Potential student research projects

Search

You may search the complete list of available RSPE projects by visiting our central listing.

Advanced project list filtering

Biophysics

Bacteria turbulence: diffusion and self-organizaiton

Dense bacterial flows have been shown to exhibit properitse of self-organizaiton. This project is aimed at determining the underlying mechanism of the bacterial self-organizaiton by study the bacteria dispersion using PIV and PTV techniques. 

Dr Hua Xia, Dr Nicolas Francois, Professor Michael Shats, Dr Horst Punzmann

Engineering in Physics

System calculations for hunter killer satellites

Space junk is a major problem for space travel. We use an energetic particle beam to manoeuvre a satellite close to junk then blast it with the particle beam to deorbit the junk

Professor Roderick Boswell

Plasma surface interactions under extreme conditions

High power ion beams can be used to replace lasers as sources for evaporated coating material. Work with industry to discover the physics.

Professor Roderick Boswell

Magnetic nozzles and plasma generated by a remote source.

When plasmas are decoupled from their source of power, much can be learned about non-local effects of energy transport.

Professor Roderick Boswell

Computer simulation of expanding plasmas

Experimental work on expanding plasmas is greatly aided by computer simulation using plasma fluid codes. 

Professor Roderick Boswell

Plasma Thrusters for Spacecraft

Low Earth Orbit satellites such as CubeSats can have their lifetime boosted by using our unique plasma thrusters to insert them into higher orbits. 

Professor Roderick Boswell

Particle simulation of dual frequency processing plasmas

We employ Particle in Cell simulations that are inexpensive true computer experiments to complement the use of costly industrial microchip plasma systems.

Professor Roderick Boswell

Physics of Fluids

Bacteria turbulence: diffusion and self-organizaiton

Dense bacterial flows have been shown to exhibit properitse of self-organizaiton. This project is aimed at determining the underlying mechanism of the bacterial self-organizaiton by study the bacteria dispersion using PIV and PTV techniques. 

Dr Hua Xia, Dr Nicolas Francois, Professor Michael Shats, Dr Horst Punzmann

Plasma Applications and Technology

System calculations for hunter killer satellites

Space junk is a major problem for space travel. We use an energetic particle beam to manoeuvre a satellite close to junk then blast it with the particle beam to deorbit the junk

Professor Roderick Boswell

Plasma surface interactions under extreme conditions

High power ion beams can be used to replace lasers as sources for evaporated coating material. Work with industry to discover the physics.

Professor Roderick Boswell

Magnetic nozzles and plasma generated by a remote source.

When plasmas are decoupled from their source of power, much can be learned about non-local effects of energy transport.

Professor Roderick Boswell

Computer simulation of expanding plasmas

Experimental work on expanding plasmas is greatly aided by computer simulation using plasma fluid codes. 

Professor Roderick Boswell

Plasma Thrusters for Spacecraft

Low Earth Orbit satellites such as CubeSats can have their lifetime boosted by using our unique plasma thrusters to insert them into higher orbits. 

Professor Roderick Boswell

Particle simulation of dual frequency processing plasmas

We employ Particle in Cell simulations that are inexpensive true computer experiments to complement the use of costly industrial microchip plasma systems.

Professor Roderick Boswell

Updated:  15 January 2019/ Responsible Officer:  Head of Department/ Page Contact:  Physics Webmaster