Potential 3rd year special topics

The Research School of Physics & Engineering performs research at the cutting edge of a wide range of disciplines.

By undertaking your own research project at RSPE you could open up an exciting career in science.

Search

Filter projects

Astrophysics

Positrons and Dust Grains

Positron emitters are embedded in clouds of dust grains produced by supernova. This project will explore the transport of positrons in dust grains using Monte-Carlo techniques to improve our understanding of positron transport in an astrophysically relevant setting.

Dr Joshua Machacek, Dr Daniel Murtagh

SABRE: Experimental Dark Matter Physics

This project will perform key experimental measurements for the SABRE dark matter particle detector and analyse the results.

Dr Lindsey Bignell, Dr Gregory Lane, Professor Andrew Stuchbery, Dr Cédric Simenel

Radioimpurities in particle detectors for dark matter studies

This experiment will characterise dark matter detector material. Lowest levels of natural radioactivity in high purity samples will be analysed via ultra-senstive single atom counting using acclerator mass spectrometry.

Dr Anton Wallner, Dr Stephen Tims, Professor Keith Fifield, Dr Gregory Lane

Nucleosynthesis in the laboratory - how elements are formed in stars

A fundamental scientific question is a better understanding of the elemental abundances and the isotopic pattern of our solar system which is a fingerprint of stellar nucleosynthesis. We perform nucleosynthesis in the laboratory at the ANU via a new and powerful tool, accelerator mass spectrometry, to elucidate open questions in these processes.

Dr Anton Wallner

Search for supernova-signatures on Earth

Detection of supernova‐produced (radio)nuclides in terrestrial archives gives insight into massive star nucleosynthesis; when and where are heavy elements formed. Direct observation of radioactive nuclides from stars and the interstellar medium would provide first experimental constraints on production rate.s We will use the most sensitive technique, accelerator mass spectrometry.

Dr Anton Wallner

Modelling a solar fare by MRXMHD

In this project, we apply multiple-region relaxed MHD model, designed to describe the fractal fix of chaotic field lines, magentic islands, and flux surfaces in toroidal magnetic confinement, to describe a solar flare.

Assoc. Prof. Matthew Hole

Underground Background Measurements for SABRE; Australia's First Dark Matter Detector

This experiment will measure key backgrounds at the SABRE site and investigate implications for the dark matter search.

Dr Lindsey Bignell, Dr Gregory Lane, Professor Andrew Stuchbery, Dr Anton Wallner

Constraining toroidal equilibria to accretion disc observations

In this project we would compare the construction of accretion disc and magnetic configuration Grad-Shafranov problems, and apply a recently developed toroidal magnetic confinement equilibrium code to model an accretion disc. A focus of the project will be constraining free functions to observational data. 

Assoc. Prof. Matthew Hole, Dr Michael Fitzgerald

Modeling the SABRE Dark Matter Detector

This project will develop key aspects of the SABRE dark matter detector model, and investigate the detector's sensitivity to dark matter and backgrounds.

Dr Lindsey Bignell, Dr Gregory Lane, Professor Andrew Stuchbery, Dr Cédric Simenel

Atomic and Molecular Physics

Atomic magnetometer for exploring physics beyond the standard model

The Global Network of Optical Magnetometers for Exotic Physics (GNOME) uses precision atomic magnetometers to look new physics.  The concept is to have a global network of magnetometers looking for correlated magnetic field fluctuations that may be caused by strange, and unknown physics.

Dr Ben Buchler, Dr Geoff Campbell

Auger-cascade modelling for targeted cancer therapy

The emission rate of low-energy Auger electrons and X-rays from radiosotopes through the Auger cascade are extremely important for basic science and applications, especially for medical isotopes. The project is aiming to understand the nature of the Auger cascade and develop a new computational model for the research of targeted radioisotopes therapy.

Dr Tibor Kibedi, Professor Andrew Stuchbery

Fundamental tests of quantum mechanics with matter waves

We create the coldest stuff in the Universe – a Bose-Einstein condensate (BEC) – by laser-cooling helium atoms to within a millionth of a degree Kelvin. At these extremely low temperatures particles behave more like waves.  You will use the BEC to study fundamental quantum mechanics and for applications like atom interferometry.

Assoc. Prof Andrew Truscott, Professor Kenneth Baldwin

Experimental determination of the Auger yield per nuclear decay

Auger electrons are emitted after nuclear decay and are used for medical purposes. The number of Auger electrons generated per nuclear decay is not known accurately, a fact that  hinders medical applications.  This project aims to obtain a experimental estimate of the number of Auger electrons emitted per nuclear decay.
 

A/Prof Maarten Vos, Dr Tibor Kibedi, Professor Andrew Stuchbery

Modelling free-ion hyperfine fields

Motivated by exciting prospects for measurements of the magnetism of rare isotopes produced by the new radioactive beam accelerators internationally, this computational project seeks to understand the enormous magnetic fields produced at the nucleus of highly charged ions by their atomic electron configuration.

Professor Andrew Stuchbery, Dr Tibor Kibedi

Positrons and Dust Grains

Positron emitters are embedded in clouds of dust grains produced by supernova. This project will explore the transport of positrons in dust grains using Monte-Carlo techniques to improve our understanding of positron transport in an astrophysically relevant setting.

Dr Joshua Machacek, Dr Daniel Murtagh

Benchmark positron scattering experiments

Using the atomic and molecular physics positron beam at the ANU, the student will undertake measurements of positron scattering from simple targets, providing high accuracy data to test recent theoretical calculations.

A/Prof. James Sullivan, Professor Stephen Buckman, Dr Joshua Machacek

Electron scattering in a magnetic field

A novel approach to low energy electron experiments has been developed, using strong magnetic fields to confine the electron beam. This project will further develop a new apparatus towards making important measurements of scattering cross sections.

A/Prof. James Sullivan, Dr Joshua Machacek

Fragmentation of molecules by positronium

Positronium is a bound state between an electron and a positron. It is hydrogen-like with a binding energy half that of hydrogen. Positronium has been found to scatter like an electron for the same velocity. Electrons can fragment molecules by temporary attaching leading to fragmentation. This project will explore the fragmentation of molecules in positronium scattering with molecules.

Dr Joshua Machacek, A/Prof. James Sullivan, Professor Stephen Buckman

The signature of large-amplitude vibrational motions encoded into small polyatomic molecular spectra

This project uses the Australian National University's world-leading state-of-the-art spectrometer to examine state-resolved chemistry, which has been a target of chemical physics for several decades.  It will verify the long suspected existence of large amplitude vibrational eigenstates organised along the isomerization path, that are the signatures of the "holy grail" of chemical dynamics. This provides for previously unimagined schemes for efficient, rationally designed external control of chemical reactions.

Dr Stephen Gibson

Optical quantum memory

An optical quantum memory will capture a pulse of light, store it and then controllably release it. This has to be done without ever knowing what you have stored, because a measurement will collapse the quantum state. We are exploring a "photon echo" process to achieve this goal.

Dr Ben Buchler

Measuring free-ion hyperfine fields

This experimental project will characterize the hyperfine fields of ions emerging from target foils as highly charged ions. The data will test theoretical models we are developing, and underpin nuclear magnetism measurements on rare isotopes produced at international radioactive beam facilities such as GANIL (France), ISOLDE-CERN (Switzerland) and NSCL (USA).

