Doppler coherence imaging and tomography of flows in tokamak plasmas (invited)a)

Citation: Review of Scientific Instruments \textbf{81}, 10E528 (2010); doi: 10.1063/1.3492422

View online: http://dx.doi.org/10.1063/1.3492422

View Table of Contents: http://scitation.aip.org/content/aip/journal/rsi/81/10?ver=pdfcov

Published by the AIP Publishing

\textbf{Articles you may be interested in}

\textit{A protection system for the JET ITER-like wall based on imaging diagnostics} a)

\textit{C-III flow measurements with a coherence imaging spectrometer} a)

\textit{High resolution ion Doppler spectroscopy at Prairie View Rotamak} a)

\textit{Calculation of the Johann error for spherically bent x-ray imaging crystal spectrometers} a)

\textit{Multichannel Doppler transmission grating spectrometer at the Alcator C-Mod tokamak} a)

a) This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitationnew.aip.org/termsconditions. Downloaded to IP: 150.203.176.45 On: Fri, 20 Jun 2014 15:56:46
I. INTRODUCTION

Doppler spectroscopy provides a wealth of information on the physics of plasma confinement in tokamaks. The standard approach makes use of a grating spectrometer that disperses the spectrum in one spatial dimension and reserves the other to obtain a 1D spatial section of the region of interest. In many cases, however, such as scrape-off-layer (SOL) and divertor spectroscopy, a 2D imaging capability is required in order to correctly interpret the spectral information. The power of both active and passive 2D optical imaging systems to reveal new physics has been demonstrated recently by a number of authors.

Recently, we have shown that wide-field-of-view “coherence-imaging” (CI) systems (polarization interferometers) have the unique capability to obtain time-resolved 2D projections (images) of key spectral quantities in passive Doppler spectroscopy. In its simplest form, a polarization interferometer consists of a birefringent delay plate of suitable thickness sandwiched between crossed or parallel polarizers, combined with an optical interference prefilter to isolate the spectral features of interest. Because there are no slits, polarization interferometers allow for 2D spectral imaging using robust components with high optical throughput. The coherence information can be encoded on one or more spatial heterodyne carriers imprinted on the image to allow single-frame “snapshot” Doppler imaging.

The key elements in these systems are various forms of birefringent Savart plates which produce an angle-dependent interferometric phase shear to generate approximately parallel spatial interference fringes in the image plane. The interferogram can be demodulated and the local fringe amplitude and phase compared with the properties of a set of reference fringes. The instrument shares some common features with spatial heterodyne spectro-polarimetry for motional Stark effect imaging—a new polarimetric imaging modality recently tested in experiments on the TEXTOR tokamak.

We have recently deployed snapshot systems for Doppler imaging the emission from the CII 514 nm and CIII 465 nm multiplets originating in the divertor and SOL regions of the DIII-D tokamak. Carbon ion flow measurements based on multiple discrete channel visible Doppler spectroscopy have also been reported previously. Because of the uncertainty in brightness-weighting, sophisticated spectrum-fitting routines that take account of Zeeman effect broadening must be employed to extract the flow fields, and the resulting flow estimates and their localization can have large uncertainties.

The major advantage of the CI approach to Doppler spectroscopy of inhomogeneous media is the direct link between interferometric properties and well-defined integrals of plasma brightness, flow velocity, and temperature. Subject to reasonable symmetry constraints, this then allows the tomographic unfolding of plasma flows and temperatures from 2D projections, obviating many of the otherwise difficult interpretation issues noted above. In this paper we present first results of tomographic unfolding of the emissivity and parallel flow speed of C2+ ions in the DIII-D divertor, and compare with UEDGE modeling of these quantities.
II. OPTICAL SYSTEM AND INSTRUMENT RESPONSE

While the optical system design and instrument response have been discussed in greater detail elsewhere, we here summarize the key system features as they pertain to imaging measurements of the C2+ multiplet at 465 nm in the region of the DIII-D divertor.

A tangentially viewing light collection system produces a real image of the lower divertor at the view port exit which is transferred by an imaging fiber cable to the interferometer and camera. Figure 1 shows a schematic layout of the interferometer. The radiation is propagating in the z direction and the x-axis is taken to be vertical with the y-axis out of the page. The interferometer is bracketed by F-mount lenses of focal length 55 and 50 mm which collimate the light and produce a demagnified image of the optical fiber array onto the PCO Sensicam QE camera detector array (8.9 mm \times 6.7 mm).

