Potential student research projects

Search

You may search the complete list of available RSPE projects by visiting our central listing.

Advanced project list filtering

Astrophysics

Optimising a Neutron Star Extreme Matter Observatory

Following a practical introduction to optical interferometry for gravitational wave detectors and simulation tools, this project will model the optical configuration to optimize detector performance against a number of possible predictions of the neutron star equation of state.

Dr Bram Slagmolen, Dr Lilli (Ling) Sun, Dr Vaishali Adya, Distinguished Prof David McClelland

Engineering in Physics

Optical Sensors for Inertial Navigation

This project develops fibre optic instruments based on optical interferometry and digital signal processing for the purpose of inertial navigation.

Prof Jong Chow, Dr Chathura Bandutunga , Dr Roland Fleddermann

Engineering Inter-spacecraft laser links

Inter-satellite laser links are an emerging technology with applications in Earth Observation, telecommunications, security, and, the focus of the CGA space technology group. Inter-satellite laser ranging is an enabling technology to for geodesy/gravity recovery for global water or climate monitoring on Earth (NASA/Germany GRACE Follow-On mission), planetary science like NASA’s lunar GRAIL mission, and the same technology needed to detect the merging of super-massive black hole mergers (e.g. LISA mission).

A/Prof Kirk McKenzie, A/Prof. Andrew Sutton

Fibre Optic Sensor Arrays for Vibrometry and Acoustic Sensing

By leveraging hybrid digital-optical methods, we develop new distributed and quasi-distributed fibre-optic acoustic sensors. These acoustic sensors aim to measure vibration, strain and displacement all while localising the signal source along an optical fibre.

Dr Chathura Bandutunga , Prof Jong Chow, Mr Paul Sibley, A/Prof Malcolm Gray

Field Deployable Laser Stabilisation using Digitally Enhanced Fibre Interferometers

Using an atomic clock and an optical frequency comb as diagnostics, this project investigates laser stabilisation using an optical fibre interferometer for field deployable applications such as in space-based instruments.

Prof Jong Chow, Dr Chathura Bandutunga

Vibration control for optical interferometry

Develop an active vibraiton isolation platform to provide a quiet, small displacement environment for high precision inteferometry.

Dr Bram Slagmolen, Distinguished Prof David McClelland

Optimising a Neutron Star Extreme Matter Observatory

Following a practical introduction to optical interferometry for gravitational wave detectors and simulation tools, this project will model the optical configuration to optimize detector performance against a number of possible predictions of the neutron star equation of state.

Dr Bram Slagmolen, Dr Lilli (Ling) Sun, Dr Vaishali Adya, Distinguished Prof David McClelland

Materials Science and Engineering

High-bandwidth stabilisation of a 2µm-band laser

Gravitational wave detectors have reached the thermodynamic limit of optical coating performance and require novel coating materials and coating noise suppression techniques for further sensitivity improvements. This project is to design a high-bandwidth feedback control system to stabilise the intensity and frequency of a 2µm-band laser for investigations of thermal noise in experimental mirror coatings.

Dr Johannes Eichholz

Measurement of optical and mechanical losses of mirror coatings

Gravitational wave detectors have reached the thermodynamic limit of optical coating performance and require novel coating materials and noise mitigation techniques for further sensitivity improvements. This project is to construct an experiment that measures oscillation amplitude decays of mechanical systems for determining key properties of optical coatings.

Dr Johannes Eichholz

Higher-order spatial mode optical cavity analysis for thermal noise measurements

Gravitational wave detectors have reached the thermodynamic limit of optical coating performance and require novel coating materials and noise mitigation techniques for further sensitivity improvements. This project investigates the behaviour of higher order spatial laser modes in optical resonators for measuring coating thermal noise directly.

Dr Johannes Eichholz

Optical nonlinearities in 2D crystals

This project explores the nonlinear optical properties of ultrathin 2D crystals to develop highly entangled photon sources.

Dr Giovanni Guccione, Professor Ping Koy Lam

Quantum emitters in 2D materials

This project focuses on the integration of quantum emitters in 2D materials with photonic and optoelectronic platforms, enabling new applications in quantum communications and quantum information processing.

Dr Giovanni Guccione, Professor Ping Koy Lam

Photonics, Lasers and Nonlinear Optics

Optical Sensors for Inertial Navigation

This project develops fibre optic instruments based on optical interferometry and digital signal processing for the purpose of inertial navigation.

Prof Jong Chow, Dr Chathura Bandutunga , Dr Roland Fleddermann

Laser levitation of a macroscopic mirror

This project aims to be the first in the world to use radiation pressure force of laser beams to levitate a macroscopic mirror. The coherence of this resonantly amplified scheme creates a unique opto-mechanical environment for precision quantum metrology and tests of new physics theories.

Dr Giovanni Guccione, Professor Ping Koy Lam

Machine learning for optics and controls

Optical cavities are widely used in physics and precision measurement.  This project will explore the use of modern machine learning methods for the control of suspended optical cavities.  

Dr Bram Slagmolen

High-bandwidth stabilisation of a 2µm-band laser

Gravitational wave detectors have reached the thermodynamic limit of optical coating performance and require novel coating materials and coating noise suppression techniques for further sensitivity improvements. This project is to design a high-bandwidth feedback control system to stabilise the intensity and frequency of a 2µm-band laser for investigations of thermal noise in experimental mirror coatings.

