The physics of cold to burning plasmas

Plasma Theory and Modelling
group academics

M. J. Hole,
R. L. Dewar, G. von Nessi, M. Fitzgerald, G. Dennis,
L. Chang, J. Bertram, (G. Bowden, Z. Qu, S. Cox, C. Callan, C. Bowie, M. McGann),
L. Appel, B. Breizman, R. Dendy, S. Hudson, J. Kim, A. Koenies,
S. Sharapov, J. Svensson, D. Terranova

RSPE Seminar, 18 April 2013

Acknowledgement: Australian Research Council, ANU, DIISRTE
The physics of cold to burning plasmas

M. J. Hole,
R. L. Dewar, G. von Nessi, M. Fitzgerald, G. Dennis,
L. Chang, J. Bertram, (G. Bowden, Z. Qu, S. Cox, C. Callan, C. Bowie, M. McGann),
L. Appel¹, B. Breizman², R. Dendy¹, S. Hudson³, J. Kim⁴, A. Koenies⁵, K. McClements¹
S. Sharapov¹, J. Svensson⁵, D. Terranova⁶

International collaborators

RSPE Seminar, 18 April 2013

Acknowledgement: Australian Research Council, ANU, DIISRTE
The plasma state: the fourth state of matter

- Plasma is an ionized gas
- 99.9% of the visible universe is in a plasma state

A Galaxy of Fusion Reactors.

- Fusion is the process that powers the sun and the stars
- Key concepts: magnetic confinement, physics models
Magnetic confinement

Focused target field, e.g. MAGPIE

Ripple magnetic field or mirror e.g.
LAPD [Zhang et al Phys. Plasmas 15, 012103 2008]

- Ions (D^+, T^+, He^+ …) confined
- Neutrons escape
- Toroidal (ring shaped) device
Several toroidal confinement concepts

MAST (UK)
compact

RFX-mod (Italy)
self-organising

H1-MNRF (Oz)
flexible shape

LHD (Japan)
steady-state

W-7X (Germany)
steady-state, reduced chaos
Physics regimes and physics models

- Dielectric tensor: often used for cold plasmas
- MHD: flowing plasma, single temperature for ions/electrons
- Particle in cell (PIC) simulation – individual particles
- Gyrokinetic simulation – simulate particle distribution functions
How is a plasma described?

- One approach: Through dielectric tensor in Maxwell's equations

\[\nabla \cdot \mathbf{E} = \rho / \varepsilon_0 \quad \nabla \cdot \mathbf{B} = 0 \]
\[\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \quad \nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} = \mu_0 \frac{\partial \mathbf{D}}{\partial t} \]

What is dispersion relation for a cold plasma with \(B_0, E_0=0, v_0=0 \)?

- Gauss's law requires charge neutrality \(\rho = 0 = \sum q_s n_s \)

- Solve momentum equation

\[m \mathbf{\dot{v}}_1 = q \left(\mathbf{E}_1 + \mathbf{v}_1 \times \mathbf{B}_0 \right) \]

for wave field \(\mathbf{v}_1 \). Gives \(\mathbf{J}=n_0 q \mathbf{v}_1 \), and construct \(\varepsilon \) s.t. \(\mathbf{D} = \varepsilon \mathbf{E} \)

- Rearrange Gauss's law, Amperes law to give \(\nabla \times \nabla \times \mathbf{E} = \frac{\omega^2}{c^2} \varepsilon \cdot \mathbf{E} \)

- Search for wave like solutions \(\mathbf{E} = |\mathbf{E}(x)| \exp[i(k \cdot x - \omega t)] \)
giving dispersion relation \(\omega(k) \)
or... Magnetohydrodynamics (MHD)

- Single conducting fluid: \(J = n_i Z e v_i - n_e e v_e \) \(\rho \approx m_i n_i \)
 \[v = (m_i v_i + m_e v_e) / \rho \approx v_i \]
 \(p = p_i + p_e \)

- Continuity: \(\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0 \)

- Momentum: \(\rho \frac{d\mathbf{v}}{dt} = -\nabla p + \mathbf{J} \times \mathbf{B} \)

If \(\frac{d\mathbf{v}}{dt} = 0 \) \(\Rightarrow \) \(\mathbf{J} \times \mathbf{B} = \nabla p \)

