized hard-hexagon model. 

To do this, note that (14.3.16) implies 
[XI 

where the summation is convergent for I wl in the neighbourhood of 1, and 
in the neighbourhood of wo. In the neighbourhood of 1, (14.3.9) and 
(14.2.20) give 

m 

In = do + C dn(wn + w-") , 
n = l  

(14.3.18) 

where, for n > 0, 

I and IV: do = 2 ln f(x2), dn = (xL + x3")/[n(l - xsn)] (14.3.19) 

I1 and 111: do = 2 In f(x), dn = (xn + x4")l[n(l - xSn)] . 
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Taking logarithms of both sides of (14.3.11), substituting these Laurent 
expansions and equating coefficients of powers of w, we obtain 

C, + C-, = -d,, n 3 0 .  (14.3.20) 

Similarly, (14.3.15) gives 

where the d; are the coefficients of the Laurent expansion of In r ]  in an 
annulus containing the point w = wo. From (l4.3.13), (14.2.45) and 
(14.2.46), these are given by 

db = ln{t$wif- ' f (x) f (x2)lIx 1) , (14.3.22) 
d; = (1 + x5"wi2")l[rm(l - x5")], n + 0 .  

The equations (14.3.20) and (14.3.21) can now be solved for the 
coefficients c,, giving 

co = -ido, (14.3.23) 

c, = (wpd; - d,)l(l - wp) for n i+ 0 .  

More explicitly, from (14.3.19) and (14.3.22), together with the above 
definitions of a and wo, we obtain 

co = - In f (x2) in regimes I and IV, (14.3.24a) 
= - In f (x) in regimes I1 and I11 , 

and, for n # 0, 

The partition function per site, namely ~ ( w ) ,  can now be obtained at 
once from (14.3.17), remembering that p = 0, 4. 0, i in regimes I ,  11, 111, 
IV, respectively. The resulting series can be simplified by working with 
WIK/(W~W~), rather than K. Using (14.2.44), we find that 
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IV: 

Taylor expanding the denominators in the summand, summing each 
term over n, and using the definition (14.2.40), these results can be written 
as 

1: M K / ( W ~ W ~ ) =  W - ' ~ ( X W , X ~ ) ~ ( X % , X ~ ) / [ ~ ( X W - ' , X ~ ) ~ ( X % - ~ , X ~ ) ]  

IV: = w-$ f(xw , x4)lf(xw-', x4) . (14.3.26) 

These product expressions (14.3.26) are valid for all values of w satisfying 
(14.2.45), even though the sums in (14.3.25) are not always convergent. 
(This lack of convergence is merely due to the fact that o4 and ol have 
zeros at w = x and w = x-' in regimes I and IV, respectively.) 

14.4 Sub-Lattice Densities and the Order Parameter R 

We can obtain the sub-lattice densities, defined by (14.1.4), by using the 
corner transfer matrix methods of Section 13.5. We can then calculate the 
order parameter R from (14.1.8). 

Diagonal Form of the Corner Transfer Matrices 

As we remarked after (14.3.1), the equation (13.3.10) is satisfied by our 
parametrization of the generalized hard hexagon model. Regarding A,, 
B,, C,, D,, as functions of u, we therefore again obtain the product relation 
(13.5.1) and its rotated analogues. Again this leads to the relations 
(l3.5.27), where AI(u), BI(u), Cd(u), Dd(u) are all diagonal matrices of 
the form (13.5.20), i.e. 

[Ad(~)l~,, = mi exp(qu) (14.4.1) 

and similarly for Bd(u), Cd(u), Dd(u). The coefficient q is the same for all 
four matrices; mi may be different. 

We only need to calculate these coefficients a;. and mi. This can be done 
by considering the case u = 0, by using the inversion property (14.3.12), 
and by considering the limit x + 0; as will now be shown. 



The Case u = 0 and the First Inversion Relation 

When u = 0 ,  it is clear from (14.2.43) that w = 1. From (14.2.44) and 
(14.2.38), it follows that the Boltzmann weight function (not to be confused 
with the variable w )  is then 

This in turn implies that when u = 0 ,  then 

where L is the diagonal matrix with elements 

Setting u = 0 in (13.5.27), it follows that 

All the matrices are block-diagonal, their elements being zero unless 
01 = 4. It follows that L commutes with them all. Substituting the expres- 
sions (14.4.5) for Q and T back into (13.5.27), we can re-define the scalar 
factors al(u), bl(u), cl(u),  dl(u) ,  and the diagonal matrices Ad(u),  
Bd(u) Cd(u) Dd(u), SO that 

where al(0)  = ~ ' ( 0 )  = 1 and 

These matrices may depend on the parameter r in (14.2.44), but the 
dependence is quite trivial: An(u), Ad(u),  C,(U),  Cd(u) are all of the form 

L x (matrix independent of r); (14.4.8) 

B,(u), Bd(u), D,(u), Dd(u) are of this form, but with L replaced by L-'; 
P and R are independent of r. 

The elements of the diagonal matrices Ad(u), Bd(u), Cd(u), Dd(u) are 
all of the form (14.4.1), a;. being the same for all four matrices. Using 
(14.4.7) it follows that 
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where a;. is independent of both u and r, and s, = 0 or 1, being the value 
of q for the element ( j  , j). From (14.4.6), exhibiting explicitly the depend- 
ence on r of A, and C,, it follows that 

To within a scalar factor, the inverse of A,(r , u) is therefore A,(r-' , -u); 
and similarly for C,. 

We could have predicted this inversion property directly from (14.3.10), 
using (14.2.43) and the fact that A and C are products of operators Ui, as 
in (13.2.4) and (13.2.5). 

The Second Inversion Relation 

The operator Vi is defined by (13.2.1), with the Boltzmann weight function 
w(a , b , c , d) replaced by w(b , c , d , a). This is in turn equivalent to 
interchanging cur with 03, and co4 with w ~ .  The corner transfer matrices B 
and D are then given by (13.2.4) and (13.2.5), with each Ui replaced by 
Vi, using the appropriate boundary spins s, t , . . , y'. 

We want to use the second inversion property (14.3.12) to obtain equa- 
tions for B and D analogous to (14.4.10), but we have to be careful. For 
a start, when u = uo then w = wo, and it can be seen from (14.3.12b) and 
(14.2.44) that only in regimes I11 and IV is w3 then zero. Thus only in 
these regimes is Vi (and hence B and D) then diagonal. This means that 
we cannot in general construct equations analogous to (14.4.7). 

More seriously, consider the particle configuration in Fig. 14.5a. This 
is one of the three possible ground-states of the system in regime I1 (the 
other two are obtained by first shifting all particles one site to the right, 
and then repeating). The upper-right corner transfer matrix is B, and it 
is obvious that in the ground-state limit (x = 0 )  it is mapping the spin-state 

(on the upper vertical heavy-line segment, starting at the centre) to the 
spin-state 

0.00.00.00 . . .  
(on the right horizontal heavy-line segment). 

For an infinite system, this effect will persist to non-zero values of x, in 
that B will map a vector space Sr to a vector space W. Here V is the space 
of functions V ( q  , q , . . .) subject to the condition that 
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while W is the corresponding space such that 

Since Q and W are distinct, it makes no sense to multiply B by itself. 
What we can do is note, using Fig. 14.5a, that D maps W to Q. Remembering 
that B, differs from B only by a scalar factor, and similarly for D, and D, 
from (14.3.12) and (14.2.43) it follows that 

where uo is the value of u when w = wo. Substituting the expressions 
(14.4.6) for B, and D, into this equation, we obtain 

where y(u) is a scalar factor and Lo is the value of L when r = ro. 
From the remarks following (13.5.27) and (14.4.9), Bd(A - u) and 

Dd(A - u) are diagonal matrices whose (j , j) elements are of the form 

[Bd(A - u ) ] ~ , ~  = rnjlr-'1 exp(- q u )  , 

[Dd(A - u ) ] ~ , ~  = my r-'i exp(- q u )  , 

where the coefficients mi' and my are independent of r and u. Looking at 
the ( j ,  j) element of (14.4.13), and substituting these expressions, we 
obtain 

rnjlmj" = y(u) r@ exp(2quo) (14.4.15) 

Clearly y(u) is independent of u, so it can be written simply as y. 
In (13.1.17) we expressed the local density (q) in terms of Ad, Bd, Cd 

and Dd. Since this equation was obtained from (13.5.27) and (13.1.12) 
(with A , B , C , D replaced by their normalized values A,, B, , C,, , D,), 
it follows that the Ad, Bd, Cd, Dd in (13.1.17) are the Ad(u), Bd(A - u), 
Cd(u), Dd(A - U) of this section. 

(The parameter A plays no role in this section: effectively it is just part 
of the notation for Bd and Dd, considered as functions of u.) 

We can therefore substitute the expressions (14.4.9) and (14.4.14) for 
Ad, Bd, Cd, Dd directly into (13.1.17). Doing this, we find that r and u 
cancel out of the resulting expression. (This is as it should be, since we can 
use arguments similar to those in (7.10.28)-(7.10.48) to write (q) as 
&SvR, where S here is the diagonal operator with elements q, and VL 
and are the left- and right-eigenvectors of the row-to-row transfer matrix 
V. This V is defined in (13.3.1): it is independent of r and its eigenvectors 
are independent of u. Hence (q), and all correlations within a single row, 
must be independent of r and u. ) 



We obtain 
(14.4.16a) 

Using (14.4.14), this result can in turn be written as 

(01) = Z s,r$ exp(2a;.uo)/~ $1 exp(2a;.uo) (14.4.16b) 
I I 

From (14.4.9) it follows that 

(q) = Trace s ~ i ( r o  , UO)  race A $ ( ~ o  , UO) . (14.4.17) 

The Coefficients cuj 

We still have to calculate the coefficients a;.. To do this, we first invoke a 
periodicity property, just as we did in obtaining (13.7.10) for the eight- 
vertex model. 