A first polarizer oriented at 45° in the x–y plane is followed by a 4 mm thick LiNbO$_3$ waveplate with vertical fast axis (0°). The delay plate mutually polarizes components parallel and perpendicular to the fast axis to produce a phase difference $\phi_\text{D}=2\pi n_0 t_0$ where n_0 is the radiative optical frequency and $t_0=LB/c$ is interferometric time delay, L is the plate thickness, and B its birefringence (see the Appendix).

A 4 mm thick LiNbO$_3$ compensated Savart plate6,7 vertically separates the fast and slow polarization components to produce an angle-dependent shear in the phase difference. When imaged through the final analyzer oriented at 45°, this shear generates horizontally aligned interference fringes in the final lens focal plane. The phase difference at vertical position x from the origin in the focal plane depends on the Savart plate thickness (beam separation d) and the lens focal length f according to $\phi_s=2\pi n_t r_s(x)$ where $r_s(x)=(d/c)x/f$.

The total interferometric phase therefore consists of contributions from the delay plate and Savart shearing plate such that the resulting interferogram is given by

$$S_\pm = \frac{I_0}{2}[1 \pm \xi \cos(\phi_0 + \phi_s + \phi_D)].$$

where I_0 is the emission brightness, ξ is the fringe contrast, and ϕ_D, the phase shift produced by a Doppler shift of the spectral line center, is proportional to the delay plate phase offset ϕ_0.

The fringe contrast and phase depend on the properties of the spectrum in the optical passband. Analysis of spectra provided by the high resolution multichordal divertor spectrometer system indicates that the 465 nm line represents more than 95% of the radiated power in the passband, and that the relative brightness of the multiplet components does not appear to change with plasma conditions. The effects of the angle-dependent passband shift across the field-of-view are also found to be negligible.5

Based on the measured spectrum, we have modeled the variation of the fringe contrast with optical group delay and ion temperature. At the chosen lithium niobate delay plate thickness of 4 mm (approximately 1300 waves), the variation in fringe contrast over the expected range of ion temperatures (10–20 eV) is only a few percent. In this case, the instrument is not suited for measuring the ion temperature, but is sensitive to flow speeds in the Mach number range of 0.1–1 (at 10 eV) which produce phase shifts from 0.035 to 0.35 rad.

III. IMAGE PROCESSING AND DEMODULATION

Figure 2 shows a typical 2×2 binned image of the CIII emission in the DIII-D divertor. A wire-frame overlay shows the outline of the divertor structure and inner wall of the vessel. Required exposure times are typically between 10 and 100 ms depending on the fiber transmission and plasma conditions. Carbon ion flow-induced distortion of the fringe phase fronts is evident on close inspection of the otherwise approximately horizontal fringe pattern. Various portions of the image field are not illuminated by the plasma and there is evidence of vignetting in the outer regions of the image. It should be noted that the interior wall of the tokamak is clad in carbon tiles and that, as a result, back reflections are not an important issue in this work. While these shortcomings affect the fidelity of tomographic reconstructions, they do not significantly change the structure of the inverted flow field.

A column-by-column wavelet-based demodulation procedure is used to extract the fringe properties. A three point median filter is usually applied to suppress radiation-induced noise and the brightness projection [see Eq. (A2)] is recovered by boxcar smoothing using a window of width equal to
the fringe period (22 pixels in this case). The carrier fringes are extracted by factoring out the dc brightness and a fourth order Morlet wavelet-based demodulation algorithm is applied to obtain the fringe phase. The processing is usually restricted to regions where pixels exceed a photoelectron count of ten.

A suitable narrow spectral line source that falls within the interference filter passband was unavailable for calibrating these experiments. A reference phase image was constructed by using the first frame from the plasma image sequence (normally quite faint) and averaging over a set of discharges. In practice it is found that these images are generally featureless, and apart form a constant offset, provide a consistent and reliable phase reference. Nevertheless, there remains a fixed phase-noise pattern of rms value up to 0.1 rad, depending on image brightness. This noise is removed by using an eighth degree line-by-line polynomial fit to the reference phase image. The fitted image and residual phase noise are shown in Fig. 3. The linear carrier phase ramp has been removed to reveal the underlying hyperbolic fringe pattern associated with an uncompensated birefringent Y-cut delay plate.

