Centre for Gravitational Physics

The Centre for Gravitational Physics (CGP) was founded to undertake research and development for instrumentation for the detection of gravitational waves. These technologies use laser interferometers to sense tiny displacements. At the CGP we developed and installed instrumentation and control systems in the Laser Interferometer Gravitational wave Observatory (LIGO) and in the GRACE Follow-On mission. We have also spun-off gravitational wave detection technologies into a number of related research fields.

Most of the research in the group is directed towards gravitational wave detection, the related area of high precision measurement, and the exploitation of gravitational waves for astronomy. Our specific research interests include advanced interferometer configurations and control systems, measurement of thermal and quantum noise, quantum noise cancellation and quantum-non-demolition techniques, data analysis, digital interferometry, Gravity Recovery and Climate Experiment (GRACE) Follow-On Mission, and frequency stabilisation for the Laser Interferometer Space Antenna (eLISA). For further information on our research please have a look at the various research pages. The group has a purpose built laboratory for experimental work and access to premier computing facilities. The group also has links with the ANU Quantum Optics Group.

The ANU Centre for Gravitational Physics is located within the Department of Quantum Science. We are a member institution of the Australian Consortium for Interferometric Gravitational wave Astronomy (ACIGA). We work closely with the Laser Interferometer Gravitational-wave Observatory (LIGO) and are members of the LIGO Scientific Collaboration (LSC) and have taken on specific responsibilities in the design and construction of Advanced LIGO (AdvLIGO).

Centre for Gravitational Physics Group

The Centre for Gravitational Physics

CGP news

28
May
2019

Prof. David McClalland elected Fellow of Australian Academy of Science

Congratulations to Professor David McClelland for being elected Fellow of the Australian Academy of Science for his career achievements in the detection of Gravitational Waves.

The Academy honoured the leader of CGP for his vital contribution to the detection of gravitational waves in 2016 as Australia’s leading audio-band gravitational wave scientist and Chair of the Instrument Science/Advanced Detector program in the 1000-strong LIGO Scientific Collaboration. David played a crucial role in designing, installing and commissioning Advanced LIGO’s acquisition system, and implementing quantum squeezing that improved gravitational wave detection sensitivity.

06
May
2019

Opportunity to join an exciting international education project for PhD or Masters by Research or as a Research Associate

We are seeking PhD and Masters students and candidates for Research Associate positions with interest in science communication, outreach and education. In joining this project, as part of the Einstein-First project lead by UWA and ANU, you will be helping to create a revolutionary new school curriculum that will be consistent with our modern understanding of the universe, and the modern technologies that have revolutionized our lives.

Research will be taking place in Perth and Canberra and at linked schools. Postgrad positions can be supported at UWA, Curtin and ANU.

Contact Prof. Susan Scott (Susan.Scott@anu.edu.au) or Dr Sareh Rajabi (Sareh.Rajabi@anu.edu.au) for more information.

03
May
2019

Ancient star-crash detection ushers new dawn for space discovery

An international team of scientists, including from RSPE's Centre for Gravitational Physics, have detected two stars colliding in space about 500 million years ago. The discovery comes just weeks after the restarting of the most sensitive scientific instrument ever built – the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) – which comprises twin detectors in the United States. This is the first time such an event has been witnessed since the detectors were taken offline for upgrades to improve their range and precision, and promises a new dawn for space discovery. On 25 April 2019, one of the LIGO machines detected the ripples in space and time from the collision of two neutron stars, which are the densest stars in the Universe – they have an average radius of 15 kilometres and are twice the mass of our Sun. The neutron star collision occurred about 4,750 million trillion kilometres away from Earth – a distance which equates to 500 million light years.

01
Apr
2019

The Hunt for Gravitational Waves Resumes

LIGO and VIRGO are set to resume their hunt for gravitational waves - ripples in space and time - on April 1. One of the key features of this round of search, which is also called O3, is employment of a technique called "squeezing” to reduce levels of quantum noise that can mask faint gravitational-wave signals. This technique was developed at ANU's Centre for Gravitational Physics, lead by Prof. David McClelland. As the result of the latest upgrades, the LIGO detectors are now about 40% more sensitive compared with the last two rounds of search, which means that they can survey an even larger volume of space for powerful, wave-making events, such as the collisions of black holes. Joining the search will be Virgo, the gravitational-wave detector located at the European Gravitational Observatory (EGO) in Italy, which has almost doubled its sensitivity since its last run and is also starting up April 1. So far LIGO and Virgo have seen ten binary black holes and one binary neutron star. In O3, the researchers are hoping to detect gravitational wave signals from new types of events such as binaries containing both a neutron star and a black hole or continuous gravitational waves from rotating neutron stars.