From (14.2.43) it is apparent that incrementing u by ie (or hie in regimes 
I1 and 111) leaves w unchanged. From (14.2.44) this leaves the Boltzmann 
weights, and hence the diagonal matrices Ad, Bd, Cd, Dd, unchanged. 
Further, it seems that these matrices are analytic in a vertical strip containing 
the points u = 0 and u = uo, so the expressions (14.4.9) and (14.4.14) must 
apply throughout this strip. These expressions must therefore be periodic 
of period ie (or $is), which implies that 

I and IV: a;. = 2nnjle, (14.4.18) 

I1 and 111: a;. = -4nnjle, 

where each nj is an integer. From (14.4.9), the diagonal elements of 
Ad(r , u) are therefore 

[Ad(r , U)],,j = rsj~"j. (14.4.19) 

Since the s, and nj are integers, they can be calculated by considering 
any suitable limiting or special case. In particular, consider the case when 
x* 0 while w remains fixed. Then wz in (14.2.44) tends to zero, so from 
(13.2.1) and (14.3.3) the matrices Ui are diagonal. So therefore is A. 
Further, from (14.2.43) the Boltzmann weight function is 

w ( a , b , c , d )  = r b + d - a ~ a - " b d d ( a , c ) ,  (14.4.20) 

where 
t = 0 in regimes I and IV (14.4.21) 

= 1 in regimes I1 and I11 . 
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Substituting this expression into (13.2.1), it follows that Ui is a diagonal 
matrix with elements 

(U.) = r 4 - l + 0 i + l - 2 0 i w 4 - " i - 1 0 i + l  
i a,u (14.4.22) 

From (13.2.1)-(13.2.5), for a finite lattice A is given by 

A = u ~ u ~ u ~ .  . . U:+l, (14.4.23) 

where and am+2 are to be given their ground-state values. Using 
(14.4.22), it follows that the diagonal elements of A are 

[A] = ru~Wn+2q+3a4+...+mom+~ 
u>u 

From (13.1.15) and (14.4.6), the matrices A and Ad differ only by a scalar 
factor and a similarity transformation. Both are diagonal, so the similarity 
transformation can at worst only re-arrange the diagonal entries. 

Let &,&,. . . , be the ground-state values of q , . . . am+2. Then 
it turns out that these values maximize (14.4.24) (with r = 1), so we can 
take Ad to be the diagonal matrix with entries 

where a denotes the spin-set {q , . . . , am) and 

Plainly this result is of the expected form (14.4.19), the only difference 
being that the index j is replaced by a. Clearly s(a) and n(a) are integers, 
so (14.4.25) is valid not just in the limit x+ 0, but for all x (provided we 
take the limit m- w). From (14.4.17) it follows that 

This is a general formula for the density at a given site (site 1). In 
calculating the sum it should be remembered that q , . . . , am are not 
completely arbitrary: they must satisfy the requirement 

As was remarked after (14.3.3), this condition is implicit in the above 
working, being built into the definition of the vector spaces on which the 
transfer matrices act. It corresponds simply to the fact that no two particles 
can be adjacent. 



Symmetries 

The corner transfer matrices A,  B, C, D satisfy various symmetry relations. 
We have not used these in this section but it is helpful to be aware of 
them. 

From (14.2.38), the Boltzmann weight function satisfies the relations 

These are precisely the relations (13.5.4). They imply that the model is 
symmetric with respect to reflection through either diagonal. In regimes 
I, I11 and IV this symmetry is not spontaneously broken (regime IV is 
ordered, but from Fig. 14.5(b) it is apparent that each of the ground states 
has this symmetry). It follows that 

The matrices P and R in (14.4.7) are then equal and orthogonal. 
The ground states in regime I1 are indicated in Fig. 14.5(a). It is apparent 

that these are symmetric on reflection through the SE - NW diagonal, but 
not through every SW - NE diagonal. This means that in general we only 
have the relations 

The matrices P and R are orthogonal, but not necessarily equal. 
On the other hand, if the centre site lies on the preferred sublattice in 

Fig. 14.5(a), then the SW-NE reflection symmetry is in fact preserved 
and (14.4.30) still applies: this is the k = 1 case of regime 11, as classified 
in the next section. 

14.5 Explicit Formulae for the Various Cases: the Rogers - Ramanujan 
Identities 

The sums in (14.4.27) can be evaluated, but there are seven different cases 
to consider. One reason for this is that n(u) has a different form in (14.4.26) 
depending whether z is 0 or 1. Another reason is the boundary condition 
that u,+l and U,,,+n have their ground state values. In regimes I and I11 the 
ground state is unique: 



In regime IV the system has square ordering, as in Fig. 14.5(b). There 
are two ground states: 

IV: C?2j+k=17 b2j+k+l=0,  allintegersj, (14.5.lb) 

where k = 1 for one ground state, and k = 2 for the other. In regime I1 
the system has the triangular ordering of Fig. 14.5(a), the three ground 
states being: 

11: &,+k = 1, TT3j+kkl = 0, all integers j ,  (14.5. lc)  

where k = 1, 2, 3, for the three ground states, respectively. 
To evaIuate (14.4.27) we therefore first lix the regime and (if we are in 

I1 or IV) the value of k. We then perform the summations over a= 
{q , q , . . . a,), subject to the condition (14.4.28). We find that the sums 
converge to limits as m + w. The result is the density p, or (in regimes I1 
and IV) the sub-lattice density pk. 

Performing the q-summation explicity, (14.4.27) can be written as 

where 

and the suffix k jq redundant in regimes I and 111. Our calculations therefore 
proceed in three stages: calculate F(O) and F( l )  from (14.5.3); then cal- 
culate (q) from (14.5.2); and (for the ordered regimes) calculate R from 
(14.1.8). 

Regime I 

From (14.4.21) and (14.3.1.2b): 

where - 1 < x < 0 and G(x), H(x) are defined in (14.1.19). From (14.5.3), 
(14.4.26) and (14.5.la), we have 

where q=w;=x6. T h u s O < q <  1. 
First consider the ground state, with q, q , . . . all zero; then consider 

the states with one of them unity; then two of them unity; and so on. 
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Taking the limit m-+ 03 and remembering the restriction (14.4.28), we 
obtain 

These series are well-known in the mathematical theory of partitions 
(Andrews, 1976, Chapter 7). From (14.5.5) it is fairly easy to see that 
F(l)/F(O) (which is the ratio that enters (14.5.2)) is the simple continued 
fraction 

1/(1 + q/(l + q2/(1 + q3/ . ))) . (14.5.7) 

What is by no means obvious, but was proved by Rogers (1894) and found 
by Ramanujan (1919), is that 

where the functions G(q) and H(q) are those defined in (14.1.19). Thus 
these functions occur not only in the formula (14.5.4) for 4, but also in 
our results for F(0) and F(1). Using the elliptic function identity (15.9.2), 
the expressions (14.5.8) can alternatively be written as 

where 

The identities implied by (14.5.6) and (14.5.8) are known as the 
Rogers - Ramanujan identities. There are many generalizations of these 
identities (Slater, 1951), and it is a remarkable fact that many of them 
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occur naturally in the course of our present working. For instance, sub- 
stituting (14.5.8) into (14.5.2), using (14.5.4) and q = x6, we obtain 

p = -x G(x) H(x6)l[H(x) G(x6) - x G(x) H(x6)] . (14.5.11) 

It turns out that the denominator in this expression can be written as a 
simple infinite product of the type that occur in the theta function expansions 
(15.1.5). Ramanujan stated (Birch, 1975, eq. 8), and Rogers (1921) proved 
that 

where 
m 

Thus we finally find that the density is 

It is fascinating that these Rogers- Ramanajuan type identities should 
occur in this problem, and it is of course very convenient to thereby simplify 
the results. This is particularly useful when we come to examine the critical 
behaviour when 1x1 -, 1: G(x), H(x) and P(x) can all be related to elliptic 
functions, and their behaviour near 1x1 = 1 can be obtained from "conjugate 
modulus" identities such as (15.7.2). I know of no such straightforward 
techniques for handling the original expressions (14.5.6). 

Regime 11 

Regime I is the simplest case to handle,. but regime I1 is the most difficult. 
The function n(a) is more complicated and there are three ordered states 
to consider. These correspond to k = 1, 2 , 3  in (14. I%), and each has its 
own F(O), F(1) and local sub-lattice density pk. 

From (14.4.21) and (14.3.12b), 

where 0 < x < 1. From (14.5.3), (14.4.26) and (14.5.1~) it follows that 

where q = x3, the inner summation is over integer values of i from 1 to m, 
4 is given by (14.5. lc), and q , . . . , a, must satisfy (14.4.28). 
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We can develop recurrence relations to evaluate F(0) and F(1). Define 

where now the inner summation is from i = I to i = m. Then by considering 
explicitly the sum over q+2, it is readily verified that 

GdO, 0) = Pl[Gl+i(o, 0) + Gl+i(O, I)] 

G@, 1) =Plq-'G1+1(1 ,O) (14.5.18a) 

G(1,O) = PI [G[+i(O ,0)  + q'G1+1(0 ,111 , 

where 

Pl = q' if (I - k + 1)/3 is an integer , (14.5.18b) 
= 1 otherwise, 

and that 

F(0) = Go(O ,0)  = Go(l  , 0), F(l) = Go(0, l ) .  (14.5.19) 

Each Gl(u, d) tends to a limit as m--, m ,  and these limiting values 
satisfy 

GI@, 0) = (1 - 9) - l+  O(ql) , 

GI@ , I )  = dl - 9) -'(I - q2) -' + o(q? , (14.5.20) 

provided that 1 is large and (1 - k)/3 is an integer. 
The recurrence relations (14.5.18), together with the large I boundary 

conditions (14.5.20), define the GI. We can then obtain F(0) and F(1) from 
(14.5.19). Exhibiting the k-dependence by writing these as Fk(0) and Fk(l), 
we find that 

In regimes I, I11 and IV we can readily write F(0) and F(l) in explicit 
series forms like (14.5.6) (this can be done by regarding GI as a function 
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of I ,  and expanding it in powers of q', as in (14.5.35)). We can then use 
appropriate analogues of the Rogers - Ramanujan identities (14.5.6)- 
(14.5.8) so as to write F(0) and F(l) as simple products of theta functions. 

In regime I1 this program is more complicated. However, Andrews 
(1981) has shown that each Fk(0) and Fk(1) can be written as a double 
series, and from this he has established that 

These expressions are similar to (14.5.9): the most obvious difference being 
that the first two involve the sum of two theta-function series, instead of 
just one. 

