Long-distance reversible laser tractor beam created

Wednesday 22 October 2014 10am

Laser physicists have built a tractor beam that can repel and attract objects, using a hollow laser beam that is bright around the edges and dark in its centre.

It is the first long-distance optical tractor beam and moved particles one fifth of a millimetre in diameter a distance of up to 20 centimetres, around 100 times further than previous experiments.

“Demonstration of a large scale laser beam like this is a kind of holy grail for laser physicists,” said Professor Wieslaw Krolikowski, from the Research School of Physics and Engineering.

The new technique is versatile because it requires only a single laser beam. It could be used, for example, in controlling atmospheric pollution or for the retrieval of tiny, delicate or dangerous particles for sampling.

The researchers can also imagine the effect being scaled up.

“Because lasers retain their beam quality for such long distances, this could work over metres. Our lab just was not big enough to show it,” said co-author Dr Vladlen Shvedov, a driving force behind the ANU project, along with Dr Cyril Hnatovsky.

Unlike previous techniques, which used photon momentum to impart motion, the ANU tractor beam relies on the energy of the laser heating up the particles and the air around them. The ANU team demonstrated the effect on gold-coated hollow glass particles.

The particles are trapped in the dark centre of the beam. Energy from the laser hits the particle and travels across its surface, where it is absorbed creating hotspots on the surface. Air particles colliding with the hotspots heat up and shoot away from the surface, which causes the particle to recoil, in the opposite direction.

To manipulate the particle, the team move the position of the hotspot by carefully controlling the polarisation of the laser beam.

“We have devised a technique that can create unusual states of polarisation in the doughnut shaped laser beam, such as star-shaped (axial) or ring polarised (azimuthal),” Dr Hnatovsky said.

“We can move smoothly from one polarisation to another and thereby stop the particle or reverse its direction at will.”

The work is published in Nature Photonics.

Contact

Dr Vladlen Shvedov
E: vladlen.shvedov@anu.edu.au
T: (02)61258759

Related news stories

New tractor beam has potential to tame lightning

Lightning never strikes twice, so the saying goes, but new technology may allow us to control where it hits the ground, reducing the risk of catastrophic bushfires.  Many of Australia's devastating 2019-20 bushfires were caused by dry lightning strikes.  An international team of researchers,...

Physicists create water tractor beam

Physicists at The Australian National University have created a tractor beam on water, providing a radical new technique that could confine oil spills, manipulate floating objects or explain rips at the beach. The group, led by Professor Michael Shats, discovered they can control water flow patterns...

New measurements of nuclei throw a neutron amongst the pigeons

New measurements of the surface of atomic nuclei have thrown up a puzzle about how they behave. A set of reactions used to measure properties of neutrons in similar forms of carbon and nitrogen nuclei, performed at ‘gentle’ energies, show a nearly 50 percent discrepancy with knockout experiments...

How a thousand tiny lasers could launch a dynamic hologram

Physicists have developed a new tiny laser that could be used by the thousand to make future dynamic 3D holograms. Unlike a 2D screen made up of coloured dots, each pixel in a hologram would need to be a microscopic laser with precise control of the light it emits, and that consumes minimal power: until...