- Generalised Ohm’s law: \(\mathbf{E} + \mathbf{v} \times \mathbf{B} = \eta \mathbf{J} \)

- Maxwells equations, Adiabatic equation: \(\frac{p}{\rho^\gamma} = \text{const.} \)
“MHD with anisotropy in velocity, pressure”

- Pressure different parallel and perpendicular to field due mainly to directed neutral beam injection

\[\bar{P} = p_{\perp} \bar{I} + \Delta BB / \mu_0, \quad \Delta = \frac{\mu_0 (p_{\parallel} - p_{\perp})}{B^2} \]

- Momentum

\[\rho \left(\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} \right) = -\nabla \cdot \bar{P} + \mathbf{J} \times \mathbf{B} \]
equilibrium waves stability wave-wave wave-plasma nonlinearity

WOMBAT

MAGPIE

(LAPD)2

KSTAR

MAST

MAST

RFX-mod

H1

configuration complexity

MHD

MRXMHD

MHD + flow, anisotropy

2 fluid

2 fluid + collisions

Maxwell’s equations Bayesian Inference

Data forward models

dielectric tensor (cold)
equilibrium waves stability wave-wave wave-plasma nonlinearity

- WOMBAT
- PCEN
- MAGPIE
- (LAPD)^2
- KSTAR
- MAST
- MAST
- RFX-mod
- H1

Maxwell's equations Bayesian Inference

- Data forward models, MHD, MRX, MHD + flow, anisotropy, 2 fluid, 2 fluid + collisions, dielectric tensor (cold)
What are predicted wave fields?

Helical antenna generates plasma.

\[n_e \propto B \]
Wave fields indicate anomalous resistivity

Chang, Hole, Caneses, Chen, Blackwell, Corr

- Add external antenna in dielectric tensor formulation and solve for wave fields (EMS code)
 - match to $|B(z)|$ and $\angle B(z)$ with enhancement in collision frequency to ~ 9.5 (ion-acoustic turbulence?)

[Chang et al Phys. Plas. 19, 083511 (2012)]
Modulation in B introduces mode gaps

Chang, Breizman, Hole

• Helicon mode eigenfunction equation \(\Leftrightarrow \) continuous modes

\[
k_z^2 \left(\frac{\partial}{\partial r} r \frac{\partial}{\partial r} r E_\varphi - m^2 E_\varphi \right) = -E_\varphi m \frac{\omega^2}{c^2} r \frac{\partial g}{\partial r} \quad \Leftrightarrow \quad \omega \sim \omega_c \frac{k_z^2 c^2}{\omega_p^2}
\]

• Apply periodic modulation to axial velocity through axial field

\[
\frac{\omega_p^2}{\omega_c} = \frac{\omega_{p0}(r)}{\omega_{c0}} \left[1 - \varepsilon(z) \cos qz \right]
\]

modulation strength parameter

number of field ripples

... like “forbidden frequencies”
Broken periodicity introduces gap modes

- Introduce defect into periodicity

Conducting end plate: \[E_g(r; z_0) = 0 \]

- Can be cast as *time-independent Schrödinger system*, and admit localised solutions \((\propto e^{-\lambda z})\), with

\[
\frac{\omega - \omega_0}{\omega_0} = -\frac{\varepsilon}{2} \cos(qz_0)
\]

\[
\lambda = \frac{\varepsilon}{8} q \sin(qz_0)
\]

Gap formation: a generic wave phenomena

Existence of frequency gaps generic wave phenomenon: (e.g. electron band gap in conductors, Bragg reflection in optical interference filters)
Gap modes also present in Tokamaks

- A zoo of gaps and gap modes

Ion cyclotron frequency

Alfven frequency

Thermal diamagnetic frequency

Beta induced Alfven eigenmode (BAE):
Low frequency mode that exists due to finite beta (pressure)

Elliptical Alfven Eigenmode band gap first discovered by Em. Prof. R. L. Dewar in 1974: due to ellipticity of plasma cross-section

Toroidal Alfven Eigenmode

Who cares?... the impact of gap modes

- Alfvén eigenmodes are driven by wave-particle resonance.