First consider the cases k = 2 and 3. Using (15.9.2) and the definitions 
(14.5.8), (14.5.10) of the functions G, H ,  Q, we can write (14.5.22~) and 
(14.5.22d) as 

From (14.5.15) et seq, we have that ri =x-I H(x)lG(x) and q = x3. 
Substituting the expressions (14.5.23) into (14.5.2), it follows that 

Now we consult the list of Ramanujan's identities given by Birch (1975), 
and find from eq. (6) therein that 
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so (14.5.24) simplifies to 

The case k = 1 is more complicated, but from (14.5.22a) and (14.5.22b) 
we can establish that 

(To do this we expand the numerators on the RHS as series, using the 
identities implied by (14.5.8) and (14.5.9). For H(x)Q(x) and G(x)Q(x) 
we break their series into three parts: terms with n = 3r, with n = 3r + 1, 
and with n = 3r + 2. After some cancellations, and remembering that 
q = x3, we regain (14.5.22). In particular it follows that each RHS in 
(14.5.27) can be expanded in integer powers of x3: something that is far 
from obvious.) 

Substituting these expressions for Fl(0) and Fl(l) into (14.5.2), using 
(14.5.15), we obtain 

Again we can use Ramanujan's identity (14.5.25) to simplify the denom- 
inator, giving 

Substituting these expressions for pl and p2 into (14.1.8), the order 
parameter is 

R = PI - PZ = G(x) H(x) [Q(X)/Q(X~)]~ (14.5.30) 

This expression is rather similar to that for the order parameter of the 
eight-vertex model, namely (13.7.21). 

Regime I11 

In this case the analogues of (14.5.15) and (14.5.16) are 



where0 <x < 1, q = x2 and urn+' = urn+:! = 0. This is the same as (l4.5.16), 
except that q is inverted and the 4 are zero. We can therefore evaluate 
F(0) and F(l)  by using the recursion relations (14.5.18), with q inverted 
and f i  = 1, together with (14.5.19). Again we take the limit of m large. 
The boundary conditions are then that for 1 large 

We can expand the GI in powers of q', and systematically evalu~te the 
coefficients from (14.5.18) (with q replaced by q-I). Doing this, we find 
that 

m 

where a. = 1 and 

an = q3n -2a n-1/[(1 - 4") (1 - q2n-1)I (14.5.36) 

for n 2 1. Evaluating the an from this last relation, it follows from (14.5.19) 
that 

m 

F(0) = 2 qn(3" -I)" / [(I - q) (1 - q2) . . . (1 - q") 
n=O 

(1 - ( 1  9 )  - 9 )  (1 ' 1  9 (14.5.37) 
m 

F(l)  = q3"(" +')I2 / [(I - q) (1 - q2) . . . (1 - qn) 
n =O 

x (1 - q) ( i  - q3)(1 - q5). . . (1 -q2n+l)]. 

Just as the regime I series (14.5.6) could be simplified by using the 
Rogers - Ramanujan identities, so can (14.5.37) be simplified by using the 



440 14 HARD HEXAGON AND RELATED MODELS 

further identities (46) and (44) in the list compiled by Slater (1951). These 
give 

F(O) = G(q2) Q(q2)/&(q) , (14.5.38) 

~ ( 1 )  = w q 2 )  Q ( ~ ~ ) I Q ( ~ ) .  
From (14.5.2) and (14.5.32), it follows that 

p = x H(x )  H(x4)l[G(x) G(x4)  + x H(x )  H(x4)]  . (14.5.39) 

Ramanujan stated (Birch, 1975, eq. 2), and Rogers (1921) proved that 

G ( x )  G(x4)  + x H ( x )  H(x4)  = [P( -x)]  * , (14.5.40) 

where P(x)  is defined by (14.5.13). Thus (14.5.39) simplifies to 

Regime IV 

This regime is ordered and we have to distinguish the two cases k = 1 and 
k = 2 in (14.5.lb). From (14.4.21), (14.3.12b), (14.4.26) and ( 1 4 ~ 5 . 3 ) ~  

where -1 < x < 0 ,  q = x4. The 4 are defined by (14.5.lb) and the sum- 
mation is as usual over all values (0 or 1 )  of q , . . . , am that satisfy 
(14.4.28), where am+ = am+ 

As in regimes I1 and 111, we can set up recursion relations that define 
F(0) and F(1). Define 

where 

Clearly 

where now the inner sum is over i = I ,  . . . , m. Considering explicitly the 
contributions from q+l = 0 and q+l = 1, we find that 

G ( O )  = PI [ G I + I ( ~ )  + q- 'G~+i ( l ) ]  , (14.5.45a) 

G ( 1 )  = PI G1+1(0) , 

/31=1 i f l -k iseven,  (14.5.45b) 
= q l  i f l -k i sodd .  
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Each G l ( a )  tends to a limit as m + 03,  and these limiting values satisfy 
the boundary condition 

provided 1 - k is even. 
We can expand Gl(0) and Gl(1) in powers of q'. Substituting the expan- 

sions into (14.5.45) and equating coefficients, we find that, for 1 - k even, 

where a. = 1 and 

a, = q2n-1an-1/(1 - q2"- l )  ( 1  - q2n) . (14.5.49) 

This last equation can be solved sequentially for al ,  a2, a3, etc; F(0)  and 
F ( l )  can be obtained from (14.5.46) and (14.5.48). (For k = 2 we need G I  
for 1 - k odd: this can readily be found from (14.5.45).) Exhibiting explicitly 
the dependence of F(0) and F ( l )  on k by writing them as Fk(0) and F k ( l ) ,  
we find that 

Again we look at the list of Rogers - Ramanujan-type identities compiled 
by Slater (1951). From her equations (94) ,  (99) ,  (98)  and (96)  we find that 

Fl(0) = H ( - q ) / P ( q )  , 

Fd1)  = G ( - q ) / P ( q ) ,  (14.5.51) 

F2(0) = G(q4)1P(q) , 

F2(1) = 9 H(q4) /P(9)  , 



where again the functions G, H,  P ,  Q are defined by (14.5.8), (14.5.13) 
and (14.5.10). 

Substituting these results into (14.5.2), using (14.5.42) and q =.x4, 

The first of these denominators does not appear to have been explicitly 
studied by Ramanujan, but he did state, and Watson (1933) proved, that 

G(x) H(-x) + G(-x) H(x) = 2/[p(x2)I2 (14.5.53) 

(this is eq. 23 of Birch, 1975). Further, Rogers (1894) showed that 

G(-x4> = Q(x2) [H(x) + H(-x)1/[2Q(x8)1 , (14.5.54) 

H(-x4) = Q(x2) [G(x) - G(-x)]/[~xQ(x~)] . 
From these three identities it follows that 

G(x) G(-x4) - x H(x) H(-x4) = P( -x2) . (14.5.55) 

Also, Ramanujan stated (eq. 5 of Birch, 1975), and Rogers (1921) 
proved that 

H(x) G(x16) - x3G(x) H(x16) = P(-x2) . (14.5.56) 

Using these last two identities, we can therefore simplify (14.5.52) to 

P I =  G(x) G(-x4)lp(-x2) , (14.5.57) 

p2 = -x3G(x) H(x16)lP(-x2) . 

Rogers (1894) proved that 

H(x16) = Q(x2)[H(x) - H(-x)]/[2x3~(x8)] . (14.5.58) 

Substituting this expression for H(x16), and the expression (14.5.54) for 
G(-x4), into (14.5.57), we find that the mean total density is 

and the order parameter is 



14.5 EXPLICIT FORMULAE FOR VARIOUS CASES 443 

This has a similar form to the order parameter (14.5.30) in regime 11, 
and the eight-vertex model order parameter (13.7.21), being a ratio of 
products of Q-functions. 

This completes the derivation of the sub-lattice densities and order 
parameters of the generalized hard hexagon model. I have discussed the 
four regimes separately, but we can now see some common features: we 
can write down recursion relations defining Fk(0) and Fk(l). In regimes I, 
111, and IV these can be solved to give Fk(0) and Fk(l) as infinite series. 
We can then use the appropriate Rogers - Ramanujan-type identities, as 
listed by Slater (1951), to write Fk(0) and Fk(1) as infinite products of 
theta-function type. (In regime I1 this program is more difficult, but it still 
turns out that Fk(0) and Fk(l) can each be written as a sum of at most two 
theta-function products.) Further, when we substitute the results into 
(14.5.2), we find that the denominators can be simplified by using some 
of the Ramanujan identities listed by Birch (1975). Finally, in regimes I1 
and IV the order parameter R = pl - f i  is found to be a simple ratio of 
products of Q-functions. 

It is fascinating that these Rogers-Ramanujan and Ramanujan-type 
identities occur so frequently in this working. With the benefit of hindsight, 
we can see signals of this in the star - triangle relations (14.2.3), in particular 
the elliptic function parametrization of (14.2.11). This led automatically 
to (14.2.29)-(l4.2.30), and thence to (14.2.44). This last equation abounds 
in factors f(x , x5) and f (x2 , x5). From (14.2.40), (14.1.21) and (14.1.19), 
these are just the functions H(x) Q(x) and G(x) Q(x). The natural occur- 
rence of these functions (particularly their ratio) should perhaps have 
warned us to expect the Rogers - Ramanujan identities to occur. 

14.6 Alternative Expressions for the K, p, R 

Our results can be summarized as follows. Given a hard square model with 
activity z and interaction coefficients L, M satisfying (14.2.9), calculate 
A from (14.2.10). Determine from (14.2.37) the regime in which the model 
lies (if V or VI, interchange L and M). Calculate x and w (and m, t and 
r )  from (14.2.38) and (14.2.44). Then the partition-function-per site K is 
given by (14.3.26), and the density p (or, in regimes I1 and IV, the sub- 
lattice densities pk and order parameter R) are given by the appropriate 
equations in Section 14.5. 

All these results are expressed in terms of infinite products. These 
converge well when x is small, which is the condition for extreme disorder 
or extreme order. They can readily be compared with low-density or 



high-density series expansions. However, they converge poorly when 1x1 
is close to one, which is when ) A ]  is close to A, and the system is near- 
critical. It is then convenient to convert the products into forms which 
converge rapidly for 1x1 close to one. 

Part of this procedure has been performed already: we merely return 
from the 'conjugate modulus' equations (14.2.44) for w and x to the original 
equations (14.2.29)-(14.2.31) for q2 and u. 