The demodulated brightness and phase projections at representative times in a discharge (no. 141170) during which the plasma detaches from the divertor floor are shown in Fig. 4. The striations in the phase images are artifacts of the demodulation procedure and are due to the fact that the plasma brightness projection is changing on a spatial scale comparable with the fringe period. (Increasing the fringe spatial frequency would help reduce this effect.)

The phase image appears to be consistent with emissivity-weighted flows in opposing directions (see also Sec. V). By changing the delay plate thickness, it has been confirmed experimentally that the observed phase shifts scale in proportion to the optical delay offset \(\phi_0 \) [see also Eq. (2)]. In accordance with UEDGE modeling expectations, it is also found experimentally that reversing the sense of the toroidal field reverses the sense of the observed phase shift structures. Finally, the amplitude of the phase shift excursions are consistent with the near sonic flow speeds predicted by UEDGE. We therefore have confidence that the phase shift image truly represents the emissivity-weighted projection of the local flow velocity vector component in the direction of view.

IV. TOMOGRAPHIC TECHNIQUES

As shown in the Appendix, for flows \(v_D \) approaching the thermal speed that are often encountered in the SOL and divertor, the phase of the complex coherence gives an emissivity-weighted line integral of the fluid flow velocity component along the line-of-sight

\[
\frac{\phi_D}{\phi_0} = \frac{1}{I_0 d} \int_I e(r) v_D \cdot dL,
\]

where \(I_0 \) is the line-integrated emissivity \(e(r) \).

In order to tomographically invert the phase projection, we assume toroidal symmetry so that a single 2D projection is sufficient to reconstruct scalar functions of radius \(r \) and
known that the solution that minimizes the squared residuals

d = \frac{1}{2} \sum r_i^2

exceeds the number of reconstructed pixels by a factor of

image in sequence. Typically, the number of measurements

new flow-field response matrix must be constructed for each

cause the magnetic configuration is changing dynamically, a

time required to invert the projection image sequence. Be-

projection data 688 over the fringes required to isolate the brightness

rection of the fringes to account for the spatial smoothing

vertor and incorporates other weights as appropriate. It is

The matrix accommodates the physical structure of the di-

the element contributions according to their

integration technique14 that attempts to find this solution iteratively

1.6.

FIG. 5. (Color online) Typical r–z trajectories for an image column super-

imposed on the flux-surface structure in the divertor region. The trajectories

are color-coded according to their weight in the system response matrix,

with greatest weight near the tangency radius.

FIG. 6. (Color online) The plasma current and central line-density temporal
evolution for discharge no. 141170. The dashed lines correspond to the
times selected for analysis of the projection images.

\begin{equation}
\mathbf{f}^{(0)} = R^T \mathbf{g},
\end{equation}

\begin{equation}
\mathbf{f}^{(k+1)} = \mathbf{f}^{(k)} + \lambda \left[R^T \mathbf{g} - R^T \mathbf{f}^{(k)} \right],
\end{equation}

where \(\lambda \) is an empirically chosen relaxation parameter.

A feature of the iterative approach is that it allows prior information such as positivity and bound constraints to be

imposed at each step of the iteration. While unconstrained

parallel flow reconstructions are satisfactory, we have corre-

lated adjacent pixels by applying a relaxation parameter image

that favors a smooth flow reconstruction as follows:

\begin{equation}
f_j^{(k+1)} = f_j^{(k)} + \lambda \sum_{i} R_{ij} \frac{1}{g_i} \left[g_i - \sum_{k} R_{jk} f_k^{(k)} \right],
\end{equation}

where \(\lambda \) is an empirically chosen relaxation parameter usually set

empirically at \(\lambda = 0.5 \) and the convolving function \(S \) is here

implemented via a three-point Gaussian smoothing kernel. The

effect of the relaxation image \(\lambda_j^{(k)} \) is to reduce the rate at

which smooth regions are influenced by successive corrections.

The iterations are terminated when the fractional change between iterations is less than 0.001. The imposition

of a smoothness bias is not found to significantly decrease the

rate of convergence or to elevate the final residual.