 e.g. Wave-particle resonance

 Surfer rides wave

- As energetic particles from beams, radio-frequency heated or fusion alphas collide with thermal population they slow and hit resonances

![Boat drives waves](image)

![Graph showing log f(v) vs. v (× 10^6 ms^-1)](image)
Who cares?... the impact of gap modes

• Alfvén eigenmodes are driven by wave-particle resonance.

 e.g. Wave-particle resonance

 Surfer gets dumped

• As energetic particles from beams, radio-frequency heated or fusion alphas collide with thermal population they slow and hit resonances

• At large amplitude, Alfvén eigenmodes can eject the driving particles from confinement, damaging wall and extinguishing collisional heating
KSTAR

- KSTAR, a new ~$300m superconducting long pulse tokamak
- MOU between ANU and KSTAR
Suspected BAE mode activity in KSTAR

- $P_{\text{NBI}} \sim 1.2\text{MW},$
- $P_{\text{ECRH}} \sim 200\text{kW},$
- 80keV injection energy:
- $1/3 < v_{\parallel}/v_A < 1, \quad v_{\parallel} = v \cdot B$
- $210 < I_p < 407 \text{ kA},$
- $3 < \langle n_e \rangle < 6 \times 10^{19} \text{ m}^{-3}.$

Although ions have $v_{\parallel} < v_A$ they can drive the mode through side band resonances $v_A/3, v_A/5, v_A/7$
Suspected BAE mode activity in KSTAR

- $P_{NBI} \approx 1.2 \text{MW}$,
- $P_{ECRH} \approx 200 \text{kW}$,
- 80keV injection energy:
 - $1/3 < \nu_\parallel / \nu_A < 1$, $\nu_\parallel = v \cdot B$
 - $210 < I_p < 407 \text{kA}$,
 - $3 < \langle n_e \rangle < 6 \times 10^{19} \text{ m}^{-3}$.
Global mode with reduced damping

- Computed ion sound, shear Alfven wave continuum (CSCAS)
- $\omega / \omega_A = -0.137$ (BAE)
- $\omega / \omega_A = -0.138$ (continuum mode)

Radial mode structure

BAE mode frequency

$n=m=1$ global & continuum modes (MISHKA)
Beam changes threshold to BAE drive

Beam heated core T_i

Ohmic core T_i (no heating)

• Thermal temperature gradient drive stability parameter

$$\eta_i = \frac{\partial \ln T_i}{\partial \ln n_i} = \frac{\partial \ln n_i}{\partial r}$$

• Critical gradient = η_c

• Increasing core localisation \Rightarrow lowered instability threshold

• Mode driven by beams through $v_A/3$ resonance

BAE modes in H-1

• H-1 has similar modes, but more complex because fully 3D

continuous spectrum for $N = 1, \kappa_h = 0.30$.

Alfvén branches (colour)

Sound branches (grey)

• CAS3D computed eigenmode for candidate BAE

• Mode postulated to be driven by inverted (hollow) temperature profile

<table>
<thead>
<tr>
<th>Equilibrium</th>
<th>Waves</th>
<th>Stability</th>
<th>Wave-Wave</th>
<th>Wave-Plasma Nonlinearity</th>
</tr>
</thead>
<tbody>
<tr>
<td>WOMBAT</td>
<td></td>
<td></td>
<td>PCEN</td>
<td></td>
</tr>
<tr>
<td>MAGPIE</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(LAPD)^2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KSTAR</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAST</td>
<td>5</td>
<td></td>
<td>MAST</td>
<td></td>
</tr>
<tr>
<td>RFX-mod</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Expected impact of anisotropy

- Small angle θ_b between beam, field $\Rightarrow p_{||} > p_{\perp}$
- Beam orthogonal to field, $\theta_b=\pi/2 \Rightarrow p_{\perp} > p_{||}$
- $p_{||}$ surfaces can be distorted and displaced inward relative to flux surfaces (i.e. Plasma)

 [Cooper et al, Nuc. Fus. 20(8), 1980]

- If $p_{\perp} > p_{||}$, an increase will occur in centrifugal shift :

- Compute p_{\perp} and $p_{||}$ from moments of distribution function, computed by Monte-Carlo collision code

- Infer p_{\perp} from measured diamagnetic current J_{\perp} using $\nabla p = J \times B$