Professor Andrew Stuchbery, Dr Tibor Kibedi, Dr Gregory Lane, Mr Timothy Gray

Electron scattering from surfaces at high energies

The project aims at establishing the possibilities of high-energy electron scattering in the analysis of thin layers. 

A/Prof Maarten Vos

Coherent control of quantum-mechanical systems

The project studies possibility of the coherent control (i.e. manipulating properties of a quantum system, such as charge density, levels populations, etc., using a suitably tailored laser pulse) for a quantum mechanical model of a molecule.

Professor Anatoli Kheifets

Positron applications in medical physics

This is a multi-faceted project which can be adapted to students at the honours level and above. A number of possibilities exist to perform experiments directed towards improving the use of positrons in medice, mostly focussed on Positron Emission Tomography (PET).

A/Prof. James Sullivan, Professor Stephen Buckman, Dr Joshua Machacek

Biophysics

Gas sensing of carbon dioxide

This project has a strong industrial link, and investigates using resonator optics to enhance the measurement sensitivity of the molecular absorption of light.

Dr Jong Chow, Dr Timothy Lam, Mr Jarrod Dong

Using 3D microscopy to understand drought tolerance in plants

Plants have an amazing ability to control water transport through their stems and leaves, with some species able to keep functioning in very hostile conditions. This project will use 3D X-ray microscopy to explore the physical changes in plant cells as a result of water stress.

A/Prof Adrian Sheppard, Dr Anna Herring, A/Prof Jodie Bradby

Origomu

The energy lansdscape of folded spheres, assuming elastic membranes and sticky inner surfaces, will be explored. 

Professor Stephen Hyde

Positron applications in medical physics

This is a multi-faceted project which can be adapted to students at the honours level and above. A number of possibilities exist to perform experiments directed towards improving the use of positrons in medice, mostly focussed on Positron Emission Tomography (PET).

A/Prof. James Sullivan, Professor Stephen Buckman, Dr Joshua Machacek

Clean Energy

Hydrogen generation by solar water splitting using nitride-based compound semiconductors

This project aims to develop GaN-based semiconductor photoelectrodes for highly efficient solar to hydrogen generation by band bending and surface engineering at the semiconductor-electrolyte interface.

Professor Hoe Tan, Dr Siva Karuturi

Inclusion of toroidal flow into multiple relaxed region MHD

A new model, multiple relaxed region MHD, has been developed to describe magnetic islands and chaotic fields in toroidal magentic cofinement. This project would extend that model to include toroidal flow.

Assoc. Prof. Matthew Hole, Dr Graham Dennis, Emeritus Professor Robert Dewar

Lorentz forces in a tokamak

In this project we will examine the forces generated in superconductoring magnetics, and scope the forces generated during a disruption.

Assoc. Prof. Matthew Hole

Imaging fluid-fluid interfacial curvatures in porous media: relating physics and geometry

This computational and theoretical project will extract geometric information from sequences of newly obtained 3D x-ray microscope images to better understand how two immiscible fluids interact inside complex porous materials.

A/Prof Adrian Sheppard, Dr Anna Herring

Nanowire arrays for next generation high performance photovoltaics

This is an all-encompassing program to integrate highly sophisticated theoretical modelling, material growth and nanofabrication capabilities to develop high performance semiconductor nanowire array solar cells. It will lead to understanding of the underlying photovoltaic mechanisms in nanowires and design of novel solar cell architectures.

A/Prof Lan Fu, Dr Ziyuan Li, Professor Chennupati Jagadish AC

Solar Hydrogen Generation from Rust using 3-D Nanostructured Photoelectrodes

There is an imminent need to reduce our dependence on carbon-based fuels in order to minimize the
potential adverse outcomes associated with climate change. This project aims to develop an efficient means of producing clean hydrogen fuel by splitting water under sunlight using novel hematite based semiconductor electrodes for efficient solar hydrogen generation.

Dr Siva Karuturi, Professor Hoe Tan

Organic-inorganic perovskite materials for high performance photovoltaics

In this project, we will characterise actual device solar cell structures with electron microscopy techniques and seek to understand the microscopic effects behind the device performance and reliability

A/Prof Jennifer Wong-Leung

Engineering in Physics

Impact of surface roughness on fluid equilibribrium

Fluid flow in porous media combines the impacts of many complex phenomena: fluid properties, solid structure, and the infacial interactions between fluids and solid phases. This project aims to uncover the reasons behind some fundamental differences between experiments conducted in glass bead packs and those conducted in geologic systems (rocks).

Dr Anna Herring, A/Prof Adrian Sheppard

Vibration control for optical interferometry

Develop an active vibraiton isolation platform to provide a quiet, small displacement environment for high precision inteferometry.

Dr Bram Slagmolen, Professor David McClelland, Dr Robert Ward

Nuclear lifetimes - direct timing with LaBr3 detectors

The lifetimes of excited quantum states in the atomic nucleus give extremely important information about nuclear structure and the shape of the nucleus. This project will commission a new array of of LaBr3 detectors to measure nuclear lifetimes, with the aim to replace conventional analog electronics with digital signal processing.

Professor Andrew Stuchbery, Dr Gregory Lane, Dr Tibor Kibedi, Mr Aqeel Akber

Generation of random numbers from vacuum fluctuations

Aim to generate random numbers by performing a homodyne measurement of the quantum vacuum state.

Dr Syed Assad, Professor Ping Koy Lam, Mr Jing-Yan Haw

Exploring the nature of deep levels in high performance ZnO Schottky diodes

This projects combines ion implantation and deep level transient spectroscopy to study electrically active deep level defects in wide bandgap semiconductors.

A/Prof Jennifer Wong-Leung

Developing a digital data acquisition system for SABRE; Australia's First Dark Matter Detector

This experiment will bring online key experimental hardware for the SABRE dark matter experiment.

Dr Lindsey Bignell, Dr Gregory Lane, Professor Andrew Stuchbery

Environmental Physics

Crucial fundamental nuclear data for nuclear fusion and nuclear fission

Nuclear data are urgently required in national security, non-proliferation, nuclear criticality safety, medical applications, fundamental science and for the design of advanced reactor concepts (fusion, e.g. ITER), or next generation nuclear power plants (Gen IV, accelerator driven systems, ...).

Dr Anton Wallner

Inertial effects during immiscible multiphase fluid displacements in porous media

When fluids flow through porous rocks, the relatively slow bulk fluid front advances via a series of very small, very rapid jumps. This project investigates how the distribution and occurance of these jumps are influenced by experimental conditions such as flow rate and intermittentcy.

Dr Anna Herring, A/Prof Adrian Sheppard

Surface forces and the behaviour of colloidal systems

We measure the basic forces that operate between molecules that are manifest at interfaces. These forces control the stability of colloidal systems from blood to toothpaste. We use very sensitive techniques that are able to measure tiny forces with sub nanometer distance resolution. Understanding these forces enables us to predict how a huge variety of colloidal systems will behave.

Professor Vincent Craig

Nanobubbles

Nanobubbles are simply nanosized bubbles. What makes them interesting? Theory tells us they should dissolve in less than a second but they are stable for days. Additionally, they have lots of interesting properties being implicated in medical treatments and cleaning technologies.

Professor Vincent Craig

‘Coulomb explosion’ of fast molecular ions

This project will use the powerful 14UD particle accelerator to study the process of 'Coulomb explosion' of fast molecular ions in a foil or gas. The experimental results will be compared with a simple analytical model.