As mentioned previously, uncompensated vignetting of the

observed images distorts the reconstructions (a vessel

FIG. 7. (Color online) Reconstructions of the emissivity and parallel flow
speed at times (L–R) 500, 2000, and 4000 ms. The equilibrium flux surfaces
are overplotted for reference.
opening for calibration would have allowed this issue to be addressed). As a first attempt to self-consistently offset the effects of vignetting, we have developed a compensating image formed from an average over an ensemble of brightness projections, of the ratio of the observed projections to their tomographic best fit. This self-consistent compensation is feasible because the projection of an image point at \((r, z)\) produces a crescentlike response that couples large regions of the projection image (these structures are apparent in Fig. 4). We have found empirically that the independent estimates of the vignetting obtained from projections of the diffuse plasma breakdown give a reasonably consistent estimate of the correction, and that its application reduces the reconstruction residual by \(\sim 20\%\) and suppresses some reconstruction artifacts. While the reconstructions shown here utilize this correction, in practice, the differences between reconstructions with and without the vignetting compensation are not major.

V. EXPERIMENTAL RESULTS AND DISCUSSION

We consider the tomographic inversions of the projections shown in Fig. 4. The conditions for this discharge number 141170 are \(B_T=2.02\ \text{T}\), \(I_p=1.1\ \text{MA}\) with the electron density ramping from \(n_e=0.7 \times 10^{14}\ \text{m}^{-3}\) to \(1.4 \times 10^{14}\ \text{m}^{-3}\) between \(t=2700–5200\ ms\) and with detachment commencing at \(t=3200\ ms\) (see Fig. 6).

Reconstructions of the emissivity and parallel flow speed at times of 500, 2000, and 4000 ms are shown in Fig. 7. Displacements between the separatrix and regions of maximum brightness suggest a minor inaccuracy in the registration of the camera viewport. The fitted projections are shown in Fig. 8. Residual discrepancies between the projections (Fig. 4) and their best fit can be mostly attributed to the viewport misalignment, image vignetting, and demodulation artifacts. Being a double inversion, the flow reconstructions suffer from uncertainties in the value of the reconstructed emissivity \(e(r, z)\) [see Eq. (2)]. While the inversion algorithm has been tested satisfactorily on numerical phantoms, we have not yet undertaken a study of the sensitivity of the flow reconstructions to uncertainties in \(e(r, z)\).

Because the poloidal field is in opposite directions for the inboard and outboard divertor legs, we interpret the reversal of the flow direction between the high and low field sides of the X-point as implying plasma flow into the divertors. This behavior, and the reconstructed flow amplitudes, is consistent with earlier observations of near sonic flows in the inboard SOL toward the divertor and into the outboard divertor as the plasma nears detachment.\(^{15}\)

UEDGE numerical simulations of expected flow speeds in the divertor for different core densities corresponding to times of 4000 ms (low density case) and 4500 ms (high density) have been undertaken. The simulations indicate that the SOL and divertor poloidal and radial flows are small (<10%) compared with the toroidal component and can be neglected. The simulations at 4000 ms (see Fig. 9) show the CIII emission peak at the outer leg is located near the divertor plate, detaching at later times (4500 ms). The simulations also show that the magnitude of the toroidal velocity does not change significantly between 4000 and 4500 ms.

The simulations and measurements exhibit reasonable qualitative agreement. The disagreement in flow amplitudes may simply be attributable to reconstruction inaccuracies as indicated above. However, we observe detachment of the radiating zone at lower densities, and also find that the flow speed in the outer leg increases with increasing density. These structural and temporal trends are experimentally more robust than the inferred flow amplitudes, and indicate that additional systematic studies may be required to resolve the discrepancies between simulation and experiment.

ACKNOWLEDGMENTS

This work is supported by International Science Linkages established under the Australian Government’s innovation statement, “Backing Australia’s Ability.” This work was also supported in part by the U.S. Department of Energy under Grant Nos. DE-AC52-07NA27344 and DE-FC02-04ER54698.

FIG. 8. (Color online) The best fit brightness and phase shift projections corresponding to the measurements shown in Fig. 4.