 [see V. Pustovitov, PPCF 52 065001, 2010 and references therein]
Equilibrium in toroidal symmetry

\[\mathbf{J} \times \mathbf{B} = \nabla p \]
\[\begin{cases} \mathbf{B} \cdot \nabla p = 0 \\ \mathbf{J} \cdot \nabla p = 0 \end{cases} \]

\[\therefore \text{No pressure gradient along } \mathbf{B} \]
\[\therefore \text{Current flows in magnetic surfaces} \]

\[\mathbf{J} \times \mathbf{B} = \mu_0 \mathbf{J}, \quad \nabla \cdot \mathbf{B} = 0 \]

- Assume toroidal symmetry.
- Introduce
 - co-ord. system \((R, \zeta, z)\)
 - poloidal flux function \(\psi\), \(\mathbf{B} \cdot \nabla \psi = 0\)
 - toroidal flux function \(f(\psi) = RB_\zeta(\psi, R)/\mu_0\)

- Can reduce to Grad-Shafranov equation

\[
\nabla \cdot \frac{1}{R^2} \nabla \psi = -\mu_0 \frac{J_\zeta}{R} = -\mu_0 p'(\psi) - \frac{\mu_0^2}{R^2} f(\psi) f'(\psi)
\]

- Normally solved by iterating calculation of field from current and current from field with prescribed boundary and \(\{p'(\psi), f(\psi)\}\)
Equilibrium with rotation & anisotropy

- Inclusion of anisotropy and flow in equilibrium MHD equations

 Momentum:
 \[
 \rho \mathbf{v} \cdot \nabla \mathbf{v} = \mathbf{J} \times \mathbf{B} - \nabla \cdot \mathbf{P}
 \]
 \[\mathbf{P} = p_\perp \mathbf{I} + \Delta \mathbf{B} \mathbf{B} / \mu_0, \quad \Delta = \frac{\mu_0 (p_\parallel - p_\perp)}{B^2}\]

- Frozen flux \(\mathbf{v} = -R \phi'_E (\psi) \mathbf{e}_\phi = R \Omega (\psi) \mathbf{e}_\phi \)

Force balance becomes...

\[
\nabla \cdot \left((1 - \Delta) \left(\frac{\nabla \psi}{R^2} \right) \right) = -\frac{\partial p_\parallel}{\partial \psi} - \rho H'(\psi) + \rho \frac{\partial W}{\partial \psi} - \frac{f(\psi)f'(\psi)}{R^2(1 - \Delta)} + R^2 \rho \Omega(\psi) \Omega'(\psi)
\]

Bernoulli equation:

\[
H(\psi) = W(\rho, B, \psi) - \frac{1}{2} [R \phi'_E (\psi)]^2
\]

- \(\partial W / \partial \psi \): different for MHD/ double-adiabatic/ guiding centre

- If two temperature Bi-Maxwellian model chosen

\[
p_\parallel (\rho, B \psi) = \frac{k_B}{m} \rho T_\parallel (\psi) \quad p_\perp (\rho, B \psi) = \frac{k_B}{m} \rho T_\perp (\psi) = \frac{k_B}{m} \rho T_\parallel (\psi) \frac{B}{B - \theta(\psi)T_\parallel}
\]

\[
\{F(\psi), \Omega(\psi), H(\psi), T_\parallel (\psi), \theta(\psi)\}
\]

We have solved this problem!
New code written and benchmarked

- New code EFIT TENSOR written to solve force balance with flow and anisotropy
- “Soloviev” analytic and real data benchmarks (MAST #13050, #18696) have been computed for isotropic, anisotropic and flow cases

Soloviev:
\[\beta_t = 0.07 \]

Extended Soloviev:
\[\beta_t = 0.07, M_\phi = 0.8, \Delta = 0.004, \]

Solution Convergence

Effect of anisotropy on MAST

- MAST #18696
- 1.9MW NB heating
- \(I_p = 0.7 \text{MA}, \beta_n = 2.5 \)
- Magnetics shows wave activity

- What is the impact on q profile due to presence of anisotropy and flow?
- How would this change wave activity?