Professor Keith Fifield, Dr Anton Wallner

4D tomography - imaging materials in 3D as they change

The ANU has constructed an X-ray micro-computed tomography facility with a unique helical scanning configuration that enables tomographic images of extremely high quality to be produced.  This experimental project will work with theoreticians to image the evolution of time-changing samples with unprecented time resolution.

A/Prof Adrian Sheppard, Dr Glenn Myers, Dr Andrew Kingston

Fusion and Plasma Confinement

Inclusion of toroidal flow into multiple relaxed region MHD

A new model, multiple relaxed region MHD, has been developed to describe magnetic islands and chaotic fields in toroidal magentic cofinement. This project would extend that model to include toroidal flow.

Assoc. Prof. Matthew Hole, Dr Graham Dennis, Emeritus Professor Robert Dewar

Nano-bubble formation in fusion relevant materials

Fusion energy promises millions of years of clean energy, but puts extreme stress on materials. This research will resolve scientific issues surrounding plasma-material interactions to guide and facilitate development of future advanced materials for fusion reactors.

Dr Cormac Corr, A/Prof Patrick Kluth, Mr Matt Thompson

Lorentz forces in a tokamak

In this project we will examine the forces generated in superconductoring magnetics, and scope the forces generated during a disruption.

Assoc. Prof. Matthew Hole

Diagnosing plasma-surface interactions under fusion-relevant conditions

This project involves studying the complex plasma-surface interaction region of a fusion-relevant plasma environment through laser-based and spectroscopic techniques.

Dr Cormac Corr

Modelling a solar fare by MRXMHD

In this project, we apply multiple-region relaxed MHD model, designed to describe the fractal fix of chaotic field lines, magentic islands, and flux surfaces in toroidal magnetic confinement, to describe a solar flare.

Assoc. Prof. Matthew Hole

Constraining toroidal equilibria to accretion disc observations

In this project we would compare the construction of accretion disc and magnetic configuration Grad-Shafranov problems, and apply a recently developed toroidal magnetic confinement equilibrium code to model an accretion disc. A focus of the project will be constraining free functions to observational data. 

Assoc. Prof. Matthew Hole, Dr Michael Fitzgerald

Turbulence and Particle transport in linear and toroidal magnetic geometries

Turbulence is known to affect the plasma in toroidal magnetic confinement devices for fusion, and linear magnetic devices. This project involves the use of langmuir probes on both the H-1 and MAGPIE devices for evaluating the total and fluctuation-induced particle flux and address fundamental physics of turbulence in these devices.

Dr Clive Michael, Dr Boyd Blackwell

Materials Science and Engineering

Multi-spectral x-ray micro-tomography

The ANU X-ray micro-tomography facility images over a broad spectrum (or range) of X-ray energies. The behaviour of specimens of interest at different X-ray energies can tell us a lot about its composition. This project will explore 1) techniques to image specimens at various X-ray spectral-bands, and 2) methods to analyse the results.

Dr Andrew Kingston, Dr Glenn Myers, A/Prof Adrian Sheppard

Hydrogen generation by solar water splitting using nitride-based compound semiconductors

This project aims to develop GaN-based semiconductor photoelectrodes for highly efficient solar to hydrogen generation by band bending and surface engineering at the semiconductor-electrolyte interface.

Professor Hoe Tan, Dr Siva Karuturi

Fundamental investigation of fission tracks for geo- and thermochronology

Study the formation and stability of high energy ion tracks in minerals under controlled environments with importance for geological dating techniques.

A/Prof Patrick Kluth

Nano-bubble formation in fusion relevant materials

Fusion energy promises millions of years of clean energy, but puts extreme stress on materials. This research will resolve scientific issues surrounding plasma-material interactions to guide and facilitate development of future advanced materials for fusion reactors.

Dr Cormac Corr, A/Prof Patrick Kluth, Mr Matt Thompson

Solar cells without p-n junctions

Simplify nanowire solar cell fabrication by eliminating the need for p-n junctions to increase the ultimate device efficiency.

Professor Hoe Tan, Professor Chennupati Jagadish AC, Dr Kaushal Vora

Diagnosing plasma-surface interactions under fusion-relevant conditions

This project involves studying the complex plasma-surface interaction region of a fusion-relevant plasma environment through laser-based and spectroscopic techniques.

Dr Cormac Corr

Soft Condensed Matter: Molecules made by Threading

Of great recent interest is the subject of rotaxanes.  Rotaxanes are molecules  where one or more ring
components is threaded onto an axle that is capped on both ends with stoppers to prevent the rings from
falling o ff. These systems exhibit complex and fascinating physics.

Professor David Williams

UV nano-LEDs

Development of nanowire LEDs for small, robust and highly portable UV sources.

Professor Chennupati Jagadish AC, Professor Hoe Tan

Nuclear moments and intense hyperfine fields in ferromagnetic media

This project evaluates data at the interface of nuclear, atomic and solid-state physics with a view to discovering new physics and providing reliable data on the magnetic moments of short-lived nuclear quantum states. It assists the International Atomic Energy Agency to provide reliable nuclear data for research and applications.

Professor Andrew Stuchbery

Electron scattering from surfaces at high energies

The project aims at establishing the possibilities of high-energy electron scattering in the analysis of thin layers. 

A/Prof Maarten Vos

Investigating solid pressure mediums in extreme environment diamond anvil cell experiments

High pressure diamond anvil cells often use a gas or salt solids a form of pressure medium. However, the effect of being squeezed with such materials is unknown for many systems including the novel forms of amorphous silicon, germanium and carbon studied by this ANU-based group.

A/Prof Jodie Bradby

Exploring the nature of deep levels in high performance ZnO Schottky diodes

This projects combines ion implantation and deep level transient spectroscopy to study electrically active deep level defects in wide bandgap semiconductors.

A/Prof Jennifer Wong-Leung

Functional Nanopore Membranes

Development of novel composite nanopore membranes.

A/Prof Patrick Kluth

Knots, links and tangled nets

Exploration of simpler entangled structures in 3-space is surpisingly undeveloped. Here we plan to catalogue simpler knots, links and tangled nets via two-dimensional geometry. 

Professor Stephen Hyde

3D phantoms for X-ray micro-tomography

"Phantoms" are objects used for performance testing and/or calibration of 3D X-ray computed tomography (CT) systems. This project involves designing, 3D printing, and subsequently imaging phantoms at the micro-CT facility of the Applied Maths department.

Dr Andrew Kingston, Dr Glenn Myers, A/Prof Adrian Sheppard, Prof Timothy Senden

Organic-inorganic perovskite materials for high performance photovoltaics

In this project, we will characterise actual device solar cell structures with electron microscopy techniques and seek to understand the microscopic effects behind the device performance and reliability

A/Prof Jennifer Wong-Leung

Three-dimensional crystalline structures from two-dimensional hyperbolic tilings

A variety of projects are available that will contribute to the enumeration and characterisation of 3-periodic network structures via the tiling of periodic minimal surfaces and thereby enhance our understanding of self-assembled structures in nature.

