Atomic and Molecular Physics

Atomic magnetometer for exploring physics beyond the standard model

The Global Network of Optical Magnetometers for Exotic Physics (GNOME) uses precision atomic magnetometers to look new physics.  The concept is to have a global network of magnetometers looking for correlated magnetic field fluctuations that may be caused by strange, and unknown physics.

Dr Ben Buchler, Dr Geoff Campbell

Optical quantum memory

An optical quantum memory will capture a pulse of light, store it and then controllably release it. This has to be done without ever knowing what you have stored, because a measurement will collapse the quantum state. We are exploring a "photon echo" process to achieve this goal.

Dr Ben Buchler

Engineering in Physics

Wave dispersion in stringed instruments: What makes tuning a piano so hard?

Ideal strings have wave speeds that are identical for all frequencies.  In real life, strings have some stiffness that makes higher frequency waves are faster.  This means building and tuning some stringed instruments, like pianos, is very tricky. This project aims to accurately measure wave speeds on piano strings.

Dr Ben Buchler

Exploring physics with neural networks

Machine learning based on deep neural networks is a powerful method for improving the performance of experiments.  It may also be useful for finding new physics.

Dr Ben Buchler, Professor Ping Koy Lam, Dr Geoff Campbell

Materials Science and Engineering

Wave dispersion in stringed instruments: What makes tuning a piano so hard?

Ideal strings have wave speeds that are identical for all frequencies.  In real life, strings have some stiffness that makes higher frequency waves are faster.  This means building and tuning some stringed instruments, like pianos, is very tricky. This project aims to accurately measure wave speeds on piano strings.

Dr Ben Buchler

Photonics, Lasers and Nonlinear Optics

Development of Squeezed Laser Sources for Quantum Communication

Student will build and characterise a new source of quantum squeezed light genearted from an optical parametric oscillator

Professor Ping Koy Lam, Dr Ben Buchler

Second Harmonic Generation for Quantum Optics Applications

Student will develop a source of laser light at 775nm that will be utilised for pumping of squeezing cavities  

Professor Ping Koy Lam, Dr Ben Buchler

Probabilistic quantum cloning with noiseless linear amplifier

Student will use electro-optic feedforward techniques to implement noiseless linear amplification of information carrying laser light

Professor Ping Koy Lam, Dr Thomas Symul

Whispering Gallery Mode Resonators for Ultra-Sensitive Magnetometry

This projects aims to construct an ultra-sensitive magnetic field sensor from a whispering gallery mode crystal resonator.

Professor Ping Koy Lam

Quantum Science and Technology

Quantum super resolution

When two point sources of light are close together, we just see one blurry patch. This project aims to use coherent measurement techniques in quantum optics to measure the separation between the point sources beyond the Rayleigh's limit.

Dr Syed Assad, Professor Ping Koy Lam

Atomic magnetometer for exploring physics beyond the standard model

The Global Network of Optical Magnetometers for Exotic Physics (GNOME) uses precision atomic magnetometers to look new physics.  The concept is to have a global network of magnetometers looking for correlated magnetic field fluctuations that may be caused by strange, and unknown physics.

Dr Ben Buchler, Dr Geoff Campbell

Beam matching using machine learning

This project aims to use a machine learning algorithm to perform beam alignment in an optics experiment. It would involve mode-matching two optical beams using motorised mirror mounts. Additional degrees of freedom like lens positions and beam polarisation can be added later.

Dr Syed Assad, Mr Aaron Tranter, Mr Harry Slatyer

Development of Squeezed Laser Sources for Quantum Communication

Student will build and characterise a new source of quantum squeezed light genearted from an optical parametric oscillator

Professor Ping Koy Lam, Dr Ben Buchler

Second Harmonic Generation for Quantum Optics Applications

Student will develop a source of laser light at 775nm that will be utilised for pumping of squeezing cavities  

Professor Ping Koy Lam, Dr Ben Buchler

Exploring physics with neural networks

Machine learning based on deep neural networks is a powerful method for improving the performance of experiments.  It may also be useful for finding new physics.

Dr Ben Buchler, Professor Ping Koy Lam, Dr Geoff Campbell

Probabilistic quantum cloning with noiseless linear amplifier

Student will use electro-optic feedforward techniques to implement noiseless linear amplification of information carrying laser light

Professor Ping Koy Lam, Dr Thomas Symul

Whispering Gallery Mode Resonators for Ultra-Sensitive Magnetometry

This projects aims to construct an ultra-sensitive magnetic field sensor from a whispering gallery mode crystal resonator.

Professor Ping Koy Lam

Optical quantum memory

An optical quantum memory will capture a pulse of light, store it and then controllably release it. This has to be done without ever knowing what you have stored, because a measurement will collapse the quantum state. We are exploring a "photon echo" process to achieve this goal.

Dr Ben Buchler

Space Based Quantum Communications

Develop a satellite quantum communications network in collaboration with RSAA and DST Group. This project will cover advanced satellite free space optical communications using adaptive optics.

Dr Oliver Thearle, Professor Ping Koy Lam

Laser levitation of a macroscopic mirror

This project aims to be the first in the world to use the radiation pressure forces of laser beams to coherently levitate a macroscopic mirror. Applications of this scheme include precision metrology and test of new physics theories.

Professor Ping Koy Lam, Dr Ben Buchler

Updated:  15 January 2019/ Responsible Officer:  Head of Department/ Page Contact:  Physics Webmaster