[M.P. Gryaznevich et al, Nuc. Fus. 48, 084003, 2008]
Monte Carlo collision code gives p_{\parallel}, p_{\perp}, v.

$\rho = \sqrt{\Phi / \Phi_0} \approx s$

$\Phi = \text{toroidal flux}$

$M_{\phi,max} = 0.3$

Impact on plasma computed with EFIT TENSOR.

$\Delta < 0$: $p_{\perp}/p_{\parallel} \approx 1.7$

$\Delta = 0$: $p_{\perp}/p_{\parallel} = 1$

$M_{\phi} > 0$ $M_{\phi,max} = 0.3$

Impact of anisotropy on wave modes

- How do predicted mode frequencies change due to changes in q produced by anisotropy and flow?
- Calculation of change in stability due to anisotropy in progress…

can address: What is the change in ideal MHD modes of $n=1$ TAE?
Impact of anisotropy on wave modes

$ f_{TAE} $ no-flow, isotropic

$ f_{TAE} $ flow, anisotropic

+ creates new eigenmodes

Increased shear gives multiple TAEs

Isotropic, no flow:
Flat shear, $dq/d\rho$

Anisotropic, flow
Reverse shear, $dq/d\rho<0$
Increased shear gives multiple TAEs

Flat shear continuum

q profile

q = 1.5

TAE mode

Single global TAE
(m, n) = (1, 1)
Increased shear gives multiple TAEs

- Reverse shear continuum
- Flat shear continuum
- Core TAE
- Global TAE
- Odd core TAE
- Global TAE
- \(q \) profile
- \(q = 1.5 \)
equilibrium waves stability wave-wave wave-plasma

nonlinearity

WOMBAT

MAGPIE

(LAPD)2

KSTAR

MAST

MAST

RFX-mod

H1

configuration complexity
dielectric tensor(cold)
MHD
MRXMHD
MHD + flow, anisotropy
2 fluid
2 fluid + collisions
Toroidal plasma equilibrium in 3D

• In ideal MHD non-axisymmetric magnetic fields generally do not have a nested family of smooth flux surfaces, unless ideal surface currents are allowed at the rational surfaces.

• If the field is non-integrable (i.e. chaotic), then any continuous pressure that satisfies $\mathbf{B} \cdot \nabla p = 0$ must have an infinitely discontinuous gradient, ∇p.

• Instead, solutions with stepped-pressure profiles are guaranteed to exist. Variational principle called MRXMHD (R. L. Dewar).

• Numerical implementation, SPEC, by S. Hudson (PPPL).
Taylor Relaxed States: Relaxed MHD

- Zero pressure gradient regions are **force-free** magnetic fields:
- In 1974, Taylor argued that turbulent plasmas with small resistivity, and viscosity relax to a Beltrami field

Internal energy:

\[W = \int_{P \cup V} \left(\frac{B^2}{2\mu_0} + \frac{p}{\gamma - 1} \right) d\tau^3 \]

Total Helicity:

\[H = \int_V (A \cdot B) d\tau^3 \]

Taylor solved for minimum \(W \) subject to fixed \(H \)

i.e. solutions to \(\delta F = 0 \) of functional \(F = W - \mu H / 2 \)

P: \(\nabla \times B = \mu B \)

I: \(\left[\left(\frac{B^2}{2\mu_0} + p \right) \right] = 0 \)

V: \(\nabla \times B = 0 \)

Model very successful for toroidal pinches, multipinch, and spheromaks

\[\text{discretised} \quad J \times B = \nabla p \]
Generalised Taylor Relaxation: MRXHMHD

- Assume each invariant tori I_i act as ideal MHD barriers to relaxation, so that Taylor constraints are localized to subregions.