Dr Vanessa Robins, Professor Stephen Hyde

Compression of 3D X-ray imaging data

The CT lab hosts several 3D X-ray imaging systems, each generating ~240GB/day of data. The student will: (i) explore various data compression schemes; (ii) theoretically and empirically analyse interactions between data compression, X-ray image processing, and 3D analysis; (iii) develop new 3D imaging methods, based on successful data compression schemes

Dr Glenn Myers, Dr Andrew Kingston, A/Prof Adrian Sheppard

Nanoporous antimonides

Investigate the fascinating porous structures of ion irradiated GaSb and InSb

A/Prof Patrick Kluth, Dr Christian Notthoff

Nanoscience and Nanotechnology

Experimental determination of the Auger yield per nuclear decay

Auger electrons are emitted after nuclear decay and are used for medical purposes. The number of Auger electrons generated per nuclear decay is not known accurately, a fact that  hinders medical applications.  This project aims to obtain a experimental estimate of the number of Auger electrons emitted per nuclear decay.
 

A/Prof Maarten Vos, Dr Tibor Kibedi, Professor Andrew Stuchbery

Nanowire photodetectors - Small devices for the big world

Semiconductor nanowires are emerging nano-materials with substantial opportunities for novel photonic and electronic device applications. This project aims at developing a new generation of high performance NW based photodetectors for a wide range of applications.

A/Prof Lan Fu, Dr Ziyuan Li, Professor Hoe Tan

Fundamental investigation of fission tracks for geo- and thermochronology

Study the formation and stability of high energy ion tracks in minerals under controlled environments with importance for geological dating techniques.

A/Prof Patrick Kluth

Nanowire DFB lasers

Developing nanoscale lasers with controlled direction of light emission for use in high density information processing.

Professor Hoe Tan, Professor Chennupati Jagadish AC

Solar cells without p-n junctions

Simplify nanowire solar cell fabrication by eliminating the need for p-n junctions to increase the ultimate device efficiency.

Professor Hoe Tan, Professor Chennupati Jagadish AC, Dr Kaushal Vora

Surface forces and the behaviour of colloidal systems

We measure the basic forces that operate between molecules that are manifest at interfaces. These forces control the stability of colloidal systems from blood to toothpaste. We use very sensitive techniques that are able to measure tiny forces with sub nanometer distance resolution. Understanding these forces enables us to predict how a huge variety of colloidal systems will behave.

Professor Vincent Craig

Nanobubbles

Nanobubbles are simply nanosized bubbles. What makes them interesting? Theory tells us they should dissolve in less than a second but they are stable for days. Additionally, they have lots of interesting properties being implicated in medical treatments and cleaning technologies.

Professor Vincent Craig

Optical metamaterials: from Harry Potter to modern technologies

Experimental and theoretical work on the development of novel nano-structured materials with unusual optical properties. Special attention to our research is the development of tunable and functional photonic metamaterials with unusual properties. Of particular interest are the development of ultra-thin metasurfaces with high sensitivity to light intensity.

Prof Dragomir Neshev, Dr Andrey Miroshnichenko

UV nano-LEDs

Development of nanowire LEDs for small, robust and highly portable UV sources.

Professor Chennupati Jagadish AC, Professor Hoe Tan

Nanowire arrays for next generation high performance photovoltaics

This is an all-encompassing program to integrate highly sophisticated theoretical modelling, material growth and nanofabrication capabilities to develop high performance semiconductor nanowire array solar cells. It will lead to understanding of the underlying photovoltaic mechanisms in nanowires and design of novel solar cell architectures.

A/Prof Lan Fu, Dr Ziyuan Li, Professor Chennupati Jagadish AC

Functional Nanopore Membranes

Development of novel composite nanopore membranes.

A/Prof Patrick Kluth

Solar Hydrogen Generation from Rust using 3-D Nanostructured Photoelectrodes

There is an imminent need to reduce our dependence on carbon-based fuels in order to minimize the
potential adverse outcomes associated with climate change. This project aims to develop an efficient means of producing clean hydrogen fuel by splitting water under sunlight using novel hematite based semiconductor electrodes for efficient solar hydrogen generation.

Dr Siva Karuturi, Professor Hoe Tan

Quantum microscopes for revolutionary interdisciplinary science

This project aims to invent and apply quantum microscopes to solve major problems across science.

Dr Marcus Doherty

Visible wavelength nanowire lasers

Utilising nanowire geometry to create visible wavelength nanoscale lasers with reduced footprint, higher efficiency and lower operating powers.

Professor Chennupati Jagadish AC, Dr Sudha Mokkapati, Professor Hoe Tan

Monte-Carlo simulation of x-ray scattering from nano-objects

Develop and utilise computer simulations to analyse synchrotron based scattering from nano-sized objects.

A/Prof Patrick Kluth

Electromagnetic Bound States in the Continuum

By borrowing a concept of Bound States in the Continuum from quantum mechanics we can create extremely high quality optical resonators that are highly sought after in many applications.

A/Prof Ilya Shadrivov, Professor Yuri Kivshar

Nanoporous antimonides

Investigate the fascinating porous structures of ion irradiated GaSb and InSb

A/Prof Patrick Kluth, Dr Christian Notthoff

Photonics, Lasers and Nonlinear Optics

Gas sensing of carbon dioxide

This project has a strong industrial link, and investigates using resonator optics to enhance the measurement sensitivity of the molecular absorption of light.

Dr Jong Chow, Dr Timothy Lam, Mr Jarrod Dong

Nanowire photodetectors - Small devices for the big world

Semiconductor nanowires are emerging nano-materials with substantial opportunities for novel photonic and electronic device applications. This project aims at developing a new generation of high performance NW based photodetectors for a wide range of applications.

A/Prof Lan Fu, Dr Ziyuan Li, Professor Hoe Tan

Ultrafast optical micro-domain structuring for advanced nonlinear photonic devices

This project aims to develop a breakthrough all-optical approach to create micro-domain patterns in nonlinear optical media using tightly focused femtosecond pulses. It will lead to the first flexible all-optically formed quasi-phase matched structures, enabling access to a broad range of applications for exceptional control over both photons and phonons.

Dr Yan Sheng

Development of Squeezed Laser Sources for Quantum Communication

Student will build and characterise a new source of quantum squeezed light genearted from an optical parametric oscillator

Professor Ping Koy Lam, Dr Ben Buchler

Coherently combined laser systems for space technologies and free space optical communications

Recent advances in laser technology now enable the combination of multiple high-quality lasers into a single high-power beam. The aim of this project is to investigate such `coherently-combined' laser systems within the context of Earth-to-Space laser transmission. Applications of this technology include satellite laser ranging, clock transfer and free-space optical communications, and space debris tracking and remote manouevring.

Dr Robert Ward, Professor Daniel Shaddock, Mr Lyle Roberts

Whispering Gallery Mode Resonators for Ultra-Sensitive Magnetometry

This projects aims to construct an ultra-sensitive magnetic field sensor from a whispering gallery mode crystal resonator.

Professor Ping Koy Lam

Adaptive-optics assisted free-space laser communications

This project will assist in the development of a quantum-encrypted free-space laser communications system for secure high-bandwidth ground-to-ground and ground-to-satellite applications. This interdisciplinary project brings together experts in link acquisition and tracking, adaptive optics, quantum key distribution and digital signal processing implemented on an FPGA.

Mr Lyle Roberts, Dr Robert Ward, Professor Daniel Shaddock, Dr Chunle Xiong

Nanowire DFB lasers

Developing nanoscale lasers with controlled direction of light emission for use in high density information processing.