25
Mar
2019

ARC Linkage Grant Awarded to Test and Review the Success of Teaching Einstein’s Theories

Prof. Susan Scott is among the leaders of a group of Gravitational Wave researchers who are granted $898,560 ARC Linkage funding, announced by the Minister for Education Dan Tehan on March 19th. This project aims to explore teaching the modern Einsteinian paradigm of space, time, matter, light and gravity to students as young as 8 years old. The Einstein First project will focus on testing and evaluating a seamless progression of learning modern physics through primary and secondary school developed through a 7-nation collaboration, with view to worldwide introduction of Einsteinian science at school. The research will be led by Chief Investigator Emeritus Professor David Blair (UWA), Professor Susan Scott (ANU) and collaborators.

4
Dec
2018

Biggest Known Black Hole Collision detected

CGP physicists in RSPE have celebrated the announcement by LIGO & Virgo & OzGrav (ARC Centre of Excellence) of 4 new binary black hole collisions including the biggest, fastest spinning and furthest merger ever recorded. All four newly confirmed black hole coalescences were found in the archived data from the observing run in 2017, coming to light as a result of further data cleaning and recalibration and refinement of the searches. A description of these detections has been released as part of the catalogue of detections by the Advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO) in the US and the Advanced Virgo facility in Italy. The newly announced detections bring the total number of black hole mergers detected to 10 – plus a single binary neutron star merger – over the past three years.

23
May
2018

Grace Follow-on satellites with ANU laser technology launched into space

The GRACE Follow-On mission, the successor to the Gravity Recovery and Climate Experiment (GRACE) mission, launched into space from Vandenberg Airforce Base in California aboard a Falcon 9 rocket at 5.47am 23 May 2018. Prof Daniel shaddock’s team from ANU Centre for Gravitational Physics have played a significant role in designing new satellites that are part of a joint NASA and German Space Agency mission launched into space to study changes in water levels on Earth and other aspects of climate change. Using the technology of Laser Ranging Interferometry, Grace follow-on can pick up changes in the separation of the spacecraft by ten nanometres, about the diameter of a virus.

16
Mar
2018

The 2018 Quantum Communication Awarded to the Leader of CGP

Prof David McClelland received the International Organisation for Quantum Communication, Measurement and Computing Award for Outstanding Achievements in Quantum Experimentation. In bestowing McClelland with this award, the organisation cited his “pioneering experimental work and leadership in the development of squeezed vacuum light sources in the audio-band and its successful application to the gravitational wave detector interferometers GEO and LIGO.” The award was shared in equal parts with OzGrav Partner Investigator Prof Nergis Mavalvala (MIT) and Prof Roman Schnabel (Hamburg).

16
Feb
2018

Walter Boas Medal Awarded to the Leader of CGP

Professor David McClelland has been awarded the prestigious Boas medal, by the Australian Institute of Physics, "for key contributions to one of the greatest achievements in the history of physics – the observation of gravitational waves by the Laser Interferometer Gravitational-wave Observatory (LIGO).

17
Oct
2017

Gravitational waves detected for first time from two stars colliding

Scientists from The Australian National University (ANU) and around the world have detected for the first time ripples in space and time, known as gravitational waves, from the collision of two very dense stars, called neutron stars, about 130 million light years away.

02
Jun
2017

Third gravitational wave detection offers new insight into black holes

We detected a third binary black hole merger with the LIGO gravitational wave detectors. The black holes merged about 3 billion years ago and travelled through earth on 4 January 2017. The detection is published in Physical Review Letters, a science summary can be found on the LIGO website. Members of the ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav) are part of the LIGO Scientific Collaboration.

06
Apr
2017

ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav)

The CGP is the ANU node of the recently awarded ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav). The Centre brings together the Australian gravitational wave community from pulsar-timing to the terrestrial and space based interferometer detectors. OzGrav is a partnership between Swinburne University (host of OzGrav headquarters), the Australian National University, Monash University, University of Adelaide, University of Melbourne, and University of Western Australia, along with other collaborating organisations in Australia and overseas.

14
Jun
2016

Again! Second set of merging black holes found

A second binary black hole merger has been found by LIGO, cementing the new field of gravitational wave astronomy. The paper describing the discovery is published in Physical Review Letters and a science summary can be found on the LIGO website.

12
Feb
2016

We did it! Gravitational waves detected

The LIGO Scientific Collaboration has successfully detected gravitational waves from a pair of colliding black holes

Enquiries

For enquires about the group and our research please contact the head of the group, Professor David McClelland.

Email:David.McClelland@anu.edu.au
Phone: +61 (0)2 6125 2747 (Secretary)
Fax: +61 (0)2 6125 0741

Updated:  4 June 2019/ Responsible Officer:  Head of Department/ Page Contact:  Physics Webmaster