Assoc. Prof. Matthew Hole

Assoc. Prof. Matthew Hole
Senior Fellow
Centre for Plasmas and Fluids
Physics Education Centre
Office phone
Le Couteur 2 12

Lorentz forces in a tokamak

In this project we will examine the forces generated in superconductoring magnetics, and scope the forces generated during a disruption.

Assoc. Prof. Matthew Hole

Modelling a solar fare by MRXMHD

In this project, we apply multiple-region relaxed MHD model, designed to describe the fractal fix of chaotic field lines, magentic islands, and flux surfaces in toroidal magnetic confinement, to describe a solar flare.

Assoc. Prof. Matthew Hole

Constraining toroidal equilibria to accretion disc observations

In this project we would compare the construction of accretion disc and magnetic configuration Grad-Shafranov problems, and apply a recently developed toroidal magnetic confinement equilibrium code to model an accretion disc. A focus of the project will be constraining free functions to observational data. 

Assoc. Prof. Matthew Hole, Dr Michael Fitzgerald

Inclusion of toroidal flow into multiple relaxed region MHD

A new model, multiple relaxed region MHD, has been developed to describe magnetic islands and chaotic fields in toroidal magentic cofinement. This project would extend that model to include toroidal flow.

Assoc. Prof. Matthew Hole, Dr Graham Dennis, Emeritus Professor Robert Dewar

Orbit topologies and wave-particle resonance in fusion plasmas

In this project the wave-particle resonance condition will be computed for a range of precomputed particle orbits (and orbit populations), which initially were computed for transport studies. An estimate of wave-drive due to spatial gradients will be afforded using wave functions from an ideal MHD stability analysis and orbit population information, and compared to diagnostics.

Assoc. Prof. Matthew Hole, Dr Michael Fitzgerald

Tearing modes in the multi-region relaxed MHD plasma model

The project is to relate the onset of tearing mode instability in MRXMHD to the multi-tearing Delta' formalism of Dewar and Pletzer (developed in an earlier ANU PhD project) and to use this to model recent experimental results in Reversed Field Pinches (RFPs), a class of toroidal fusion devices.

Assoc. Prof. Matthew Hole, Dr Graham Dennis, Emeritus Professor Robert Dewar

The principles and design of a plasma wakefield accelerator

In this project the principles and design of a plasma wakefield accelerator will be reviewed, and the opportunities for a low-cost wakefield accelerator explored.

Assoc. Prof. Matthew Hole

Shocks transitions in nonuniform magnetic fields

Recent development of a flowing MHD model for the rotating, collisional column of MAGPIE plasmas discovered the intriguing prediction of opposite axial acceleration of the plasma ions in the subsonic and supersonic regimes. This project would examine the regime above, below, and through the shock.

Assoc. Prof. Matthew Hole, Dr Cormac Corr

Thermonuclear ringtones in tokamak plasmas

Key to sustaining fusion plasmas is that they are MHD stable to disruptive mode activity, and other electromagnetic modes do not result in catastrophic performance degradation. The project involves exploiting a generalised MHD code to describe high frequency Compressional Alfven eigenmode activity in high plasma performance international experiments.

Assoc. Prof. Matthew Hole, Dr Michael Fitzgerald, Emeritus Professor Robert Dewar

Bump-on-tail simulations of fast ions in tokamaks

This project will explore how fast-ion distributions evolve in the presence of a wave field via simulations of a one-dimensional “bump-on-tail” system, offering the possibility of efficiently computing the ion dynamics in real tokamaks.

Assoc. Prof. Matthew Hole, Dr. Brett Layden

Nonlinear evolution of energetic particle modes to saturated helical structure

At large amplitude these bursty energetic particle driven fishbones have been observed to evolve into long-lived "helical" structures in several tokamaks, notably the Mega Ampere Spherical Tokamak of the Culham Centre for Fusion Energy.  In this project we investigate the role of energetic particles during the transition from bursting fishbone to a long-living mode.

Assoc. Prof. Matthew Hole, Dr Michael Fitzgerald

When dialing an ANU extension from outside the university:
  • (02) 612 XXXXX (within Australia)
  • +61 2 612 XXXXX (outside Australia)
Where XXXXX is the 5 digit extension number you are after.
Anti-Spam notice: The email addresses from this directory are made available to support the academic and business activities of ANU. These email addresses are not published as an invitation to receive unsolicited commercial messages or 'spam' and we do not consent to receipt of such materials. Any messages that are received which contravenes this policy is strictly prohibited, and is also a breach of the Spam Act 2003. The University reserves the right to recover all costs incurred in the event of breach of this policy.

Updated:  30 November 2016/ Responsible Officer:  Director, RSPE/ Page Contact:  Physics Webmaster