Partition-Function-Per-Site K 

To convert the equations (14.3.26) for K, we use the identity (14.2.42) in 
reverse, going from f-functions to el-functions. Doing this we find we also 
need the elliptic theta function 

which satisfies the 'conjugate modulus' relation 

From (14.3.26), using (14.2.43) and (14.2.38), and then applying the 
identities (14.2.42) and (14.6.2), we obtain the following expressions for 
the partition-function-per-site in the four regimes: 

IV: 

where this is the q defined by (14.2.28) and (14.2.29). Thus we have now 
expressed our results for K in terms of the parameters q2 and u discussed 
in (14.2.29)-(14.2.39). 



The parameter m is introduced in (14.2.1) as a simple factor that mul- 
tiplies all Boltzmann weights. It therefore multiplies K, so d m  is indepen- 
dent of m. This means that (13.3.26) and (14.6.3) are correct for all values 
of m (notably m = I ) ,  even though we made a particular choice of m in 
(14.2.44). 

Sub-Lattice Densities pk and the Order Parameter R 

The results of Section 14.5 are all expressed in terms of the functions G(x), 
Wx) ,  Q(x), P(x), where 

m 

G(X) = n [(I-  x ~ ~ - ~ )  (1 - x5n-1)~-1 , (14.6.5a) 
n = l  

We can use the identities (14.2.42) and (14.6.2) to convert these infinite 
products into forms which converge rapidly for x close to + 1, or to - 1. 
(To do this we start by considering (14.2.42) in the limit u--, 0, and taking 
cube roots of each side. This gives the conversion formulae for Q(x). The 
remaining formulae can then be obtained directly.) 

This procedure introduces two more functions, Gl(x) and Hl(x), defined 
by 

m 
2n -1 

c1(x) = (Z sin ;)-I n [I - 2xn cos - +xi"] , (14.6.5e) 
n = l  5 

We obtain the identities 
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G( - e-') = exp - - + - H I ( -  exp[ - d5.51) , (14.6.6g) [ 60 608 I Z l  

H ( -  e-') = exp - + - G I ( -  exp[- n2/5&]) . (14.6.6h) [kb' 63 
Applying these identities to the formulae in Section 14.5 for p and R ,  

we find that 

I: ~ = H ~ ( - ~ ) H ~ ( ~ ~ ~ ) P ( - ~ ~ ~ ~ ) I P ( - ~ ~ ) ,  

11: @=p3=Hl (p )~ l (p1 i9 )Q(p5 )Q(p519 ) lQ2(P513) ,  

R = pl - pz = ( 3 1 f l ) ~ l ' ~ ~ ( p ~ )  ~ ( p ) l ~ ~ ( p ~ ' ~ )  , 

111: p = HI@)  ~ ~ ( p " ~ ) l P ~ (  - p514) , 

IV: p l - H  I (  - P )  HI(  - ~ l ' ~ ) l f ' (  - p5I2) , 

f i  = HI( - p )  H ~ ( ~ " ~ ) I P (  - p5R) , 

In regime I1 there is no simple product formula for pl, or for the mean 
density p = (pl + pz + p3)/3, but one can establish that p is expandable in 
integer powers of 

The parameter p in (14.6.3) and (14.6.7) is defined by (14.6.4), where 
E is in turn defined by (14.2.43), and q2 therein by (14.2.28)-(14.2.31). In 
particular, from (14.2.30) we can take p to be defined by 

choosing the positive sign in regimes I1 and 111, the negative signs in 
regimes I and IV; p is non-negative. 



Critical Singularities 
Our results are now in a form where we can discuss the behaviour across 
the 1-11 and 111-IV regime boundaries. From (14.2.37) these occur when 
A =  ? ~ , a n d q ~ = p = O .  

We have only solved the general model, i.e. the hard square model with 
diagonal interactions, when the constraint (14.2.9) is satisfied. This means 
that we cannot consider the full (L , M ,  z) parameter space: only the 
two-dimensional surface (14.2.9). 

Consider a line in that surface, crossing the boundary line A = & A, 
non-tangentially at a point C. Consider K, p and R as functions of position 
along the line. They are analytic except at C; R is identically zero on the 
disordered side of C (regimes I and 111), positive on the ordered side 
(regimes I1 and IV). Thus C is a critical point. 

The parameters u and q2 are defined by (14.2.28)-(14.2.31). Both are 
analytic functions of position along the line, even at C .  At C ,  u is non- 
zero, while q2 vanishes linearly with position. We can therefore take q2 
(or - q2) to be our 'deviation-from-criticality' variable, corresponding to 
t in Section 1.1. 

More precisely, let us here define t to be given by the following equations: 

111: t = q2 = p ;  1 v : t = ~ 2 =  -p .  
Then t is positive for disordered regimes and negative for ordered ones, 
as in Section 1.1. It vanishes linearly at the critical point C .  We want to 
obtain the leading behaviour of K, p, R as functions of t, for t small. 

This is readily done, using the results (14.6.3) and (14.6.7) together with 
the definitions (14.2.28), (14.6.1) and (14.6.5). We find that 

Ke-L-M 

I and 11: - 

IV: = 1 - 4( - t)512 sin 5u + 6(t5) , 

I and 11: p = p, - sgn(t) I t lU3/fi  + 6(t) , 

IV: p = p, + O ( t )  

IV: R = (21f i )  ( - t)lI4 (1 - t + 6(t2)). 



Here p,, the critical density is 

We expect R and the dominant singular parts of K and p to behave for 
small t as 

where p, a ,  are the critical exponents of (1.1.14) and (1.7.9). From 
(14.6.10)-(14.6.12), this is the case for this model, and across the 1-11 
boundary 

a = & = 1 / 3 ,  P=1/9  (14.6.15) 

while across the 111-IV boundary 

For the general hard square model, with weight function (14.2.1), the 
mean density p is related to K by (14.1.7), the differentiation being per- 
formed with L, M held fixed. This means that if we consider K, p and R 
along a line parallel to the z-axis in (2 , L , M) space, then a and a in 
(14.6.14) must be the same. However, we are unable to do this, since we 
can only consider lines on the surface (14.2.9). Thus a and a are not 
necessarily equal, and indeed we see that they differ along the 111-IV 
boundary. 

The ground state in IV is either that shown in Fig. 14.5(b), or the one 
obtained by shifting each particle one lattice space to the right. These are 
the ordered ground states of the usual hard-square model, which is (14.2.1) 
with L = M = 0. It seems likely that our critical 111-IV boundary line lies 
on the same critical surface as the hard square model critical point (z = 
3.7962. . . , L = M = 0). Since the exponents (14.6.16) apply only to the 
surface (14.2.9), it is not surprising that they differ from those expected 
for hard squares, namely a = a = 0, P = 118 (Baxter et al . ,  1980). Even so, 
it is disappointing that they seem to have no connection at all. 

14.7 The Hard Hexagon Model 

We started this chapter by discussing the hard hexagon model, i.e., the 
triangular lattice gas with nearest-neighbour exclusion. In order to solve 
it, we generalized it to the hard-square model with diagonal interactions. 



In Sections 14.2-14.6 we have considered this more general model; let us 
now return to the original hard hexagon model. 

To do this, we let m, L, M in (14.2.1) tend to the values 1,  0 ,  - w ,  

respectively. From (14.2.29) it follows that 

while from (14.2.10) and (14.2.30), 

the function B1 being defined by (14.2.28). If the activity z is given, then 
we can regard (14.7.1) and (14.7.2) as defining our two parameters u and 
q2. 

There are two cases to consider, corresponding to q2 being negative and 
positive, respectively. From (14.7.2) these in turn correspond to z < z, and 
z > zc7 where 

z, = (sin $/sin :) 

We see that this is the value (14.1.11) conjectured by Gaunt (1967). 
The case z < z, is the u = -n/5 limit of regime I, while z > z, is the 

corresponding limit of regime 11. We define x as in (14.2.43). Then from 
(14.2.10) and (14.2.44), x is related to z by: 

where G(x)  and H ( x )  are the Rogers - Ramanujan functions defined in 
(14.1.19) and (14.6.5). These are precisely the relations conjectured in 
(14.1.18) and (14.1.22), so the x of this section is the same as that of 
Section 14.. 

To obtair) K ,  we first re-normalize the weights ol , . . . , o5 in (14.2.44) 
to ensure ttdt ol is unity. This means that m in (14.2.38) and (14.2.1) is 
unity. Using these re-normalized weights, and remembering that f(w) in 
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(14.2.44) means f ( w  , x5) ,  from (14.2.44) we have that 

We now use (14.3.26) (which is true for all normalizations of 
wl , . . . , us) and take the limit u+ - d 5 .  From (14.2.43) this means that 
w + x2 in regime I ,  w + x-' in regime 11. In both cases the RHS of (14.3.26) 
has a simple pole at this value of w ,  but this is cancelled by a corresponding 
zero of (14 .7 .5) .  We find that K is indeed given by (14.1.20) and (14.1.23).  

For z < z,,  the density p is given at once by (14.5.14).  For z > z,,  the 
sub-lattice densities pl, pz, h, and the order parameter R, are given by 
(14 .5 .29) ,  (14.5.26) and (14 .5 .30) .  This last formula is the same as (14.1.24) 
so we see that all the conjectures of Section 14.1 have been verified. 

Critical Behaviour 

To study the behaviour near z = z , ,  we use the alternative forms of the 
results, as given in the previous section, specializing them to the hard 
hexagon model. 

The first step is simply to note that q2 is given by (14 .7 .2) .  Using (14.2.28) 
and (14 .7 .3) ,  this equation can be written explicitly as 

m 

z = z ,  n [ ( I  - 2qZn cos - + q4" 1 - 29" cos 
n = l  4n 5 )I( 

This defines q2 for all real positive values of z ;  q2 is negative for z < z,, 
positive for z > z,. 

