Available student project - Micro-ring lasers for integrated silicon photonics

Research fields

Microring lasers

Project details

With the ever-increasing need for high data transmission speed it is clear that optical interconnects between processor chips are required. Higher data rates and interconnection densities with lower system-level power dissipations could be obtained when using photons as the medium to detect, process, and transmit information, rather than converting between electrical and optical signals, i.e. all-optical information processing. Other advantages provided by optical interconnects in comparison to their electrical counterparts include, the difficulty in scaling down electrical interconnects makes resistive loss and capacitive latency an issue, precision of synchronisation, voltage isolation (less cross-talk) and design simplification.

Silicon photonics is currently a dominant technology in optical and data communication systems which demand for higher speeds, low power consumption and low cost. However, on-chip integrated, high efficiency lasers are still elusive due to mechanical/structural mismatch in material platforms between the lasers and silicon substrates. Using selective area growth to engineer the shape of III-V semiconductors (material of choice for laser) at the nano/micro-scale, this project will investigate the design, growth, fabrication and characterisation of micro-ring lasers on silicon platforms.

The aims of project are to:

Required background

Physics, Materials Science, Engineering

Project suitability

This research project can be tailored to suit students of the following type(s)

Contact supervisor

Tan, Hoe profile

Other supervisor(s)

Jagadish, Chennupati profile