New system comprises:

- N plasma regions P_i in relaxed states.
- Regions separated by ideal MHD barrier I_i.
- Enclosed by a vacuum V,
- Encased in a perfectly conducting wall W

$$W_i = \int_{R_i} \left(\frac{B_i^2}{2 \mu_0} + \frac{P_i}{\gamma - 1} \right) d\tau^3$$

$$H_i = \int_V (\mathbf{A}_i \cdot \mathbf{B}_i) d\tau^3$$

Seek minimum energy state:

$$F = \sum_{l=1}^{N} \left(W_l - \mu_l H_l / 2 \right)$$

At each P_i:

$$\nabla \times \mathbf{B} = \mu_l \mathbf{B}$$

$$P_i \text{ = constant}$$

At each I_i:

$$\mathbf{B} \cdot \mathbf{n} = 0$$

$$[[P_i + B^2 / (2 \mu_0)]] = 0$$

At V:

$$\nabla \times \mathbf{B} = 0$$

$$\nabla \cdot \mathbf{B} = 0$$

At W:

$$\mathbf{B} \cdot \mathbf{n} = 0$$
Example: DIII-D with $n=3$ applied error field

- 3D boundary, p, q-profile from flux-surfaces-model

- Irrational interfaces chosen to coincide with pressure gradients.

- Islands are now resolved

Standard MHD model

SPEC (MRXMHD)

formation of magnetic islands at rational surfaces
Spontaneously formed helical states

Dennis, Hudson, Terranova, Dewar, Hole

• The quasi-single helicity state is a stable helical state in RFP: becomes purer as current is increase

“Experimental” Poincaré plot

[Fig. 6 of P. Martin et al., Nuclear Fusion 49, 104019 (2009)]
Spontaneously formed helical states

Dennis, Hudson, Terranova, Dewar, Hole

- The quasi-single helicity state is a stable helical state in RFP: becomes purer as current is increase

[Fig. 6 of P. Martin et al., Nuclear Fusion 49, 104019 (2009)]

“Experimental” Poincaré plot

- Model RFX-mod QSH state by a 2-interface minimum energy MRX MHD state.

Spontaneously formed helical states
Dennis, Hudson, Terranova, Dewar, Hole

- The quasi-single helicity state is a stable helical state in RFP: becomes purer as current is increase

- Model RFX-mod QSH state by a 2-interface minimum energy MRXMHD state.
- Theoretical Poincaré plots match experiment as barrier is changed

“Experimental” Poincaré plot
[Fig. 6 of P. Martin et al., Nuclear Fusion 49, 104019 (2009)]

Spontaneously formed helical states

- The quasi-single helicity state is a stable helical state in RFP: becomes purer as current is increased.

Model RFX-mod QSH state by a 2-interface minimum energy MRXMHD state.

Theoretical Poincaré plots match experiment as barrier is changed.

“Experimental” Poincaré plot

[Fig. 6 of P. Martin et al., Nuclear Fusion 49, 104019 (2009)]

Spontaneously formed helical states

- The quasi-single helicity state is a stable helical state in RFP: becomes purer as current is increased.

- Model RFX-mod QSH state by a 2-interface minimum energy MRX MHD state.

- Theoretical Poincare plots match experiment as barrier is changed.

[Fig. 6 of P. Martin et al., Nuclear Fusion 49, 104019 (2009)]

“Experimental” Poincaré plot

Spontaneously formed helical states

• The quasi-single helicity state is a stable helical state in RFP: becomes purer as current is increase

• Model RFX-mod QSH state by a 2-interface minimum energy MRXMHD state.

• Theoretical Poincaré plots match experiment as barrier is changed

“Experimental” Poincaré plot

[Fig. 6 of P. Martin et al., Nuclear Fusion 49, 104019 (2009)]

Spontaneously formed helical states

- The quasi-single helicity state is a stable helical state in RFP: becomes purer as current is increased.

- Model RFX-mod QSH state by a 2-interface minimum energy MRXMHD state.

- Theoretical Poincare plots match experiment as barrier is changed.

- RFP bifurcated state has lower energy (preferred) than comparable axis-symmetric state.

“Experimental” Poincare plot

[Fig. 6 of P. Martin et al., Nuclear Fusion 49, 104019 (2009)]

Spontaneously formed helical states

Dennis, Hudson, Terranova, Dewar, Hole

• The quasi-single helicity state is a stable helical state in RFP: becomes purer as current is increase

“Experimental” Poincaré plot

[Fig. 6 of P. Martin et al., Nuclear Fusion 49, 104019 (2009)]

• Model RFX-mod QSH state by a 2-interface minimum energy MRXMHD state.