Dr Johannes Eichholz

Fibre Optic Sensor Arrays for Vibrometry and Acoustic Sensing

By leveraging hybrid digital-optical methods, we develop new distributed and quasi-distributed fibre-optic acoustic sensors. These acoustic sensors aim to measure vibration, strain and displacement all while localising the signal source along an optical fibre.

Dr Chathura Bandutunga , Prof Jong Chow, Mr Paul Sibley, A/Prof Malcolm Gray

Measurement of optical and mechanical losses of mirror coatings

Gravitational wave detectors have reached the thermodynamic limit of optical coating performance and require novel coating materials and noise mitigation techniques for further sensitivity improvements. This project is to construct an experiment that measures oscillation amplitude decays of mechanical systems for determining key properties of optical coatings.

Dr Johannes Eichholz

Higher-order spatial mode optical cavity analysis for thermal noise measurements

Gravitational wave detectors have reached the thermodynamic limit of optical coating performance and require novel coating materials and noise mitigation techniques for further sensitivity improvements. This project investigates the behaviour of higher order spatial laser modes in optical resonators for measuring coating thermal noise directly.

Dr Johannes Eichholz

Coherently combined laser systems for space technologies

Recent advances in laser technology now enable the combination of multiple high-quality lasers into a single high-power beam. This project aims to investigate such `coherently-combined' laser systems within the context of Earth-to-Space laser transmission. Applications of this technology include space debris tracking, free-space optical communications, and propulsion of light-sails for interstellar travel.

Dr Chathura Bandutunga , Mr Paul Sibley, Prof Jong Chow

Satellite based geodesy

Precise Earth gratitational field measurements with laser-ranging interferometry.

Dr Syed Assad, Professor Ping Koy Lam, Mr Lorcan Conlon

Optical nonlinearities in 2D crystals

This project explores the nonlinear optical properties of ultrathin 2D crystals to develop highly entangled photon sources.

Dr Giovanni Guccione, Professor Ping Koy Lam

Field Deployable Laser Stabilisation using Digitally Enhanced Fibre Interferometers

Using an atomic clock and an optical frequency comb as diagnostics, this project investigates laser stabilisation using an optical fibre interferometer for field deployable applications such as in space-based instruments.

Prof Jong Chow, Dr Chathura Bandutunga

Low-noise offset-phase locking and heterodyne interferometry with 2µm-band lasers

Gravitational wave detectors have reached the thermodynamic limit of optical coating performance and require novel coating materials and noise mitigation techniques for further sensitivity improvements. This project is to implement a phase tracking system for the optical beat between two 2µm-band lasers for coating thermal noise measurements.

Dr Johannes Eichholz

Physics Education

Science education with meriSTEM

meriSTEM is an ANU initiative providing online learning resources and support to Australian senior secondary science teachers and students. We cater to senior physics, chemistry, biology, and Earth and environmental science.
The program is free and is made up of the video, worksheet, quiz and other contributions from many academics and students. We welcome everyone to be involved.
Undergrad research and internship projects offer students a chance to be a member of the meriSTEM team.

Mr Tim Friel, Professor Joseph Hope

Quantum Science and Technology

Laser levitation of a macroscopic mirror

This project aims to be the first in the world to use radiation pressure force of laser beams to levitate a macroscopic mirror. The coherence of this resonantly amplified scheme creates a unique opto-mechanical environment for precision quantum metrology and tests of new physics theories.

Dr Giovanni Guccione, Professor Ping Koy Lam

Dual torsion pendulum for quantum noise limited sensing

Construct a small dual tosion pendulum which have their centre of mass co-incide and their rotational axis colinear. Inital diagnostics will be done using shadow sensors.

Dr Bram Slagmolen, Distinguished Prof David McClelland

Beam matching using machine learning

This project aims to use a machine learning algorithm to perform beam alignment in an optics experiment. It would involve mode-matching two optical beams using motorised mirror mounts. Additional degrees of freedom like lens positions and beam polarisation can be added later.

Dr Syed Assad, Dr Aaron Tranter

Quantum multi-parameter estimation

Multi-parameter state estimation at the fundamental precision limit

Dr Syed Assad, Professor Ping Koy Lam, Mr Lorcan Conlon

Satellite based geodesy

Precise Earth gratitational field measurements with laser-ranging interferometry.

Dr Syed Assad, Professor Ping Koy Lam, Mr Lorcan Conlon

Vibration control for optical interferometry

Develop an active vibraiton isolation platform to provide a quiet, small displacement environment for high precision inteferometry.

Dr Bram Slagmolen, Distinguished Prof David McClelland

Quantum super resolution

When two point sources of light are close together, we just see one blurry patch. This project aims to use coherent measurement techniques in quantum optics to measure the separation between the point sources beyond the Rayleigh's limit.

Dr Syed Assad, Professor Ping Koy Lam

Quantum emitters in 2D materials

This project focuses on the integration of quantum emitters in 2D materials with photonic and optoelectronic platforms, enabling new applications in quantum communications and quantum information processing.

Dr Giovanni Guccione, Professor Ping Koy Lam

Theoretical Physics

Quantum multi-parameter estimation

Multi-parameter state estimation at the fundamental precision limit

Dr Syed Assad, Professor Ping Koy Lam, Mr Lorcan Conlon

Updated:  21 June 2021/ Responsible Officer:  Head of Department/ Page Contact:  Physics Webmaster