Professor Hoe Tan, Professor Chennupati Jagadish AC

Storing quantum entangled states of light

In this project you will demonstrate the storage of quantum entangled states of light using quantum memories based on rare-earth doped crystals.

Associate Professor Matthew Sellars, Dr Rose Ahlefeldt, Dr Kate Ferguson

High storage capacity quantum memories

This project aims to develop high capacity quantum memories for light by using novel rare earth crystals.

Dr Rose Ahlefeldt, Associate Professor Matthew Sellars

Integrated quantum photonics

The goal of the project is to understand new physical phenomena arising from quantum and nonlinear optical integration. In the future this research may open doors to new types of computers and simulators with information capacity exceeding the number of elementary particles in the entire universe.

A/Prof Andrey A. Sukhorukov, Prof Dragomir Neshev, Dr Alexander Solntsev

Optical metamaterials: from Harry Potter to modern technologies

Experimental and theoretical work on the development of novel nano-structured materials with unusual optical properties. Special attention to our research is the development of tunable and functional photonic metamaterials with unusual properties. Of particular interest are the development of ultra-thin metasurfaces with high sensitivity to light intensity.

Prof Dragomir Neshev, Dr Andrey Miroshnichenko

Developing a planar waveguide photonic quantum processor

This project aims to develop a photonic quantum processor based on a planar waveguide architecture incorporating rare-earth doped crystals.

Associate Professor Matthew Sellars, Associate Professor Stephen Madden

Optical nanoantennas

Antennas are at the heart of modern radio and microwave frequency communications technologies. They are the front-ends in satellites, cell-phones, laptops and other devices that make communication by sending and receiving radio waves. This project aims to design analog of optical nanoantennas for visible light for advanced optical communiction. 

Prof Dragomir Neshev, Dr Andrey Miroshnichenko

Developing a quantum memory for the 1550 nm optical communication band

In this project you will develop a quantum memory for storing light at 1550 nm using erbium doped crystals.

Associate Professor Matthew Sellars, Dr Kate Ferguson

Visible wavelength nanowire lasers

Utilising nanowire geometry to create visible wavelength nanoscale lasers with reduced footprint, higher efficiency and lower operating powers.

Professor Chennupati Jagadish AC, Dr Sudha Mokkapati, Professor Hoe Tan

Electromagnetic Bound States in the Continuum

By borrowing a concept of Bound States in the Continuum from quantum mechanics we can create extremely high quality optical resonators that are highly sought after in many applications.

A/Prof Ilya Shadrivov, Professor Yuri Kivshar

Probabilistic quantum cloning with noiseless linear amplifier

Student will use electro-optic feedforward techniques to implement noiseless linear amplification of information carrying laser light

Professor Ping Koy Lam, Dr Thomas Symul

Second Harmonic Generation for Quantum Optics Applications

Student will develop a source of laser light at 775nm that will be utilised for pumping of squeezing cavities  

Professor Ping Koy Lam, Dr Ben Buchler

Physics of Fluids

Impact of surface roughness on fluid equilibribrium

Fluid flow in porous media combines the impacts of many complex phenomena: fluid properties, solid structure, and the infacial interactions between fluids and solid phases. This project aims to uncover the reasons behind some fundamental differences between experiments conducted in glass bead packs and those conducted in geologic systems (rocks).

Dr Anna Herring, A/Prof Adrian Sheppard

Using 3D microscopy to understand drought tolerance in plants

Plants have an amazing ability to control water transport through their stems and leaves, with some species able to keep functioning in very hostile conditions. This project will use 3D X-ray microscopy to explore the physical changes in plant cells as a result of water stress.

A/Prof Adrian Sheppard, Dr Anna Herring, A/Prof Jodie Bradby

Inertial effects during immiscible multiphase fluid displacements in porous media

When fluids flow through porous rocks, the relatively slow bulk fluid front advances via a series of very small, very rapid jumps. This project investigates how the distribution and occurance of these jumps are influenced by experimental conditions such as flow rate and intermittentcy.

Dr Anna Herring, A/Prof Adrian Sheppard

Imaging fluid-fluid interfacial curvatures in porous media: relating physics and geometry

This computational and theoretical project will extract geometric information from sequences of newly obtained 3D x-ray microscope images to better understand how two immiscible fluids interact inside complex porous materials.

A/Prof Adrian Sheppard, Dr Anna Herring

Physics of the Nucleus

Crucial fundamental nuclear data for nuclear fusion and nuclear fission

Nuclear data are urgently required in national security, non-proliferation, nuclear criticality safety, medical applications, fundamental science and for the design of advanced reactor concepts (fusion, e.g. ITER), or next generation nuclear power plants (Gen IV, accelerator driven systems, ...).

Dr Anton Wallner

Auger-cascade modelling for targeted cancer therapy

The emission rate of low-energy Auger electrons and X-rays from radiosotopes through the Auger cascade are extremely important for basic science and applications, especially for medical isotopes. The project is aiming to understand the nature of the Auger cascade and develop a new computational model for the research of targeted radioisotopes therapy.

Dr Tibor Kibedi, Professor Andrew Stuchbery

Nuclear models in nuclear structure and reactions

Nuclei are complex quantum systems and thus require advanced modelling to understand their structure properties. This project uses such models to interpret experimental data taken at the ANU and at overseas nuclear facilities.

Dr Edward Simpson, Professor Andrew Stuchbery, Dr Cédric Simenel

Modelling free-ion hyperfine fields

Motivated by exciting prospects for measurements of the magnetism of rare isotopes produced by the new radioactive beam accelerators internationally, this computational project seeks to understand the enormous magnetic fields produced at the nucleus of highly charged ions by their atomic electron configuration.

Professor Andrew Stuchbery, Dr Tibor Kibedi

Nuclear lifetimes - direct timing with LaBr3 detectors

The lifetimes of excited quantum states in the atomic nucleus give extremely important information about nuclear structure and the shape of the nucleus. This project will commission a new array of of LaBr3 detectors to measure nuclear lifetimes, with the aim to replace conventional analog electronics with digital signal processing.

Professor Andrew Stuchbery, Dr Gregory Lane, Dr Tibor Kibedi, Mr Aqeel Akber

How to create new super-heavy elements

Superheavy elements can only be created in the laboratory by the fusion of two massive nuclei. Our measurements give the clearest information on the characteristics and timescales of quasifission, the major competitor to fusion in these reactions.

Professor David Hinde, Dr Kaushik Banerjee, Dr Cédric Simenel

SABRE: Experimental Dark Matter Physics

This project will perform key experimental measurements for the SABRE dark matter particle detector and analyse the results.

Dr Lindsey Bignell, Dr Gregory Lane, Professor Andrew Stuchbery, Dr Cédric Simenel

Radioimpurities in particle detectors for dark matter studies

This experiment will characterise dark matter detector material. Lowest levels of natural radioactivity in high purity samples will be analysed via ultra-senstive single atom counting using acclerator mass spectrometry.

Dr Anton Wallner, Dr Stephen Tims, Professor Keith Fifield, Dr Gregory Lane

Nucleosynthesis in the laboratory - how elements are formed in stars

A fundamental scientific question is a better understanding of the elemental abundances and the isotopic pattern of our solar system which is a fingerprint of stellar nucleosynthesis. We perform nucleosynthesis in the laboratory at the ANU via a new and powerful tool, accelerator mass spectrometry, to elucidate open questions in these processes.