• Theoretical Poincare plots match experiment as barrier is changed

• RFP bifurcated state has lower energy (preferred) than comparable axis-symmetric state

• Looks similar to H-1 (next step), indeed … next stellarator conference is joint with RFP’s
equilibrium waves stability wave-wave wave-plasma nonlinearity

WOMBAT

MAGPIE 1

(LAPD)\(^2\)

KSTAR 3

MAST 5

MAST

RFX-mod 6

H1 4

Maxwell’s equations Bayesian Inference

MHD

MRXMHD

MHD + flow, anisotropy

2 fluid

2 fluid + collisions
Bayesian equilibrium modelling: integrating data with theory

J. Svensson, G. von Nessi, M. Hole, L. Appel,

$$P(H|D) = \frac{P(D|H)P(H)}{P(D)}$$

$$H = \{J_\phi(R, Z), p'(\psi), f(\psi), \rho(\psi, R), \Omega(\psi)\}$$

$$D = \{P_i(R, Z), F_i(R, Z), \tan \gamma_i(R, Z), I_p, P_{s,e}, S_e(k, \omega), S_C(v)\}$$

Aims
(1) Improve equilibrium reconstruction
(2) Validate different physics models

Two fluid with rotation

Ideal MHD fluid with rotation

Energetic particle resolved multiple-fluid
[Hole & Dennis, PPCF 51 035014, 2009]

(3) Infer poorly diagnosed physics parameters
Relevance to ITER
ITER: The next step for fusion power

- Fusion power = 500MW
- Power Gain > 10
- Temperature ~ 100 million °C

Growing Consortium

- Collaboration agreements with
 - International Atomic Energy Agency
 - CERN – world’s largest accelerator
 - Principality of Monaco

Construction +10 year
operation cost ~$20 billion

Fiscally, world’s largest science experiment
Plasma Physics Challenges

- Production and study of a plasma dominated by self heating. *Burning Plasma Physics.*

- New instabilities in burning plasmas: possibilities energetic particle modes driven by beam ions, fusion α-s could “short-circuit” heating of thermal plasma

- Edge Localised Modes: Control of field lines that erupt through plasma edge

- Better disruption mitigation (e.g. massive gas puff injection).

- Real time mode control and identification

- Measurement and “integrated modelling” of plasmas under extreme conditions.

Difference images from D$^\alpha$ camera of MAST plasmas
Physics contributions to ITER

<table>
<thead>
<tr>
<th>configuration complexity</th>
<th>equilibrium</th>
<th>waves</th>
<th>stability</th>
<th>wave-wave</th>
<th>wave-plasma nonlinearity</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITER</td>
<td>gap mode physics</td>
<td>Continuum damping</td>
<td>stochastic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bayesian</td>
<td>Anisotropy</td>
<td>3D fields: ripple, error, RMP</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Australian contributions to ITER science

Powering ahead:

* a national response to the rise of the international fusion power program

B. James (coordinator), R. Garrett, B. Green, M. J. Hole, J. Howard, J. O’Connor

- Successor to a strategy for fusion science in Australia released in 2007
- Outcomes: H-1 upgrade, influence Future Fellowship Scheme

Exposure draft available at

http://www.ainse.edu.au/fusion/iter/australian_fusion_strategy2

- Proposed participation in the International Tokamak Physics Activity, coordinated by the ITER Organisation. ITPA topical groups in
 - Diagnostics
 - Energetic Particle Physics
 - Integrated Operating Scenarios
 - MHD, Disruption and Control
 - Pedestal and Edge
 - Scrape-off Layer and Divertor
 - Transport and Confinement

- Construction of a pilot coherence imaging divertor diagnostic

- Country level agreement proposed through ANSTO
Summary

• Plasma Theory and Modelling: a vibrant ANU pursuit developing theory for next generation fusion experiments, and supporting physics interpretation of existing experiments.

• Very strong international collaboration

• Research areas
 - Burning plasma physics: anisotropy and flow, energetic particle driven modes
 - 3D MHD physics (e.g. MRXMHD). Impacts of 3D structure on plasma.
 - Bayesian inference of configurations
 - Interpretation/modelling of international and domestic experiments
 - Not mentioned… continuum damping, pulsar modelling, ELM statistics

• Research synergies identified with ITER and its strategic research community, the International Tokamak Physics Activity ITPA. These align with Australian strategic planning for fusion science.