To obtain the small-q expansion of K, we use (14 .6 .3)  together with 
(14.2.29) and (14.2.31).  We take rn = 1 and let u-+ -n /5 .  Using the 
functions Q ( x ) ,  P ( x ) ,  G l ( x ) ,  H l ( x )  defined in (14 .6 .5 ) ,  we find that: 



where p is defined by (14.6.4), i.e. p = lq21. The critical value K, of K is 
obtained by setting q2 = p = 0 in either of these formulae, giving 

For z < z,, the density p is given by the first formula in (14.6.7). For 
z > z, the regime I1 formulae apply: in particular, the order parameter is 

R = (3 / f i )p119~(p5)  Q(P)lQ2(P5I3). (14.7.9) 

From (14.7.6) it follows that q2 is an analytic function of z at z = z,, 
having a Taylor expansion of the form 

These results are exact. To obtain the critical behaviour we expand them 
in powers of q2 and p ,  keeping only the first two or three terms. This gives 

Here p, =(5 - f l) /10 is the critical density of Section 14.6. The last 
equation (for R) applies only for z > z,; the first three apply for both 
z > z, and z < z,. Defining the critical exponents a ,  &, /3 in the usual way 
by (14.6.14), with t replaced by z - z,, we again obtain (14.6.15), i.e. 

a =  &=  1/3,/3= 119. (14.7.12) 

Using these values, the scaling hypothesis relations (1.2.12)-(1.2.16) 
predict that the other critical exponents are: 

The results (14.1.18)-(14.1.24) involve elliptic functions of nomes x5, 
x6, x3 and x. It should be possible to obtain algebraic relations between 
these functions (just as the Landen transformation of Section 15.6 relates 
elliptic functions of nomes q and q2), and hence to eliminate x from the 
results. This program has been carried out by Joyce (1981) for the relation 
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between z and the order parameter R, for z > 2,. He finds that 

1$'(5 + 10s + s ' )~ = (27s + q6) (243s + @ ) 3 ,  (14.7.14a) 

where 

q j  = GR, s = 125z/(z2 - l l z  - 1 ) .  (14.7.14b) 

Thus R is an algebraic function of z .  

14.8 Comments and Speculations 

In this chapter we have used the "matrix inversion" trick to calculate the 
free energy, and have calculated the sub-lattice densities and order par- 
ameters by diagonalising the corner transfer matrices. Unlike the eight- 
vertex model calculation in Chapter 10, we have not obtained exact equa- 
tions for all the eigenvalues of the row-to-row transfer matrix. As a result, 
we have not been able to calculate the interfacial tension and correlation 
length. 

This has very recently been done (Baxter and Pearce, 1982). Regard m' 
and t' in (14.2.39) as fixed. Then the Boltzmann weights oi , and the 
row-to-row transfer matrix V, are functions of u. One can verify that 

where 9 is the identity matrix and 

As usual, the star-triangle relation implies that V(u) and V(u) commute, 
for all complex numbers u and u. We can therefore choose a representation 
in which V(u) is diagonal, for all u. Then (14.8.1) is a functional relation 
for each eigenvalue. Together with the analyticity and quasi-periodic 
properties of V(u), this relation in principle enables one to calculate every 
eigenvalue, for finite N. The free energy, interfacial tension and correlation 
length can thus be calculated. The results of course agree with (14.3.26). 
They also give 

p = v = v' = 516 (14.8.3) 

for the critical exponents of the original hard-hexagon model. Together 
with (14.7.12), it follows that the scaling relations (1.2,14a), (1.2.15) and 
(1.2.16) are satisfied. 

We have seen in Sections 10.1 and 10.3 that the eight-vertex model 
contains as special cases the previously solved Ising and six-vertex models. 
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When F. Y. Wu and I solved the three-spin model in 1973 and 1974, it 
appeared then to be a quite distinct model. Howeve, as has been shown 
in Section 11.10, it can be expressed as a special case of the eight-vertex 
model. 

Will history repeat itself for the hard hexagon model? More precisely, 
will a more general model be solved that contains both the eight-vertex 
and hard hexagon models as special cases? I doubt it. For one thing, the 
fact that the critical exponent 6 is 15 for the former, and 14 for the latter, 
model, suggests that the two are quite distinct. On a more detailed level, 
the star - triangle relation (13.3.6), or equivalently (11.5.8), contains many 
more equations than unknowns. For the eight-vertex model the two 
spin-reversal symmetries reduce the number of equations by a factor of 
four, from 64 to 16. For the generalized hard hexagon model, the require- 
ment that no two particles be adjacent eliminates 44 of the 64 equations: 
they just become 0 = 0. The reasons for success in the two cases are 
therefore quite different, and its seems to me unlikely that one can trace 
a continuous path of solvable models from one to the other. 

Can one extend these methods to Ising-type models in three dimensions? 
One can extend the star- triangle relation (13.3.6) or (11.5.8), getting a 
"tetrahedron relation", as has been shown by Zamolodchikov (1981).The 
trouble is that one then has 214 equations to satisfy (instead of 26), and it 
is difficult to see where to begin. More seriously, one very useful property 
in two dimensions does not go over to three. If the model factors into two 
independent models, one on each sub-lattice of the square or simple cubic 
lattice, then the weight functions w factor. The planar star - triangle relation 
then factors into two identical relations (each being the original Ising model 
star - triangle relation of Section 6.4); but the three-dimensional tetrahed- 
ron relation factors into two non-identical relations, one of which is trivial 
and seems to preclude interesting solutions. 

Even so, Zamolodchikov has found strong evidence that the tetrahedron 
relations do have some (non-factorizable) solutions. It will be fascinating 
to examine these and see if they correspond to interesting statistical 
mechanical models. 

Of course one would still like to go much further in two dimensions. 
The Ising model in a magnetic field remains unsolved. Indeed the only 
models that have been solved in the presence of an appropriate 
symmetry-breaking field are the spherical model of Chapter 5, and the 
KDP ferroelectric model of Section 8.12. Only such solutions give a com- 
plete check on the scaling hypothesis (Section 1.2), and give the form of 
the scaling function h,(x). 

It seems unlikely that the "commuting transfer matrix" trick can be used 
to solve the Ising and other models in the presence of a field, or even the 
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non-critical Potts model. The only hope that occurs to me is that just as 
Onsager (1944) and Kaufman (1949) originally solved the zero-field Ising 
model by using the algebra of spinor operators, so there may be similar 
algebraic methods for solving the eight-vertex and Potts models. (Some 
credence to this hope is given by the fact that the diagonalized infinite- 
lattice corner transfer matrices of the eight vertex model have the simple 
direct product form (13.7.20).) 

If so, it is conceivable that such methods might work for a staggered 
eight-vertex model, in which the weights are different on the two sublattices, 
but the combinations A and r in (10.4.6) are the same. In particular, one 
can still define a single parameter p for this model, using (10.4.17) and 
(10.12.5). The case p = n/2 corresponds to r = 0: the model then factors 
into two independent staggered Ising models, -and these can be solved 
algebraically. (Similarly, so can the "free fermion" case A = 0: see Section 
10.16.) In attempting to generalize such algebraic methods it would be 
natural to look first at other values of p that are simple fractions of n, e.g. 
p = nl3, 3n14, etc. 

If this could be done, it would indeed be a giant step forward. Many 
fascinating models can be expressed as special cases of such a staggered 
eight-vertex model, notably the non-critical Potts model (Section 12.4), 
the Ashkin-Teller model (Section 12.9), and even the king model in a 
magnetic field (Wu, 1979). Obviously it would be foolish to pin all one's 
hopes on such a possibility, which has evaded attainment for at least a 
decade. At the same time, I feel it is equally foolish to dismiss it out of 
hand. 
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15 

ELLIPTIC FUNCTIONS 

15.1 Definitions 

The usual elliptic functions are functions of two variables, which we can 
take to be the nome q and the argument u. Usually q is regarded as a given 
real constant, with value between 0 and 1; while u is regarded as a variable, 
in general complex. 

The half-period magnitudes I ,  I' (usually called K ,  Kt)  are then given 
by 

The modulus k and the conjugate modulus k' are given by 
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The theta functions are 

H ( U )  = 2qi sin - n 1 - 2q2n cos + q4n) (1 - q2n) 
21 n = 1  nu - ( I 

The Jacobian elliptic functions are 

sn u = k-& H(u)lO(u) , 

cn u = (k1lk)& ~ ~ ( u ) l @ ( u )  , 

dn u = k t t  Ol(u) l0(u)  . 

Multiplying (15.1.1) by (l5.1.4b) gives the relation 

Also, from (15.1. I ) ,  (15.1.2) and (15.1.4a), 

15.2 Analyticity and Periodicity 

The theta functions H, H I ,  0, 0 1  are entire functions of u (i.e. they are 
analytic everywhere). Their zeros are all simple. In particular the zeros of 
H(u) ,  O(u )  are given by 

H(u) = 0 when u = 2mI + 2in11 , (15.2.1) 

@(u)  = 0 when u = 2mI + i(2n - 1)I' , (15.2.2) 

where m ,  n are any integers. 



15.2 ANALYTICITY AND PERIODICITY 457 

From (15.1.6); sn u, cn u and dn u are therefore meromorphic (i.e. their 
only singularities are poles). Their poles are all simple and occur when 
(15.2.2) is satisfied. 

The function H(u) satisfies the quasi-periodic relations 

The other theta functions are related to H(u) by 

It follows that sn, cn, dn satisfy the relations: 

and 

sn(u + iIt) = (k sn u)-' , 

cn(u + il') = -i dn ul(k sn u) , (15.2.6) 

dn(u + iIt) = -i cn ulsn u . 
Any upright rectangle of width 21 and height 2il' in the complex u-plane 

is known as a period rectangle (Fig. 15.1). Any function f (u) satisfying the 
relations 

is said to be doubly periodic (or perhaps anti-periodic). If such a function 
is known within and on a period rectangle, then its value at any point in 
the complex plane can be obtained by repeated use of (15.2.7). To within 
a sign, all values that it attains are attained within and on any period 
rectangle. 
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Fig. 15.1. A typical period rectangle (shown by broken lines) in the complex 
u-plane. It has width 21 and height 21'. 

15.3 General Theorems 

Theorem 15(a) 

A well-known theorem in complex variable theory is Liouville's theorem, 
which states that if a function is entire and bounded, then it is a constant. 
A useful corollary for this chapter is: 

if a function is doubly periodic (or anti-periodic) 
and is analytic inside and on a period rectangle, then it 
is a constant. (15.3.1) 

The proof is simple: since it is analytic in a closed region, it is certainly 
bounded. From the double periodicity it is therefore analytic and bounded 
everywhere. From Liouville's theorem it is therefore a constant. 

Theorem 15(b) 

If a function f(u) is doubly periodic (or anti-periodic) 
and meromorphic, and has n poles per period rectangle, 
then it also has just n zeros per period rectangle. 
(Multiple poles or zeros of order r being counted r 
times.) (15.3.2) 



Proof: choose a period rectangle such that f (u) has no poles or zeros on 
the boundary (since they are isolated, this must be possible). Consider the 
integral 

(15.3.3) 

where C is the boundary of the rectangle, traversed anti-clockwise as in 
Fig. 15.1. The integrand is analytic on C and is strictly doubly periodic, 
so the contributions to (15.3.3) from the two sides (and the top and bottom) 
cancel. Thus (15.3.3) is zero. 

