Dr Tibor Kibedi

Dr Tibor Kibedi
Position
Senior Fellow
Department
Department of Nuclear Physics
Office phone
52093
Email
Office
Nuclear Physics 2 25

The pair conversion decay of the Hoyle state

The triple–alpha reaction leading to the formation of stable carbon in the Universe is one of the most important nuclear astrophysical processes.  This project is aiming to improve our knowledge of the triple-alpha reaction rate from the direct observation of the electron-positron pair decays of the Hoyle state in 12C.

Dr Tibor Kibedi, Professor Andrew Stuchbery

High precision electron-gamma angular correlation measurements

Electric monopole (E0) transitions between nuclear states with same parity and spin are very sensitive tools to examine structural changes. This project is aiming to develop a new high resolution setup to measure angular correlations between conversion electrons and gamma rays.

Mr Jackson Dowie, Dr Tibor Kibedi, Professor Andrew Stuchbery

Nuclear spectroscopy with nucleon transfer reactions

Contribute to the development of a new experimental research program at the ANU Heavy Ion Accelerator Facility and investigate the internal structure of atomic nuclei with nucleon transfer reactions. Interested students will have the opportunity to undertake research projects in nuclear instrumentation, software development and fundamental physics. 

Dr AJ Mitchell, Professor Gregory Lane, Professor Andrew Stuchbery, Dr Tibor Kibedi

Auger electrons and X-rays from nuclear decay for medical isotopes

Following nuclear decay involving electron capture and/or internal conversion the  daughter atom will be ionised, resulting the emission of a cascade of X-rays and Auger electros. The project is aiming to develop a new model required for basic science and applications, including cancer treatment.

Dr Tibor Kibedi, Professor Andrew Stuchbery, Mr Bryan Tee Pi-Ern

Searching for the decay of the X17 neutral boson with a magnetic pair spectrometer

The project aiming to repeat the observation of the hypotetical X17 particle in the nuclear physics laboratory

Dr Tibor Kibedi, Professor Andrew Stuchbery

Proton-gamma coincidence studies around the N=Z=20 and 28 nuclei

This project seeks to develop and use a new proton-gamma detector system to investigate the level structure of a range of nuclei in the N=Z=20 to 28 region, specifically to determine the electric monopole strengths between 0+ states and invesitgate the presence and degree of shape coexistence in this region.

Mr Jackson Dowie, Dr Tibor Kibedi, Professor Andrew Stuchbery

Nuclear magnetism - magnetic moment measurements

This project builds on our established track record of developing novel methods to measure magnetic moments of picosecond-lived excited states in atomic nuclei, and the theoretical interpretation of those measurements. Students will help establish new methodologies to underpin future international research at the world's leading radioactive beam laboratories.
 

Professor Andrew Stuchbery, Dr Tibor Kibedi, Professor Gregory Lane, Mr Brendan McCormick

Nuclear lifetimes - developing new apparatus and methods

The measurement of the lifetimes of excited nuclear states is foundational for understanding nuclear excitations. This project covers three measurement methods that together span the nuclear lifetime range from about 100 femtoseconds to many nanoseconds. The project can include equipment development, measurement, and the development of analysis methodology (programming and computation). 

Professor Andrew Stuchbery, Dr Tibor Kibedi, Professor Gregory Lane, Mr Ben Coombes

Radiobiology at the Heavy Ion Accelerator Facility

This project aims to develop biophysics and radiobiological applications of beams from the Heavy Ion Accelerator Facility with a view to advancing the medical applications of nuclear technology.

Professor Andrew Stuchbery, Dr Edward Simpson, Dr Tibor Kibedi

Experimental determination of the Auger yield per nuclear decay

Auger electrons are emitted after nuclear decay and are used for medical purposes. The number of Auger electrons generated per nuclear decay is not known accurately, a fact that  hinders medical applications.  This project aims to obtain a experimental estimate of the number of Auger electrons emitted per nuclear decay.

A/Prof Maarten Vos, Dr Tibor Kibedi, Professor Andrew Stuchbery

Particle detection with exotic scintillators for nuclear structure research

Compact particle detectors using exotic, new scintillator materials and silicon photomultipliers are being developed for varied roles in our nuclear structure research program.

Professor Gregory Lane, Professor Andrew Stuchbery, Dr AJ Mitchell, Dr Tibor Kibedi

Measuring and modelling free-ion hyperfine fields

Motivated by exciting prospects for measurements of the magnetism of rare isotopes produced by the new radioactive beam accelerators internationally, this experimental and computational project seeks to understand the enormous magnetic fields produced at the nucleus of highly charged ions by their atomic electron configuration.

Professor Andrew Stuchbery, Dr Tibor Kibedi, Mr Brendan McCormick

Solenogam: Electron and gamma-ray spectroscopy with an 8T magnetic solenoidal separator

Exotic nuclei, in their long-lived ground and excited states, are produced in nuclear reactions, transported through an 8T superconducting solenoid magnet to separate them in time and space from the intense beam-induced background, before studying their decay with an array of electron and gamma-ray detectors.

Professor Gregory Lane, Mr Matthew Gerathy, Dr Tibor Kibedi, Dr AJ Mitchell

Nuclear isomers for energy storage and fundamental physics

Investigate the internal structure of atomic nuclei by constructing the spectrum of excited states using time-correlated, gamma-ray coincidence spectroscopy.

Dr AJ Mitchell, Professor Gregory Lane, Professor Andrew Stuchbery, Dr Tibor Kibedi

High precision electron spectroscopy of electric monopole transitions

The project is aiming to develop a high resolution conversion electron spectrometer to study electric monopole transitions in atomic nuclei. 

Mr Jackson Dowie, Dr Tibor Kibedi, Professor Andrew Stuchbery

When dialing an ANU extension from outside the university:
  • (02) 612 XXXXX (within Australia)
  • +61 2 612 XXXXX (outside Australia)
Where XXXXX is the 5 digit extension number you are after.
Anti-Spam notice: The email addresses from this directory are made available to support the academic and business activities of ANU. These email addresses are not published as an invitation to receive unsolicited commercial messages or 'spam' and we do not consent to receipt of such materials. Any messages that are received which contravenes this policy is strictly prohibited, and is also a breach of the Spam Act 2003. The University reserves the right to recover all costs incurred in the event of breach of this policy.

Updated:  15 January 2019/ Responsible Officer:  Head of Department/ Page Contact:  Physics Webmaster