Dr Anton Wallner

Nuclear lifetimes - Doppler broadened line shape method

The measurement of the lifetimes of excited nuclear states is foundational for understanding nuclear excitations. This project will solve a current puzzle in nuclear lifetime measurements based on the Doppler-broadened line shape method and also develop a generalized analysis program for such measurements.

Professor Andrew Stuchbery, Dr Tibor Kibedi, Dr Gregory Lane, Mr Ben Coombes

Nuclear reactions for carbon beam therapy

High energy heavy ion beams can be use to effectively treat cancerous tumours, but nuclear reactions of the 12C beam spread the dose, potentially harming healthy tissue. This project will investigate nuclear reaction cross sections relevant to heavy ion therapy.

Dr Edward Simpson

High precision electron spectroscopy of electric monopole transitions

The project is aiming to develop a high resolution conversion electron spectrometer to study electric monopole transitions in atomic nuclei. 

Mr Jackson Dowie, Dr Tibor Kibedi, Professor Andrew Stuchbery

Time-correlated gamma-ray coincidence spectroscopy of atomic nuclei

Investigate the internal structure of atomic nuclei by constructing the spectrum of excited states using time-correlated, gamma-ray coincidence spectroscopy.

Dr Gregory Lane, Dr AJ Mitchell, Professor Andrew Stuchbery, Dr Tibor Kibedi

Search for supernova-signatures on Earth

Detection of supernova‐produced (radio)nuclides in terrestrial archives gives insight into massive star nucleosynthesis; when and where are heavy elements formed. Direct observation of radioactive nuclides from stars and the interstellar medium would provide first experimental constraints on production rate.s We will use the most sensitive technique, accelerator mass spectrometry.

Dr Anton Wallner

Nuclear moments and intense hyperfine fields in ferromagnetic media

This project evaluates data at the interface of nuclear, atomic and solid-state physics with a view to discovering new physics and providing reliable data on the magnetic moments of short-lived nuclear quantum states. It assists the International Atomic Energy Agency to provide reliable nuclear data for research and applications.

Professor Andrew Stuchbery

Solenogam: Electron and gamma-ray spectroscopy with an 8T magnetic solenoidal separator

Exotic nuclei, in their long-lived ground and excited states, are produced in nuclear reactions, transported through an 8T superconducting solenoid magnet to separate them in time and space from the intense beam-induced background, before studying their decay with an array of electron and gamma-ray detectors.

Dr Gregory Lane, Mr Matthew Gerathy, Dr Tibor Kibedi, Dr AJ Mitchell

Direct measurement of nuclear masses in relativistic storage rings

Exotic nuclei far from stability can be produced in relativistic fragmentation reactions and stored as fully-stripped, hydrogen- or helium-like ions in a synchrotron. Measurement of the synchrotron frequency can be used to determine their mass to a precision of 1 in 108 and it is even possible to measure the energies of long-lived excited states through direct application of Einstein’s relation, E=mc2.

Dr Gregory Lane, Mr Aqeel Akber, Mr Timothy Gray

Measuring free-ion hyperfine fields

This experimental project will characterize the hyperfine fields of ions emerging from target foils as highly charged ions. The data will test theoretical models we are developing, and underpin nuclear magnetism measurements on rare isotopes produced at international radioactive beam facilities such as GANIL (France), ISOLDE-CERN (Switzerland) and NSCL (USA).

Professor Andrew Stuchbery, Dr Tibor Kibedi, Dr Gregory Lane, Mr Timothy Gray

Computing nuclei: numerical solution of the Schrödinger equation

Analytic solutions of real-world quantum mechanics problems are rare, and in practise we must use numerical methods to obtain solutions. This project will give you practical experience in solving the static and time-dependent Schrödinger equations using a computer.

Dr Edward Simpson, Dr Cédric Simenel

‘Coulomb explosion’ of fast molecular ions

This project will use the powerful 14UD particle accelerator to study the process of 'Coulomb explosion' of fast molecular ions in a foil or gas. The experimental results will be compared with a simple analytical model.

Professor Keith Fifield, Dr Anton Wallner

Underground Background Measurements for SABRE; Australia's First Dark Matter Detector

This experiment will measure key backgrounds at the SABRE site and investigate implications for the dark matter search.

Dr Lindsey Bignell, Dr Gregory Lane, Professor Andrew Stuchbery, Dr Anton Wallner

Nuclear fusion and sub-zeptosecond breakup reactions

Fusion probabilities at high energies are significantly smaller than theoretical predicted, in part due to disintegration of the projectile nucleus into lighter nuclei (breakup) on timescales faster than 10-21 s. This project will help us understand these fast, complex breakup processes and their influence on fusion.

Dr Edward Simpson, Professor Mahananda Dasgupta

Nuclear magnetism - magnetic moment measurements

A novel technique devised at ANU has recently given a breakthrough in the precision with which the magnetic moments of picosecond-lived excited states in sd-shell nuclei (i.e. isotopes of oxygen through to calcium) may be measured. A sequence of precise measurements will be performed to comprehensively test the shell model.

Professor Andrew Stuchbery, Dr Tibor Kibedi, Dr Gregory Lane, Mr Brendan McCormick

Modeling the SABRE Dark Matter Detector

This project will develop key aspects of the SABRE dark matter detector model, and investigate the detector's sensitivity to dark matter and backgrounds.

Dr Lindsey Bignell, Dr Gregory Lane, Professor Andrew Stuchbery, Dr Cédric Simenel

Developing a digital data acquisition system for SABRE; Australia's First Dark Matter Detector

This experiment will bring online key experimental hardware for the SABRE dark matter experiment.

Dr Lindsey Bignell, Dr Gregory Lane, Professor Andrew Stuchbery

Theory of nuclear fission

Heavy atomic nuclei may fission in lighter fragments, releasing a large amount of energy which is used in reactors. Advanced models of many-body quantum dynamics are developed and used to describe this process.

Dr Cédric Simenel

Sub-zeptosecond processes in reactions of stable and radioactive weakly-bound nuclei

This project uses novel techniques to investigate reactions of light weakly-bound nuclei, both stable and exotic, which challenge our understanding of nuclear reaction dynamics.

Dr Kaitlin Cook, Professor Mahananda Dasgupta, Professor David Hinde

Plasma Applications and Technology

Plasma-liquid interactions

Plasma–liquid interactions are an important topic in the field of plasma science and technology. The interaction of non-equilibrium plasmas with a liquid have many important applications ranging from environmental remediation to material science and health care.

Dr Cormac Corr

The principles and design of a plasma wakefield accelerator

In this project the principles and design of a plasma wakefield accelerator will be reviewed, and the opportunities for a low-cost wakefield accelerator explored.

Assoc. Prof. Matthew Hole

Physics of pulsed negative ion plasmas

This project is concerned with studying pulsed electronegative plasmas which can open new frontiers for both basic and applied studies. 

Dr Cormac Corr

Turbulence and Particle transport in linear and toroidal magnetic geometries

Turbulence is known to affect the plasma in toroidal magnetic confinement devices for fusion, and linear magnetic devices. This project involves the use of langmuir probes on both the H-1 and MAGPIE devices for evaluating the total and fluctuation-induced particle flux and address fundamental physics of turbulence in these devices.