On the other hand, if f(u) has n poles and m zeros within the rectangle, 
then f '(u)lf(u) has n poles with residue - 1 and m poles with residue + 1. 
These are its only singularities, so by Cauchy's integral formula 

1, [ f I(u)/f (u)] du = 2 4  (m - n) . (15.3.4) 

Since the LHS is zero, it follows that m = n, which is the theorem. 

Theorem 15(c) 

If a function f(u) is meromorphic and satisfies the (anti-) periodicity 
conditions 

f(u + 21) = (-lYf(u) (15.3.5) 

f(u + 2iI') = (-l)'f(u) , 

where r, s are integers; and iff (u) has just n poles per period rectangle, 
at ul , . . . , u, (counting a pole of order r as r coincident simple poles), 
then 

n 

f (u) = C edu [H(u - o,)/H(u - u,)] , (15.3.6) 
j=  1 

where C, A, ul  , . . . un are constants satisfying 

A = in($ + 2n)/I, (15.3.8) 
and m, n are integers. 

Proof: from theorem 15(b), f(u) has n zeros per rectangle. Let these be 
v l  , . . . u, and let $(u) be the product in (15.3.6), ignoring for the moment 
the restriction (15.3.7). 

Now consider the function 
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From (15.2.3) and (15.3.5), this is strictly doubly periodic, Since f (u) and 
@(u) have the same zeros and poles, the function (15.3.9) is analytic. From 
theorem 15(a), it is therefore constant. 

Integrating, it follows that f(u) must be of the form (15.3.6). The 
conditions (15.3.7) and (15.3.8) are necessary to ensure that (15.3.5) is 
satisfied. 

This is a truly remarkable result: any double periodic meromorphic 
function must be expressible in the form (15.3.6). For this reason there is 
a bewildering array of identities between elliptic functions: many sums of 
products of such functions will satisfy the conditions of this theorem; if 
their zeros can be located, then they can be explicitly factored as in (15.3.6). 

It is helpful to think of (15.3.6) as a 'generalization' of the fundamental 
theorem of algebra, which states that any polynomial of degree n can be 
factored into n linear forms. 

These theorems are extremely powerful. They will be useful in the next 
section to obtain a number of algebraic identities satisfied by the elliptic 
functions, but perhaps the simplest example of the use of theorem 15(a) 
is the identity 

To prove this, regard x ,  y, v as constants and u as a complex variable. 
Let f (u) be the ratio of the LHS to the RHS. From (l5.2.3), f (u) is periodic 
of periods 21 and 2il'. It is meromorphic, with possible simple poles when 
u = & v + 2mZ + 2inZf, for any integers m and n. Plainly the LHS of 
(15.3.10) vanishes when u = u or u = -u, so these poles are removeable. 
By periodicity, so are all the others; f(u) is therefore entire and doubly 
periodic. From theorem 15(a), it is therefore a constant. Setting u = y gives 
this constant to the unity. This proves the identity (15.3.10). 

Note that this derivation does not use the explicit formula (15.1.5) for 
H(u). It needs only the following properties: (a) H(u) is entire; (b) H(u) 
satisfies the quasi-double-periodicity conditions (15.2.3); (c) H(u) is odd, 
i.e. H(-u) = -H(u). 

15.4 Algebraic Identities 

Relations Between sn, cn, dn 

Consider the expression 



Clearly this is a meromorphic function of u, with possible double poles 
when H(u) = 0, i.e. when u = 2mI + 2inZ'. However, the numerator clearly 
vanishes when u = 0, and since it is even, so does its derivative. Thus 
(15.4.1) is analytic at u = 0, and hence is analytic inside and on the period 
rectangle centred on the origin. 

From (15.1.6) and (15.2.5) it is easily seen that (15.4.1) is (strictly) 
doubly periodic, so from theorem 15(a) it is a constant. Setting u = I fixes 
this constant, giving 

From (l5.1.5), the definitions (15.1.4) can be written 

k" H@)/O1(0) , (15.4.3) 

k't = 0(0)/01(0) . 
Dividing (15.4.2) by H:(o) 02(u), using (15.1.6) and re-arranging, it 

follows that 

Incrementing u by iZ' and using (15.2.6), this also gives 

These identities (15.4.4) and (15.4.5) make the elliptic functions par- 
ticularly suitable for parametrizing expressions involving square roots of 
two quadratic forms. For instance, if one had the equation 

an obvious parametrization would be to set 

whereupon (15.4.4)-(15.4.6) would give 

This would ensure that x and y are both single-valued meromorphic func- 
tions of u, which can be a very convenient feature in carrying out some 
complicated calculation involving them. Unless k2 = 0 or 1, such a para- 
metrization cannot be performed in terms of elementary functions. 

From (l5.1.6), (15.4.3) and (15.2.4), it is readily verified that 



Setting u = Z in (15.4.5) therefore gives the relation 

k 2 + k t 2 = 1 ,  (15.4.10) 
between the two moduli. 

If 0 < q < 1, then it is obvious from (15.1.4) that k and k' are positive. 
From (15.4.10) it follows that 

The Modified Amplitude Function 

Another useful function for our purposes is 

Am(u) = - i ln[ikf sn(u - Biz')] . (15.4.12) 

From (15.1.6) and (15. IS) ,  

where 
z = exp(iml1) . 

Taking logarithms term by term and Taylor expanding each logarithm, the 
summation over n can be performed to give 

provided IIm(u) 1 < +I1. 
For real u, this function is real, odd and monotonic increasing. It satisfies 

the quasi-periodic relation 

It is not meromorphic, since it has logarithmic branch cuts at u = 2mZ + 
i(n - 4)Z1. 

The usual elliptic amplitude function is am(u), which is given by (15.4.15) 
with q replaced by q2. Such transformations from elliptic functions of nome 
q to nome q2 are common: they are known as Landen transformations, 
and will be discussed in Section 15.6. 

Addition Formulae for Theta Functions 

The theta functions satisfy the following identities, for all complex numbers 
u and v. Each can be proved quite simply by regarding the ratio of the 
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LHS to the RHS as 
H(0) = 0, that this is 
is therefore constant. 

a function of u and verifying, using (15.2.4) and 
entire and doubly periodic. From theorem 15(a) it 
Setting u = 0, this constant is found to be unity. 

H'(u) 02(v) - 02(u) ~ ' ( 0 )  = H(u - U) H(u + U) 02(0) .  (15.4.19) 

Incrementing u by iZf in (15.4.19) and using (15.2.4) and (15.2.3) gives 

02(u) 02(v) - H'(u) H ~ ( u )  = O(U - v) O(U + v) 02(0).  (15.4.20) 

Dividing each side of (15.4.17) by the corresponding side of (15.4.20) and 
using (15.1.6) and (15.4.3) gives the addition formula for sn: 

snu cnv d n v - c n u  d n u  snv 
sn(u - v) = . (15.4.21) 

1 - k2 sn2 u sn2 v 

Other addition formulae are: 
-isn(iZ'-u-v)cnu cnu-cn( iZ1-u-v)snu snv 

sn(a - u) sn(a - v) - sn u sn v 
= sna  sn(a - u - v ) ,  (15.4.23) 

1 - k2snu snv sn(a -u)sn(a - v) 

O(u) O(v) - H(u) H(v) = -2qfH[t(i~r + u - v)] H[t(iZf - u + v)] 

x H[4(iZ1 + u + v)] H[t(iZ1 - u - v)]l[H1(0) 01(0)] , (15.4.27) 
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@(u) H(v) + H(u) @(u) = 2 H[i(u + v)] @[i(u + v)] 

x Hl[t(u - v)] @i[?(u - u)]l[Hi(O) @i(O)] , (15.4.28) 

Special Values of sn, cn, dn 

From (15.1.5), (15.1.6), (15.2.6), (15.4.4) and (15.4.5), $is readily verified 
that 

snO=O, c n O = d n O = l ,  (15.4.30) 

15.5 Differential and Integral Identities 

Consider the expression 
X = snl(u)l(cn u dn u) , (15.5.la) 

where the prime denotes differentiation with respect to u, q being kept 
constant. Differentiating (15.4.4) and (15.4.5) gives 

X = - cnl(u)l(sn u dn u) , (L5,5,lb) 

= - dn'(u)l(k2 sn u cn u) . (15.5,lc) 

Substituting the expressions (15.1.6) for sn, cn, dn and remembering 
that the theta fu&tions are entire, the above equations (15.5.1) give 

where in each case . . . stands for an entire function. From the first 
expression above for X, X has poles only when Hl(u) or @(u) vanishes. 
From the second, it does not have poles when Hl(u) vanishes. From the 
third, it does not have poles when @l(u) vanishes. 

It follows that X has no poles and is therefore entire. From (15.2.5) it 
is doubly periodic, so it is a constant. 
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Obtaining sn u from (15.1.6)-and (15.1.5), then letting u-+ 0, we obtain 

sn u - 3tqt 
lim- -- rZ. (1 - q2n)3. 
U+O u kk  o(0) n = 1 

Using (15.1. I), (15.1.4) and (15. IS ) ,  this gives the simple result 

lim (sn u)lu = 1 . 
u-0 

[In fact, the definition (15.1.1) of Z can be regarded as chosen to ensure 
(15.5.4).] 

Equation (15.5.4) ensures that snl(0) = 1, while from (15.1.6) and 
(15.4.3) it is obvious that cn(0) = dn(0) = 1. Evaluating the constant X by 
setting u = 0 in (15.5.la) therefore gives 

Using (15.4.4) and (15.4.5) to express cn u and dn u in terms of sn u, 
(15.5.la) becomes a first-order differential equation for sn u. 

It can be integrated to give 

Defining c$ such that 
sn u = sin q5 , 

(10.5.6) can be written 
d a 

" = [ (1 - k2 sin2 a)' ' 

This is the usual integral form of the relation between u and sn u. Care 
has to be taken in choosing the path of integration and the sign of the 
integrand, but for u real and between 0 and 1 there is no problem: sn u, 
cn u, dn u are then all positive, and 0 < sn u < 1. Thus u is then given by 
the real integral (15.5.8), with positive integrand and 0 < q5 < 6n. 

