Available student project - Quantum tunnelling and energy dissipation in nuclear collisions

Research fields

  • Physics of the Nucleus
  • Quantum Science and Applications
Assembling the iron yoke of the new 8 Tesla superconducting solenoid.

Project details

Fusion of heavy nuclei involves a massive dynamical rearrangement of quantum systems with many degrees of freedom. Fusing nuclei, isolated from external environments, are proving to be a unique tool to probe the complex interactions of quantum systems. Fusion at energies below the fusion barrier occurs by quantum tunnelling, and is a very clean ways to investigate quantum tunnelling of composite, many-body objects. Recent experiments show that the measured tunnelling probabilities are much less than predicted. Initiated by our group at the ANU, efforts are underway to understand this in terms of the loss of quantum coherence as two nuclei merge together.

Projects may involve measurements of fusion probabilities in the tunnelling regime through measurement of heavy fusion products using a new 8 Tesla superconducting solenoid, or of fission, which provides a signature that fusion has occurred. Measurements of the reflected flux can also be made, to study mechanisms of energy energy dissipation. The experiments will use the 15 Million Volt electrostatic accelerator at the ANU, and the new highly efficient detectors developed by the group. The multi-parameter data will be analysed using software based on the CERN ROOT analysis package.

The student will have the opportunity to compare previous and the latest theoretical formalisms describing nuclear fusion, and participate in new model developments currently underway.

Project suitability

This research project can be tailored to suit students of the following type(s)
  • PhB (2nd or 3rd year)
  • Honours project
  • Phd or Masters

Contact supervisor

Simenel, Cédric profile
ARC Future Fellow
51309

Other supervisor(s)

Dasgupta, Mahananda profile
Professor
52081
Simpson, Edward profile
Research Fellow
52082
Hinde, David profile
Director Heavy Ion Accelerator Facilities
52094

Updated:  17 August 2017/ Responsible Officer:  Director, RSPE/ Page Contact:  Physics Webmaster