Biophysics

Radiobiology at the Heavy Ion Accelerator Facility

This project aims to develop biophysics and radiobiological applications of beams from the Heavy Ion Accelerator Facility with a view to advancing the medical applications of nuclear technology.

Professor Andrew Stuchbery, Dr Edward Simpson, Dr Tibor Kibedi

Engineering in Physics

Quantum Device Engineering

For quantum technologies to transition to real-world applications, there are a multitude of engineering challenges to be solved. Using diamond NV centres, our group is developing small-scale quantum computers, and quantum microscopes sensing electric and magnetic fields down to the nanoscale. Available project themes include instrumentation, experiment control, machine learning, and optimal control. 

Dr Andrew Horsley, Dr Marcus Doherty, Dr Michael Barson

Radiobiology at the Heavy Ion Accelerator Facility

This project aims to develop biophysics and radiobiological applications of beams from the Heavy Ion Accelerator Facility with a view to advancing the medical applications of nuclear technology.

Professor Andrew Stuchbery, Dr Edward Simpson, Dr Tibor Kibedi

Physics of the Nucleus

Nuclear reactions for carbon beam therapy

High energy heavy ion beams can be use to effectively treat cancerous tumours, but nuclear reactions of the 12C beam spread the dose, potentially harming healthy tissue. This project will investigate nuclear reaction cross sections relevant to heavy ion therapy.

Dr Edward Simpson

How to create new super-heavy elements

Superheavy elements can only be created in the laboratory by the fusion of two massive nuclei. Our measurements give the clearest information on the characteristics and timescales of quasifission, the major competitor to fusion in these reactions.

Professor David Hinde, Dr Kaushik Banerjee, Dr Cédric Simenel

Computing nuclei: numerical solution of the Schrödinger equation

Analytic solutions of real-world quantum mechanics problems are rare, and in practise we must use numerical methods to obtain solutions. This project will give you practical experience in solving the static and time-dependent Schrödinger equations using a computer.

Dr Edward Simpson, Dr Cédric Simenel

Nuclear models in nuclear structure and reactions

Nuclei are complex quantum systems and thus require advanced modelling to understand their structure properties. This project uses such models to interpret experimental data taken at the ANU and at overseas nuclear facilities.

Dr Edward Simpson, Professor Andrew Stuchbery, Dr Cédric Simenel

Quantum tunnelling and energy dissipation in nuclear collisions

This research project, with both experimental and theoretical angles, is developing a new perspective on the transition from a quantum superposition to effectively irreversible outcomes in quantum collisions.

Professor Mahananda Dasgupta, Dr Edward Simpson, Professor David Hinde

Theory of nuclear fission

Heavy atomic nuclei may fission in lighter fragments, releasing a large amount of energy which is used in reactors. Advanced models of many-body quantum dynamics are developed and used to describe this process.

Dr Cédric Simenel

Nuclear fusion and sub-zeptosecond breakup reactions

Fusion probabilities at high energies are significantly smaller than theoretical predicted, in part due to disintegration of the projectile nucleus into lighter nuclei (breakup) on timescales faster than 10-21 s. This project will help us understand these fast, complex breakup processes and their influence on fusion.

Dr Edward Simpson, Professor Mahananda Dasgupta

Lie algebras in particle physics

A reading course on the connections between the representation theory of Lie groups and the properties of fundamental particles within quantum field theory, using Howard Georgi's "Lie Groups in Particle Physics: from Isospin to Unified Theories".

Mr Hong An Le, Dr Cédric Simenel

Nucleons on a sphere

Quantum chemists have recently found exact solutions to the Schrödinger equation for n electrons on the surface of a sphere. The project is to extend this model to finite range attraction such as those between nucleons in atomic nuclei. 

Dr Cédric Simenel

Quantum Devices and Technology

Quantum Device Engineering

For quantum technologies to transition to real-world applications, there are a multitude of engineering challenges to be solved. Using diamond NV centres, our group is developing small-scale quantum computers, and quantum microscopes sensing electric and magnetic fields down to the nanoscale. Available project themes include instrumentation, experiment control, machine learning, and optimal control. 

Dr Andrew Horsley, Dr Marcus Doherty, Dr Michael Barson

Diamond quantum computing and communications

This project aims to engineer diamond quantum computers and communication networks.

Dr Marcus Doherty, Dr Andrew Horsley

Quantum Science and Applications

Quantum tunnelling in many-body systems

Quantum tunnelling is a fundamental process in physics. How this process occurs with composite (many-body) systems, and in particular how it relates to decoherence and dissipation, are still open questions.

Dr Cédric Simenel, Dr Edward Simpson

Computing nuclei: numerical solution of the Schrödinger equation

Analytic solutions of real-world quantum mechanics problems are rare, and in practise we must use numerical methods to obtain solutions. This project will give you practical experience in solving the static and time-dependent Schrödinger equations using a computer.

Dr Edward Simpson, Dr Cédric Simenel

Diamond quantum computing and communications

This project aims to engineer diamond quantum computers and communication networks.

Dr Marcus Doherty, Dr Andrew Horsley

Quantum tunnelling and energy dissipation in nuclear collisions

This research project, with both experimental and theoretical angles, is developing a new perspective on the transition from a quantum superposition to effectively irreversible outcomes in quantum collisions.

Professor Mahananda Dasgupta, Dr Edward Simpson, Professor David Hinde

Theoretical Physics

Quantum tunnelling in many-body systems

Quantum tunnelling is a fundamental process in physics. How this process occurs with composite (many-body) systems, and in particular how it relates to decoherence and dissipation, are still open questions.

Dr Cédric Simenel, Dr Edward Simpson

Nuclear models in nuclear structure and reactions

Nuclei are complex quantum systems and thus require advanced modelling to understand their structure properties. This project uses such models to interpret experimental data taken at the ANU and at overseas nuclear facilities.

Dr Edward Simpson, Professor Andrew Stuchbery, Dr Cédric Simenel

Theory of nuclear fission

Heavy atomic nuclei may fission in lighter fragments, releasing a large amount of energy which is used in reactors. Advanced models of many-body quantum dynamics are developed and used to describe this process.

Dr Cédric Simenel

Nuclear fusion and sub-zeptosecond breakup reactions

Fusion probabilities at high energies are significantly smaller than theoretical predicted, in part due to disintegration of the projectile nucleus into lighter nuclei (breakup) on timescales faster than 10-21 s. This project will help us understand these fast, complex breakup processes and their influence on fusion.

Dr Edward Simpson, Professor Mahananda Dasgupta

Lie algebras in particle physics

A reading course on the connections between the representation theory of Lie groups and the properties of fundamental particles within quantum field theory, using Howard Georgi's "Lie Groups in Particle Physics: from Isospin to Unified Theories".

Mr Hong An Le, Dr Cédric Simenel

Nucleons on a sphere

Quantum chemists have recently found exact solutions to the Schrödinger equation for n electrons on the surface of a sphere. The project is to extend this model to finite range attraction such as those between nucleons in atomic nuclei. 

Dr Cédric Simenel

Updated:  15 January 2019/ Responsible Officer:  Head of Department/ Page Contact:  Physics Webmaster