FIG. 9. (Color online) UEDGE simulations of the brightness and toroidal flow fields under conditions corresponding to those at \(t=4000\ ms\) for shot no. 141170. (a) The local emissivity, (b) the toroidal component of the flow field, and (c) the flow field as seen through an emissivity window masked at the 10% level.
APPENDIX: INTERFEROMETER RESPONSE

We consider a simple polarization interferometer of phase delay offset \(\phi_0 = 2 \pi v_0 \tau_0 \) where \(\tau_0 = LB/v_0 \) is the associated time delay produced by a uniaxial birefringent plate of thickness \(L \) and birefringence \(B = n_e - n_o \) where \(n_e \) and \(n_o \) are the wavelength-dependent extraordinary and ordinary wave refractive indices, respectively. When observing quasi-monochromatic radiation from an inhomogeneous plasma, the signal at the output port of the interferometer is given by

\[
S_z = \frac{I_0}{2} \left[1 + \Re[\gamma(\phi_0 \hat{I}) \exp(i\phi_0)] \right],
\]

where \(\gamma(\phi_0 \hat{I}) \) is the temporal-coherence of the spectral line, \(\hat{I} \) is the unit vector in the direction of view, and the brightness \(I_0 \) is the line integral of the emissivity \(e(r) \)

\[
I_0 = \int_L e(r) dl.
\]

Note that \(\gamma \) is a function of the group phase delay \(\phi_G = k \phi_0 \), where

\[
\kappa = 1 + \frac{v_0}{\tau_0} \frac{\partial \tau}{\partial \nu} \bigg|_{\nu_0}
\]

counts for the optical frequency dispersion of the time delay.

For an inhomogeneous plasma in drifting local thermal equilibrium, the temporal coherence is given by

\[
\gamma(\phi_0 \hat{I}) = \frac{1}{I_0} \int_L e(r) \exp(i\phi_0 \nu_D \hat{I} / c) G_0(r, \phi_0) dl,
\]

where the complex exponential is due to the Doppler shift of the spectrum and \(G_0(r, \phi_0) \) is the Fourier transform of the Doppler broadened multiplet spectrum. Substituting Eq. (A4) into Eq. (A1) delivers

\[
S_z = \frac{I_0}{2} \left[1 + \xi_D \cos(\phi_0 + \phi_D) \right],
\]

where \(\tan \phi_D = \gamma / \gamma_i \) and \(\xi_D = |\gamma| \) with \(\gamma = \gamma_i + i \gamma_c \).

For a simple spectral line, \(G_0 \) is the real Gaussian function

\[
G_0(r, \phi_0) = \exp(-T_S(r) / T_C) dl,
\]

where the “characteristic” temperature is fixed by the delay plate properties

\[
kT_C = 2m_e c^2 / \phi_0
\]

and where \(m_S \) is the species mass and \(T_S \) is the species temperature.

We now introduce some approximations appropriate for the conditions of the divertor Doppler measurements. For the chosen 4 mm thick lithium niobate delay plate, the instrument characteristic temperature \(T_C \approx 310 \) eV is significantly larger than the expected range of ion temperatures (10–20 eV) allowing the complex quantity \(G_0 \) to be removed from the integral in Eq. (A4). (Experimentally it has been confirmed that the variation in fringe contrast across the interferometric projection is small). The maximum measured phase shifts are also small, of order 0.6 rad, so the trigonometric terms are expanded to second order to obtain

\[
\tan \phi_D = \frac{1}{I_0} \int_L e(\tilde{\phi}_D) dl + \frac{1}{I_0} \int_L e(\tilde{\phi}_D/6) dl + \frac{1}{I_0} \int_L e(\tilde{\phi}_D/3) dl,
\]

(8)

where \(\tilde{\phi}_0(r \hat{I}) = \phi_0 \nu_D \hat{I} / c \). For a uniformly drifting homogeneous plasma, the quantities \(\phi_D \) and \(\phi_D \) are equivalent.

In the inhomogeneous case, and when higher order terms are small, we obtain the first order approximation

\[
\phi_D = \frac{\phi_0}{I_0} \int_L e(r) \nu_D . dl.
\]

(9)

Noting the approximation \(\phi_D \approx \phi_0 + \phi_0^3 / 3 \), inspection of Eq. (8) suggests that the higher order terms \(\phi_0^3 / 3 \) can be largely attributed to the higher order integral terms and therefore that Eq. (9) will be a very good approximation even when the observed Doppler phase shifts are not small.