Now let u-+ I. From (15.1.6), (15.2.4) and (15.4.3), snZ= 1. Hence 
@ = in and (15.5.8) becomes 

which is the usual expression for I as the complete elliptic integral of the 
first kind, of modulus k. 

If u is positive pure imaginary, then so is sn u; while cn u and dn u are 
real and of the same sign. Thus -i sn u increases monotonically with Im(u), 
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and is finite for 0 S Im(u) < I'. In this case the appropriate path of inte- 
gration in (15.5.8) is the positive imaginary axis. Again the integrand is 
positive. 

From (15.1.5) and (15.1.6), sn u becomes infinite in the limit u + iIf. 
Setting a = ip, (15.5.8) gives 

This is an integral expression for I'. It can be reduced to a more standard 
form by the substitution 

tan y = sinh p , (15.5.11) 

giving, using (15.4.10), 

Comparing (15.5.9) and (15.5.12), it is obvious that the relation between 
Z and k is the same as that between I' and kt:  I' is the complete elliptic 
integral of the first kind, of modulus kt. 

The complete elliptic integral of the second kind, of modulus k, is 

Small-u Behaviour of sn u, H(u) 

When lul < 1 it is easily seen from (15.5.6) and (15.1.6) that 

sn u - u, H(u) - ktO(0)u. 

15.6 Landen Transformation 

Exhibit the dependence of q,  I,  I f ,  sn u, cn u, dn u, etc. on the modulus 
k by writing them as qk, Ik, Zi, sn(u , k), cn(u , k), dn(u , k), etc. If 

I = 2kq(l + k), ti = (1 + k)u,  (15.6.1) 

then by replacing u, k, t in (15.5.6) by ti, I, (1 + k)t/(l + kt2), respectively 
(and noting that sn Z = 1, sn iZ' = m), it can be verified that 
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I, = (1 + k) I,, I/ = i ( l  + k) Ii, q, = qk, (15.6.2) 

1 sn(z2 ,1) = 2kf sn(u , k)l[l + k sn2(u , k)] , (15.6.3) 

kf sn(u , k) = [I - dn(z2 ,1)]/[1 sn(z2 , l)] . (15.6.4) 

Solving (15.6.1) fork, using (15.6.2) and replacing k, 1 by m, k, we obtain 

m = ( 1 - k r ) l ( l + k r ) ,  q,=q;. (15.6.5) 

From (15.1.1) and (15.1.4b), it follows that 
m 

I (krlmr)f = in (1 - q4n)2/(1 + q4n)2. (15.6.6) 
n = l  

15.7 Conjugate Modulus 

Set 

Then 

Ol(u , k) = ~ ( u )  Ol(iu , k') , (15.7.2d) 

These identities can be proved by using theorem 15a. For instance, both 
sides of (15.7.2a) are entire functions of u, with simple zeros at 2mI + 2inIr, 
for all integers m, n. Their ratio is therefore entire. Using (15.2.3) we can 
verify that it is doubly-periodic, so from theorem 15a it must be a constant. 

As is often the case, it is much harder to obtain this constant than it is 
to obtain the rest of the equation. One way is to reason as follows. 

The relations (15.7.2b)-(15.7.2d) can be obtained from (15.7.2a) by 
replacing u by u + iIr, u + I ,  u + I + il', respectively, and using (15.2.4). 
It follows that (15.7.2a)-(l5.7.2d) are all valid, except possibly for the 
inclusion of some extra common factor on the RHS. 
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This factor must be independent of u, but may depend on k, or equiv- 
alently on 

E =  Illl. (15.7.4) 

Let us write the factor as C(E) and define a function 

From (15. IS ) ,  (15.5.9) and (l5.5.12), 

q = exp( - m), q' = exp( - ~ I E )  (15.7.6) 

where q is the nome corresponding to the modulus k, and q' is the nome 
corresponding to the conjugate modulus k' = (1 - k2)&. Taking the limit 
u+ 0 in (15.7.2a), including our still-to-be-determined factor c(E), using 
(15.1.5) and (15.7.5), it follows that 

Similarly, multiplying (15.7.2a) and (15.7.2b) and taking the limit u+ 0, 
we obtain 

R2(d2) R2(&) = c2(&) R2(2/&) R2(&-l) . (15.7.8) 

We can obtain a third equation by replacing E in (15.7.7) by ~12.  Elim- 
inating R(E) and R(d2) between the three equations gives 

Further, from (15.7.7) it is obvious that C(E-') = l / c ( ~ ) .  Replacing E in 
(15.7.9) by 2 / ~ ,  and using this inversion property, it follows that 

C(E) = c2(d2) . (15.7.10) 

It follows at once that C(E) = c4(&). Since C(E) is real and non-zero, this 
implies that 

C(E) = 1 . (15.7.11) 

Thus the factor multiplying the RHS of (15.7.2) is in fact unity: the 
equations are correct as written. The equations (15.7.3) follow from (15.7.2) 
and (15.1.6). 

Poisson Summation Formula 

m 

f (n6) = 6-' g(2mI6) , 
n = - m  
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where 
r m  

This identity is true for any function f (x) that is analytic for real values 
of x ,  and for which the integral (15.8.2) is absolutely convergent (Courant 
and Hilbert, 1953, pp. 75-77). It can be used to express series such as 
(15.4.15) in a form which converges rapidly as q-, 1. This corresponds to 
going from elliptic functions of modulus k to ones of modulus k'. 

15.9 Series Expansions of the Theta Functions 

To establish the identities (15.9.1), note from (15.1.5) that H(u) is an 
entire function, odd and anti-periodic of period 21. It therefore has a 
Fourier expansion of the general form 

From (15.2.3b) it follows that h,+l = - q2"hn, and hence that 
hn = 2 4 -  1)"-1 q(n-d)2 (15.9.4) 

where c is some constant. Substituting this result into (15.9.3); replacing 
u by u, u + il', u + I,  u + I + iI', respectively; and using (15.2.4); we 
obtain the four identities (15.9.1a)-(15.9.ld), except that each has an extra 
factor c multiplying the RHS. 
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As in Section 15.7, it is the evaluation of c that causes the most problems. 
It is independent of u, but may depend on k, or equivalently q. Let us 
write it as c(q) and define two functions 

Setting u = 0 in (15.9.lb), including our still-to-be-determined factor 
c(q), and using (15.1.5), we obtain 

Similarly, multiplying (15.9. lb) by (15.9. ld), setting u = 0 and using 
(15.1.5), we get 

m m 

Set m = r + s, n = r - s. Then (15.9.8) becomes 

Here r and s are either both integers, or both half-an-odd-integer. In the 
latter case the sum over s vanishes, the terms occurring in pairs of equal 
magnitude and opposite sign. Thus we can restrict the sum to all integer 
values (positive, zero or negative) of r and s. We then have 

Replacing q in (15.9.7) by q2 and comparing with (15.9.10), it follows that 

ck2)  = 4 9 )  . (15.9.11) 
However, it is obvious from (15.9.7) that c(q) is Taylor expandable about 
q = 0 with leading term one. Substituting the Taylor series into (15.9.11) 
and equating coefficients, we find at once that 

The identities (15.9.1) are therefore correct as written. The other identity 
(15.9.2) is a corollary of (15.9.la), being obtained by using (15.1.5), setting 
z = exp(imll), and replacing q by q4 .  
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15.10 Parametrization of Symmetric Biquadratic Relations 

In the Ising, eight-vertex and hard hexagon models we encounter symmetric 
biquadratic relations, of the form 

Here x and y are variables (complex numbers), and a, b, c, d, e, f are 
given constants. 

Any such relation can conveniently be parametrized in terms of elliptic 
functions. To see this, first apply the bilinear transformations 

where a, p, y, 6 are numbers (in general complex) such that a 6  # by. In 
general we can choose a, P, y, 6 so as to make b and e vanish in (15.10. I),  
and so that a = f # 0. (Exceptional cases can arise, but these can be handled 
by taking an appropriate limit.) Dividing (15.10.1) through by a ,  the 
biquadratic relation assumes the canonical form 

This can be regarded as a quadratic equation for y. Its solution is 

y = - {dx k q[- c + (d2 - 1 - c2)x2 - cx4])I(c + x 3 .  (15.10.4) 

The argument of the square root is a quartic polynomial in x. It can be 
written as a perfect square by transforming from the variable x to the 
variable u, where 

x = k f s n u ,  (15.10.5) 

sn u being the Jacobian elliptic sn function of argument u and modulus k, 
where 

Using (15.4.4) and (15.4.5), the argument of the square root is 

- c[l - (k + k-')x2 + x4] 

= - c(l - sn2u) (1 - k2 sn2u) = - c cn2u dn2u. (15.10.7) 

Define a parameter 17 by 

c = - ll(k sn2q) . (15.10.8) 

Then from (15.10.6) it follows that we can choose the sign of q so that 

d = cn 17 dn 17 l(k sn2$ . (15.10.9) 
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Substituting these expressions into (15.10.4), it follows that 

Using the addition theorem (15.4.21), this result simplifies to 

Thus y is given by an equation of the same form as the equation (15.10.5) 
for x, but with u replaced by u 2 q .  

Put another way, if we transform from x, y to u, u according to the rule 

then the canonical biquadratic relation (15.10.3) simplifies to the pair of 
linear relations 

We can now go back to the general biquadratic relation (15.10.1), using 
the transformation (15.10.2). This of course changes c and d , and it should 
be remembered that the c and d in (15.10.6)-(15.10.9) are those of 
(15.10.3). Even so, it is still true that there exist parameters k and q such 
that (15.10.1) reduces to 

where the function @(u) is defined by 

Define two further parameters A, p by 

sn A = - k-&3/a7 sn p = - k&ly. (15.10.16) 

Then (15.10.15) can be written as 

$(u) = (dy)  (sn u - sn A)l(sn u - sn p) . (15.10.17) 

Using (15.1.6) to express the sn function as a ratio of theta functions, 
then applying the identity (15.4.28) (with u negated), we obtain 

z(u - A) t(u - 21+ A) 
$(u) = constant x (15.10.18) 

z(u - p) Z(U - 21 + p) ' 

where the function z(u) is defined by 

From (15.1.5), to within a constant factor, z(u) is the elliptic H-function 
with q replaced by q h n d  ull by ul(21). From (15.6.2), this means that they 
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are related by a Landen transformation. In fact 

Z(U) = constant x H(ul, I) , (15.10.20) 

where 

1 = 2kfl(l + k), u' = J(l + k)u . (15.10.21) 

Modify each of u, A, p by subtracting I and then multiplying by J(1 + k). 
Multiply 77 by J(l + k). Then (15.10.18) becomes 

H ( u - A , Q H ( u + A , Q  
@(u) = constant x (15.10.22) 

H(u - p ,I)H(u + p , I )  ' 

and (15.10.14) is unchanged. 
The general symmetric biquadratic relation (15.10.1) therefore can be 

reduced to the form (15.10.14), where @(u) is given by (15.10.22), or 
equivalently by 

sn2(u , I) - sn2(A, I) 
@(u) = constant X 

sn2(u , I) - sn2(p, I) ' 
(15.10.23) 

The multiplicative constant herein, and the parameters I, A, p, q, are inde- 
pendent of x and y , being determined solely by the coefficients a , . . . , f 
in (15.10.1). In any specific case we can obtain these parameters by 
substituting the expressions (15.10.14) and (15.10.22) for x and y directly 
into (15.10.1), and then considering particular values of u . 