Dr Clive Michael, Dr Boyd Blackwell

Quantum Devices and Technology

Beam matching using machine learning

This project aims to use a machine learning algorithm to perform beam alignment in an optics experiment. It would involve mode-matching two optical beams using motorised mirror mounts. Additional degrees of freedom like lens positions and beam polarisation can be added later.

Dr Syed Assad, Mr Aaron Tranter, Mr Harry Slatyer

Diamond quantum computing and communications

This project aims to engineer diamond quantum computers and communication networks.

Dr Marcus Doherty

Development of Squeezed Laser Sources for Quantum Communication

Student will build and characterise a new source of quantum squeezed light genearted from an optical parametric oscillator

Professor Ping Koy Lam, Dr Ben Buchler

Source-independent quantum random number generator

We aim to generate random numbers by performing orthogonal quadrature homodyne measurements without actually knowing or trusting the quantum state that we are measuring.

Dr Syed Assad, Professor Ping Koy Lam, Mr Jing-Yan Haw

Discovering quantum defects in diamond and related materials

This project aims to discover and study defects in diamond and related materials that are suitable for quantum technology.

Dr Marcus Doherty, Professor Neil Manson

Whispering Gallery Mode Resonators for Ultra-Sensitive Magnetometry

This projects aims to construct an ultra-sensitive magnetic field sensor from a whispering gallery mode crystal resonator.

Professor Ping Koy Lam

Adaptive-optics assisted free-space laser communications

This project will assist in the development of a quantum-encrypted free-space laser communications system for secure high-bandwidth ground-to-ground and ground-to-satellite applications. This interdisciplinary project brings together experts in link acquisition and tracking, adaptive optics, quantum key distribution and digital signal processing implemented on an FPGA.

Mr Lyle Roberts, Dr Robert Ward, Professor Daniel Shaddock, Dr Chunle Xiong

Storing quantum entangled states of light

In this project you will demonstrate the storage of quantum entangled states of light using quantum memories based on rare-earth doped crystals.

Associate Professor Matthew Sellars, Dr Rose Ahlefeldt, Dr Kate Ferguson

High storage capacity quantum memories

This project aims to develop high capacity quantum memories for light by using novel rare earth crystals.

Dr Rose Ahlefeldt, Associate Professor Matthew Sellars

Optical quantum memory

An optical quantum memory will capture a pulse of light, store it and then controllably release it. This has to be done without ever knowing what you have stored, because a measurement will collapse the quantum state. We are exploring a "photon echo" process to achieve this goal.

Dr Ben Buchler

Developing a planar waveguide photonic quantum processor

This project aims to develop a photonic quantum processor based on a planar waveguide architecture incorporating rare-earth doped crystals.

Associate Professor Matthew Sellars, Associate Professor Stephen Madden

Developing a quantum memory for the 1550 nm optical communication band

In this project you will develop a quantum memory for storing light at 1550 nm using erbium doped crystals.

Associate Professor Matthew Sellars, Dr Kate Ferguson

Quantum microscopes for revolutionary interdisciplinary science

This project aims to invent and apply quantum microscopes to solve major problems across science.

Dr Marcus Doherty

Laser levitation of a macroscopic mirror

This project aims to be the first in the world to use the radiation pressure forces of laser beams to coherently levitate a macroscopic mirror. Applications of this scheme include precision metrology and test of new physics theories.

Professor Ping Koy Lam, Dr Ben Buchler

Dual torsion pendulum for quantum noise limited sensing

Construct a small dual tosion pendulum which have their centre of mass co-incide and their rotational axis colinear. Inital diagnostics will be done using shadow sensors.

Dr Bram Slagmolen, Professor David McClelland, Dr Robert Ward

Probabilistic quantum cloning with noiseless linear amplifier

Student will use electro-optic feedforward techniques to implement noiseless linear amplification of information carrying laser light

Professor Ping Koy Lam, Dr Thomas Symul

Second Harmonic Generation for Quantum Optics Applications

Student will develop a source of laser light at 775nm that will be utilised for pumping of squeezing cavities  

Professor Ping Koy Lam, Dr Ben Buchler

Quantum Science and Applications

Atomic magnetometer for exploring physics beyond the standard model

The Global Network of Optical Magnetometers for Exotic Physics (GNOME) uses precision atomic magnetometers to look new physics.  The concept is to have a global network of magnetometers looking for correlated magnetic field fluctuations that may be caused by strange, and unknown physics.

Dr Ben Buchler, Dr Geoff Campbell

Diamond quantum computing and communications

This project aims to engineer diamond quantum computers and communication networks.

Dr Marcus Doherty

Vibration control for optical interferometry

Develop an active vibraiton isolation platform to provide a quiet, small displacement environment for high precision inteferometry.

Dr Bram Slagmolen, Professor David McClelland, Dr Robert Ward

Fundamental tests of quantum mechanics with matter waves

We create the coldest stuff in the Universe – a Bose-Einstein condensate (BEC) – by laser-cooling helium atoms to within a millionth of a degree Kelvin. At these extremely low temperatures particles behave more like waves.  You will use the BEC to study fundamental quantum mechanics and for applications like atom interferometry.

Assoc. Prof Andrew Truscott, Professor Kenneth Baldwin

Generation of random numbers from vacuum fluctuations

Aim to generate random numbers by performing a homodyne measurement of the quantum vacuum state.

Dr Syed Assad, Professor Ping Koy Lam, Mr Jing-Yan Haw

Source-independent quantum random number generator

We aim to generate random numbers by performing orthogonal quadrature homodyne measurements without actually knowing or trusting the quantum state that we are measuring.

Dr Syed Assad, Professor Ping Koy Lam, Mr Jing-Yan Haw

Discovering quantum defects in diamond and related materials

This project aims to discover and study defects in diamond and related materials that are suitable for quantum technology.

Dr Marcus Doherty, Professor Neil Manson

Integrated quantum photonics

The goal of the project is to understand new physical phenomena arising from quantum and nonlinear optical integration. In the future this research may open doors to new types of computers and simulators with information capacity exceeding the number of elementary particles in the entire universe.

A/Prof Andrey A. Sukhorukov, Prof Dragomir Neshev, Dr Alexander Solntsev

Two-parameter estimation with Gaussian state probes

How well we can estimate the position and momentum of a Gaussian probe?

Dr Syed Assad, Mr Mark Bradshaw

Quantum tunnelling in many-body systems

Quantum tunnelling is a fundamental process in physics. How this process occurs with composite (many-body) systems, and in particular how it relates to decoherence and dissipation, are still open questions.

Dr Cédric Simenel, Dr Edward Simpson

Computing nuclei: numerical solution of the Schrödinger equation

Analytic solutions of real-world quantum mechanics problems are rare, and in practise we must use numerical methods to obtain solutions. This project will give you practical experience in solving the static and time-dependent Schrödinger equations using a computer.

Dr Edward Simpson, Dr Cédric Simenel

Laser levitation of a macroscopic mirror

This project aims to be the first in the world to use the radiation pressure forces of laser beams to coherently levitate a macroscopic mirror. Applications of this scheme include precision metrology and test of new physics theories.

Professor Ping Koy Lam, Dr Ben Buchler

Dual torsion pendulum for quantum noise limited sensing

Construct a small dual tosion pendulum which have their centre of mass co-incide and their rotational axis colinear. Inital diagnostics will be done using shadow sensors.

