Potential student research projects

Search

Advanced project list filtering

Astrophysics

Constraining toroidal equilibria to accretion disc observations

In this project we would compare the construction of accretion disc and magnetic configuration Grad-Shafranov problems, and apply a recently developed toroidal magnetic confinement equilibrium code to model an accretion disc. A focus of the project will be constraining free functions to observational data. 

Assoc. Prof. Matthew Hole, Dr Michael Fitzgerald

Modelling a solar fare by MRXMHD

In this project, we apply multiple-region relaxed MHD model, designed to describe the fractal fix of chaotic field lines, magentic islands, and flux surfaces in toroidal magnetic confinement, to describe a solar flare.

Assoc. Prof. Matthew Hole

Biophysics

Bacteria turbulence: diffusion and self-organizaiton

Dense bacterial flows have been shown to exhibit properitse of self-organizaiton. This project is aimed at determining the underlying mechanism of the bacterial self-organizaiton by study the bacteria dispersion using PIV and PTV techniques. 

Dr Hua Xia, Dr Nicolas Francois, Professor Michael Shats, Dr Horst Punzmann

Clean Energy

Inclusion of toroidal flow into multiple relaxed region MHD

A new model, multiple relaxed region MHD, has been developed to describe magnetic islands and chaotic fields in toroidal magentic cofinement. This project would extend that model to include toroidal flow.

Assoc. Prof. Matthew Hole, Dr Graham Dennis, Emeritus Professor Robert Dewar

Lorentz forces in a tokamak

In this project we will examine the forces generated in superconductoring magnetics, and scope the forces generated during a disruption.

Assoc. Prof. Matthew Hole

Tearing modes in the multi-region relaxed MHD plasma model

The project is to relate the onset of tearing mode instability in MRXMHD to the multi-tearing Delta' formalism of Dewar and Pletzer (developed in an earlier ANU PhD project) and to use this to model recent experimental results in Reversed Field Pinches (RFPs), a class of toroidal fusion devices.

Assoc. Prof. Matthew Hole, Dr Graham Dennis, Emeritus Professor Robert Dewar

Orbit topologies and wave-particle resonance in fusion plasmas

In this project the wave-particle resonance condition will be computed for a range of precomputed particle orbits (and orbit populations), which initially were computed for transport studies. An estimate of wave-drive due to spatial gradients will be afforded using wave functions from an ideal MHD stability analysis and orbit population information, and compared to diagnostics.

Assoc. Prof. Matthew Hole, Dr Michael Fitzgerald

Environmental Physics

Effect of large coherent vortices on Lagrangian statistics in 2D turbulence

Laboratory experiments in turbulent flows and numberical analysis of the statistical properties of the flows

Dr Hua Xia

Spectral energy transfer in turbulence

Laboratory measurement of turbulent flows and numberical analysis of the statistical properties of the flows

Dr Hua Xia

Fusion and Plasma Confinement

Inclusion of toroidal flow into multiple relaxed region MHD

A new model, multiple relaxed region MHD, has been developed to describe magnetic islands and chaotic fields in toroidal magentic cofinement. This project would extend that model to include toroidal flow.

Assoc. Prof. Matthew Hole, Dr Graham Dennis, Emeritus Professor Robert Dewar

Constraining toroidal equilibria to accretion disc observations

In this project we would compare the construction of accretion disc and magnetic configuration Grad-Shafranov problems, and apply a recently developed toroidal magnetic confinement equilibrium code to model an accretion disc. A focus of the project will be constraining free functions to observational data. 

Assoc. Prof. Matthew Hole, Dr Michael Fitzgerald

Modelling a solar fare by MRXMHD

In this project, we apply multiple-region relaxed MHD model, designed to describe the fractal fix of chaotic field lines, magentic islands, and flux surfaces in toroidal magnetic confinement, to describe a solar flare.

Assoc. Prof. Matthew Hole

Thermonuclear ringtones in tokamak plasmas

Key to sustaining fusion plasmas is that they are MHD stable to disruptive mode activity, and other electromagnetic modes do not result in catastrophic performance degradation. The project involves exploiting a generalised MHD code to describe high frequency Compressional Alfven eigenmode activity in high plasma performance international experiments.

Assoc. Prof. Matthew Hole, Dr Michael Fitzgerald, Emeritus Professor Robert Dewar

Lorentz forces in a tokamak

In this project we will examine the forces generated in superconductoring magnetics, and scope the forces generated during a disruption.

Assoc. Prof. Matthew Hole

Tearing modes in the multi-region relaxed MHD plasma model

The project is to relate the onset of tearing mode instability in MRXMHD to the multi-tearing Delta' formalism of Dewar and Pletzer (developed in an earlier ANU PhD project) and to use this to model recent experimental results in Reversed Field Pinches (RFPs), a class of toroidal fusion devices.

Assoc. Prof. Matthew Hole, Dr Graham Dennis, Emeritus Professor Robert Dewar

Shocks transitions in nonuniform magnetic fields

Recent development of a flowing MHD model for the rotating, collisional column of MAGPIE plasmas discovered the intriguing prediction of opposite axial acceleration of the plasma ions in the subsonic and supersonic regimes. This project would examine the regime above, below, and through the shock.

Assoc. Prof. Matthew Hole, Dr Cormac Corr

Orbit topologies and wave-particle resonance in fusion plasmas

In this project the wave-particle resonance condition will be computed for a range of precomputed particle orbits (and orbit populations), which initially were computed for transport studies. An estimate of wave-drive due to spatial gradients will be afforded using wave functions from an ideal MHD stability analysis and orbit population information, and compared to diagnostics.

Assoc. Prof. Matthew Hole, Dr Michael Fitzgerald

Physics of Fluids

Effect of large coherent vortices on Lagrangian statistics in 2D turbulence

Laboratory experiments in turbulent flows and numberical analysis of the statistical properties of the flows

Dr Hua Xia

Spectral energy transfer in turbulence

Laboratory measurement of turbulent flows and numberical analysis of the statistical properties of the flows

Dr Hua Xia

Bacteria turbulence: diffusion and self-organizaiton

Dense bacterial flows have been shown to exhibit properitse of self-organizaiton. This project is aimed at determining the underlying mechanism of the bacterial self-organizaiton by study the bacteria dispersion using PIV and PTV techniques. 

Dr Hua Xia, Dr Nicolas Francois, Professor Michael Shats, Dr Horst Punzmann

Plasma Applications and Technology

The principles and design of a plasma wakefield accelerator

In this project the principles and design of a plasma wakefield accelerator will be reviewed, and the opportunities for a low-cost wakefield accelerator explored.

Assoc. Prof. Matthew Hole

Shocks transitions in nonuniform magnetic fields

Recent development of a flowing MHD model for the rotating, collisional column of MAGPIE plasmas discovered the intriguing prediction of opposite axial acceleration of the plasma ions in the subsonic and supersonic regimes. This project would examine the regime above, below, and through the shock.

Assoc. Prof. Matthew Hole, Dr Cormac Corr

Updated:  17 August 2017/ Responsible Officer:  Head of Department/ Page Contact:  Physics Webmaster