Mr Wei Wong

Mr Wei  Wong
PhD student
Department of Electronic Materials Engineering
John Carver 3 16E

Epitaxially-grown III-V micro-ring lasers for Si photonics applications

Despite the significant progress in the research of III-V semiconductor nanowire lasers, integrating nanowire lasers on photonic devices has been shown to be technically-challenging. In this regard, III-V micro-disk and micro-ring lasers are excellent candidates for integrated miniature lasers, since the laser emission can be efficiently coupled to on-chip waveguides. However, since these types of lasers have been fabricated via top-down fabrication approaches, their performance is adversely affected by sidewall roughness induced by etching process. Moreover, the limited scalability of top-down fabrication approaches also hinders the realisation of high-density monolithic integration.

Recently, we have demonstrated whispering gallery mode lasing in epitaxially-grown InP micro-ring lasers at room-temperature. Due to the self-termination properties of low-energy crystallographic surfaces during growth, the side facets of these micro-rings are atomically-smooth and form excellent mirrors with very low losses. More importantly, epitaxial growth offers better scalability for monolithic integration compared to most top-down fabrication techniques.

The current focus of this project is to grow these micro-ring lasers on Si substrates to demonstrate their potential as integrated light sources for Si photonics. To accommodate the high defect density at the InP/Si interface, we have grown a low-temperature InP nucleation layer on Si (111) substrate with the atomic layer epitaxy (ALE) and flow-rate modulation epitaxy (FME) techniques. In future, we plan to further optimise the crystal quality of the nucleation layer and perform high-temperature micro-ring growth on the nucleation layer.

When dialing an ANU extension from outside the university:
  • (02) 612 XXXXX (within Australia)
  • +61 2 612 XXXXX (outside Australia)
Where XXXXX is the 5 digit extension number you are after.
Anti-Spam notice: The email addresses from this directory are made available to support the academic and business activities of ANU. These email addresses are not published as an invitation to receive unsolicited commercial messages or 'spam' and we do not consent to receipt of such materials. Any messages that are received which contravenes this policy is strictly prohibited, and is also a breach of the Spam Act 2003. The University reserves the right to recover all costs incurred in the event of breach of this policy.

Updated:  15 January 2019/ Responsible Officer:  Head of Department/ Page Contact:  Physics Webmaster