Dr Bram Slagmolen, Professor David McClelland, Dr Robert Ward

Theory of nuclear fission

Heavy atomic nuclei may fission in lighter fragments, releasing a large amount of energy which is used in reactors. Advanced models of many-body quantum dynamics are developed and used to describe this process.

Dr Cédric Simenel

Sub-zeptosecond processes in reactions of stable and radioactive weakly-bound nuclei

This project uses novel techniques to investigate reactions of light weakly-bound nuclei, both stable and exotic, which challenge our understanding of nuclear reaction dynamics.

Dr Kaitlin Cook, Professor Mahananda Dasgupta, Professor David Hinde

Theoretical Physics

Multi-spectral x-ray micro-tomography

The ANU X-ray micro-tomography facility images over a broad spectrum (or range) of X-ray energies. The behaviour of specimens of interest at different X-ray energies can tell us a lot about its composition. This project will explore 1) techniques to image specimens at various X-ray spectral-bands, and 2) methods to analyse the results.

Dr Andrew Kingston, Dr Glenn Myers, A/Prof Adrian Sheppard

Variational approach to many-body problems

In recent years there was a large boost in development of advanced variational methods which play an important role in analytic and numerical studies of  1D and 2D quantum spin systems. Such methods are based on the ideas coming from the renormalization group theory which states that  physical properties of  spin systems become scale invariant near criticality. One of the most powerful variational algorithms is the corner-transfer matrices (CTM) method which allows to predict properties of large systems based on a simple iterative algorithm.

Dr Vladimir Mangazeev

Nuclear models in nuclear structure and reactions

Nuclei are complex quantum systems and thus require advanced modelling to understand their structure properties. This project uses such models to interpret experimental data taken at the ANU and at overseas nuclear facilities.

Dr Edward Simpson, Professor Andrew Stuchbery, Dr Cédric Simenel

Stochastic dynamics of interacting systems and integrability

There are many interesting physical statistical systems which never reach thermal equilibrium. Examples include surface growth, diffusion processes or traffic flow. In the absence of general theory of such systems a study of particular models plays a very important role. Integrable systems provide examples of such systems where one can analyze time dynamics using analytic methods.

Dr Vladimir Mangazeev

Combinatorics and integrable systems

We will study links between integrable systems in statistical mechanics, combinatorial problems and special functions in mathematics. This area of research has attracted many scientist's attention during the last decade and revealed unexpected links to other areas of mathematics like enumeration problems and differential equations.

Dr Vladimir Mangazeev, Professor Vladimir Bazhanov

Introduction to quantum integrable systems

The aim of this project is to introduce quantum integrable systems which play a very important role in modern theoretical physics. Such systems provide one of very few ways to analyze nonlinear effects in continuous and discrete quantum systems.

Dr Vladimir Mangazeev

Soft Condensed Matter: Molecules made by Threading

Of great recent interest is the subject of rotaxanes.  Rotaxanes are molecules  where one or more ring
components is threaded onto an axle that is capped on both ends with stoppers to prevent the rings from
falling o ff. These systems exhibit complex and fascinating physics.

Professor David Williams

Quantum tunnelling in many-body systems

Quantum tunnelling is a fundamental process in physics. How this process occurs with composite (many-body) systems, and in particular how it relates to decoherence and dissipation, are still open questions.

Dr Cédric Simenel, Dr Edward Simpson

Optical nanoantennas

Antennas are at the heart of modern radio and microwave frequency communications technologies. They are the front-ends in satellites, cell-phones, laptops and other devices that make communication by sending and receiving radio waves. This project aims to design analog of optical nanoantennas for visible light for advanced optical communiction. 

Prof Dragomir Neshev, Dr Andrey Miroshnichenko

Nuclear fusion and sub-zeptosecond breakup reactions

Fusion probabilities at high energies are significantly smaller than theoretical predicted, in part due to disintegration of the projectile nucleus into lighter nuclei (breakup) on timescales faster than 10-21 s. This project will help us understand these fast, complex breakup processes and their influence on fusion.

Dr Edward Simpson, Professor Mahananda Dasgupta

Nuclear magnetism - magnetic moment measurements

A novel technique devised at ANU has recently given a breakthrough in the precision with which the magnetic moments of picosecond-lived excited states in sd-shell nuclei (i.e. isotopes of oxygen through to calcium) may be measured. A sequence of precise measurements will be performed to comprehensively test the shell model.

Professor Andrew Stuchbery, Dr Tibor Kibedi, Dr Gregory Lane, Mr Brendan McCormick

New trends in separation of variables

A separation of variables is a standard technique in classical mechanics which allows to reduce a complicated dynamics with many degrees of freedom to a set of one-dimensional problems. Surprisingly this method finds its natural generalization in the theory of quantum integrable systems. This project aims to study such systems and apply results to the theory of special functions in one and several variables.

Dr Vladimir Mangazeev

Compression of 3D X-ray imaging data

The CT lab hosts several 3D X-ray imaging systems, each generating ~240GB/day of data. The student will: (i) explore various data compression schemes; (ii) theoretically and empirically analyse interactions between data compression, X-ray image processing, and 3D analysis; (iii) develop new 3D imaging methods, based on successful data compression schemes

Dr Glenn Myers, Dr Andrew Kingston, A/Prof Adrian Sheppard

Coherent control of quantum-mechanical systems

The project studies possibility of the coherent control (i.e. manipulating properties of a quantum system, such as charge density, levels populations, etc., using a suitably tailored laser pulse) for a quantum mechanical model of a molecule.

Professor Anatoli Kheifets

Topological and Structural Science

Knots, links and tangled nets

Exploration of simpler entangled structures in 3-space is surpisingly undeveloped. Here we plan to catalogue simpler knots, links and tangled nets via two-dimensional geometry. 

Professor Stephen Hyde

Monte-Carlo simulation of x-ray scattering from nano-objects

Develop and utilise computer simulations to analyse synchrotron based scattering from nano-sized objects.

A/Prof Patrick Kluth

3D phantoms for X-ray micro-tomography

"Phantoms" are objects used for performance testing and/or calibration of 3D X-ray computed tomography (CT) systems. This project involves designing, 3D printing, and subsequently imaging phantoms at the micro-CT facility of the Applied Maths department.

Dr Andrew Kingston, Dr Glenn Myers, A/Prof Adrian Sheppard, Prof Timothy Senden

Three-dimensional crystalline structures from two-dimensional hyperbolic tilings

A variety of projects are available that will contribute to the enumeration and characterisation of 3-periodic network structures via the tiling of periodic minimal surfaces and thereby enhance our understanding of self-assembled structures in nature.

Dr Vanessa Robins, Professor Stephen Hyde

4D tomography - imaging materials in 3D as they change

The ANU has constructed an X-ray micro-computed tomography facility with a unique helical scanning configuration that enables tomographic images of extremely high quality to be produced.  This experimental project will work with theoreticians to image the evolution of time-changing samples with unprecented time resolution.

A/Prof Adrian Sheppard, Dr Glenn Myers, Dr Andrew Kingston

Origomu

The energy lansdscape of folded spheres, assuming elastic membranes and sticky inner surfaces, will be explored. 

Professor Stephen Hyde

Updated:  17 August 2017/ Responsible Officer:  Director, RSPE/ Page Contact:  Physics Webmaster