There are many excellent books on elliptic functions. I mention Whittaker 
and Watson (1915, Chapters 20-22), Neville (1944) and Bowman (1953). 
I find particularly useful the identity list in Sections 8.110-8.197 of Grad- 
shteyn and Ryzhik (1965): once one is familiar with the use of the theorems 
in Section 15.3, it is usually straightforward to verify any particular identity, 
as I hope I have managed to indicate. 
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Anti-ferroelectric phase 
of eight-vertex model, 246 
of ice-type model, 152 

Ashkin-Teller model, 254, 353-362 
Asymptotic degeneracy of maximum 

eigenvalues of the transfer 
matrix, 111-114, 152-153, 239- 
240 

Bethe ansatz, 139, 168 
Bethe lattice, 13, 47-59, 306-309, 351 

Cayley tree, 47-49 
Coexistence curve, 29 
Commuting transfer matrices, see also 

star-triangle relation 
eight-vertex model, 214 
general two dimensional IRF 

model, 370-372 
hard hexagon model, 452 
ice-type model, 180-181, 185-186 
planar Ising model, 85-86, 96 

Corner transfer matrices, 363-401 
eight-vertex model. 385-389 
hard hexagon model, 405-407, 426- 

432 
Correlation length, 19 

eight-vertex model, 241-243, 284 
hard hexagon model, 452 
ice-type model, 154-155 
one-dimensional Ising model, 36 
planar Ising model, 118, 120 
relation to the eigenvalues of the 

transfer matrix, 36, 115-118 
Correlations, 10, 18-19 

one-dimensional Ising model, 35-36 

planar Ising model, 297-298 
Critical exponents, 4, 17, 19, 20, 29, 

see also scaling hypothesis and 
scaling relations 

Ashkin-Teller model, 360-361 
Bethe lattice Ising model, 58 
classical values, 30-31 
continuously variable, 8, 253-254, 

361 
eight-vertex model, 253-255 
hard hexagon model, 448-452 
ice-type model, 157, 160, 165 
mean-field Ising model, 44-46 
one-dimensional Ising model, 38 
planar Ising model, 122 
Potts model, 351-352 
spherical model, 69-71 
three-spin model, 320-321 

Critical point, 3, 10, 28 
Ashkin-Teller model, 359-362 
Bethe lattice Ising model, 54, 307- 

308 
eight-vertex model, 248 
hard hexagon model, 405, 447, 449 
ice-type model, 156 
mean field Ising model, 44 
numerical values for the isotropic 

king model, 77, 308 
one-dimensional king model, 37 
planar Ising model, 77-78, 87, 120- 

121, 307-308 
Potts model, 338-339, 347-348 
spherical model, 67 
three-spin model, 314 

Curie point, 2, 44, see also critical 
point 
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Dichromatic polynomial, 324 
Difference kernel, transformation to, 

145, 171 
Dimer problem, 124-126 
Disorder points, 247 
Duality, 

Ashkin-Teller model, 357 
eight-vertex model, 206 
planar Ising model, 73-80, 86-87 
Potts model, 338, 346 

Dual lattice, 74, 79 

Eight-vertex model, 202-321 
'electric' arrow formulation, 202- 

204, 276-279 
'magnetic' spin formulation, 207- 

210, 286-289 
Elliptic functions, 455-473 

conjugate modulus identities 419, 
44446 ,467468  

in eight-vertex model, 212-215 
in hard hexagon model, 412-415 
in planar Ising model, 102-103 
in square-lattice four-colouring 

problem, 171-176 

Ferroelectric ice-type model in a field, 
160-165 

Ferroelectric phase 
of eight-vertex model, 246 
of ice-type model, 151 

F model, 129 
Four colour problem, 331-332 
Free energy, 16-17 

Bethe lattice Ising model, 55-56, 
59, 306 

critical Potts model, 339-340, 348- 
350 

eight-vertex model, 236-237, 285- 
286 

hard hexagon model, 408, 426, 444, 

ice-type model, 145-150 
inversion relation for, see inversion 

relations 
mean field Ising model, 42 
one-dimensional Ising model, 34 
planar Ising model, fl0-111, 2 9 6  

306 

three-spin model, 319-320 
Free-fermion model, 270-271, 310 

Hard hexagon model, 402-454 
Heisenberg chain, see XYZ chain 
Hyperbolic trigonometry and the star- 

triangle relation, 292 
Hyperscaling, 7 

Ice model, 127-129, 148 
Ice-type model, 127-201 
Interfacial tension, 20, 110-114, 152- 

153, 239-241, 452 
Internal energy, 9, 16 

critical Potts model, 344-345, 349- 
351 

spherical model, 64 
Inversion relations for local transfer 

matrices, free energy, and 
corner transfer matrices, 383- 
387, 421423, 427-429 

Ising model, 19-32, see also specific 
properties, e.g. free energy 

Bethe lattice, 13, 47-59, 306-309 
mean field, 13, 39-46 
one-dimensional, 12, 32-38 
planar, 72-126, 294-309 
relation of d-dimensional model to 

a (d-1)-dimensional quantum- 
mechanical model, 266-267 

KagomC lattice, 276-277 
KDP model, 129 

Landen transformation, 466-467 
Latent heat of Potts model, 345, 349- 

351 
Lattice gas, 24-30 

hard hexagons, 402, 409 
mean field, 46 

Liouville's theorem, 458 
Local transfer matrices U, 

edge transfer matrices for the planar 
Ising model, 84-85, 124 

face transfer matrices for the 
general two-dimensional IRF 
model, and for the hard hexagon 
model, 369,421 

inversion relations for, see inversion 
spherical model, 61-64 relations 
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vertex transfer matrices for the ice- 
type and eight-vertex models, 
188 

Magnetization, 1-4, 17, 21-23, see also 
spontaneous magnetization 

Bethe lattice Ising model, 52-54, 59 
mean-field Ising model, 41 
one dimensional Ising model, 34 
spherical model, 64 

Mean-field model, 13, 39-46 
Medial graph, 325, 332-333, 345-346 

One-dimensional Ising model, 12, 32- 
38 - - 

Order parameter, see also spontaneous 
magnetization and spontaneous 
polarization 

hard hexagon model, 404, 438, 442, 
446,451 

Pair-propagation through a vertex, 
194. 215 

Partition function, 8-9, 16, 25 
per site, see free energy 

Percolation problem, 324 
Pfaffian, 125 
Phase transition, 1-3, see also critical 

point 
Poisson summation formula, 468-469 
Polarization, see also spontaneous 

polarization 
ferroelectric ice-type model, 
162-165 

Potts model, 322-352 

Renormalization group, 11 
Rogers-Ramanujan and related 

identities, 434-443 

Scaling hypothesis, 4-7, 37 
full verification for the one- 

dimensional Ising, mean-field 
Ising, Bethe lattice Ising, 
spherical and ferroelectric ice- 
type models, 37, 46, 58, 71, 165 

Scaling relations between critical 
exponents, 6, 20, 21 

verification of ( q p ,  v) relations for 
the planar Ising, ice-type, eight- 
vertex, three-spin and hard 
hexagon models, 122, 160, 253, 
321,452 

verifications for other models, see 
scaling hypothesis 

Series expansions, 10, 22-23, 395-396, 
404 

Six-vertex model, see ice-type model 
Specific heat, 16 
Spherical model, 13, 6&71 
Spontaneous magnetization, 1-4, 23 

Bethe lattice Ising model, 57, 306 
eight-vertex model, 243-244, 291, 

389 
mean-field Ising model, 44 
planar Ising model, 119, 299, 304- 

306, 389 
spherical model, 68-69 
three spin model, 319 

Spontaneous polarization and 
spontaneous staggered 
polarization 

eight-vertex model, 244-245, 253, 
285 

ice-type model, 153-154, 157, 159 
three-spin model, 319 

Star-triangle relation 
eight-vertex model, 210-215, 279- 

281,289-291 
general two-dimensional IRF 

model, 370-374 
hard hexagon model, 410-411 
ice-type model, 187-192 
operator form, 83-85, 124, 188, 

192, 215, 372-373 
planar Ising model, 80-86, 92-93, 

122-124 
three-dimensional, 453 

Susceptibility, 4, 18 
divergent for the spherical model, 

70 

Thirty-two vertex model, 309-313 
Three-colourings of the square lattice, 

165-179 
Three-spin model, see triangular three- 

spin model 
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Transfer matrix 
commutation, see commuting 

transfer matrices 
corner, see corner transfer matrices 
edge, see local transfer matrices U, 
eight-vertex model, 185, 214 
face, see local transfer matrices Ui 
general two-dimensional IRF 

model, 371 
hard hexagon model, 452 
ice-type model, 130-131, 185 
one-dimensional Ising model, 33-34 
planar Ising model, 85-86, 8%96 
three-colourings of the square 

lattice, 167 
vertex, see local transfer matrices 

ui 
Triangular lattice gas with nearest- 

neighbour exculsion, see hard 
hexagon model 

Triangular three-spin model, 314321 
Twenty-vertex model, 31 1-312 

Universality, and violations thereof, 7- 
8, 253-255, 361-362 

van der Waal's equation of state, 13, 
30-31 

Wave numbers, in the Bethe ansatz, 
143-144, 169-170, 177 

Weak-graph expansion, 206 
Wiener-Hopf factorization, of eight- 

vertex model eigenvalue 
equation, 229, 231 

XYZ chain, 258-267, 269-272 

ZN model, 322 
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