Theoretical physics

Much of the theoretical work in the School compliments the experimental programs in areas such as the transport studies in semiconductors, photonics and optical communications.

One of the most exciting areas of modern theoretical physics is the modelling of the behaviour of complex systems such as climate patterns and the turbulent flow of fluids. RSPhysSE is one of the major players in the ARC Research Network for Complex Systems with many of our researchers undertaking research in this field.

The School also has strong research interests in Nonlinear optics and solitons, developing basic theories of solitons for optical systems that including all-optical information transmission lines and ultra-short pulse lasers. This work also extends to the design of specific novel planar and fibre light processing devices, including those with the potential for commercialisation.

Selected research highlights

Potential student research projects

You could be doing your own research into fusion and plasma confinement. Below are some examples of student physics research projects available in RSPE.

Please browse our full list of available physics research projects to find a project that interests you.

The concept of rogue waves was born in nautical mythology, entered the science of ocean waves and gradually moved into other fields: optics, matter waves, superfluidity. This project will allow students to enter the front edge of modern science.

» Find out more about this project

Dissipative solitons are generated due to the balance between gain and loss of energy as well as to the balance between input and output of matter. Their existence requires continuous supply of energy and matter that is available in open systems. The model explains variety of phanomena in biology and physics.

» Find out more about this project

The project studies possibility of the coherent control (i.e. manipulating properties of a quantum system, such as charge density, levels populations, etc., using a suitably tailored laser pulse) for a quantum mechanical model of a molecule.

» Find out more about this project

A novel technique devised at ANU has recently given a breakthrough in the precision with which the magnetic moments of picosecond-lived excited states in sd-shell nuclei (i.e. isotopes of oxygen through to calcium) may be measured. A sequence of precise measurements will be performed to comprehensively test the shell model.

» Find out more about this project

Updated:  15 June 2016/ Responsible Officer:  Director, RSPE/ Page Contact:  Physics Webmaster