Quantum science and applications

In addition to the interesting new physics quantum processes and devices are beginning to uncover, these exotic phenomena have important practical applications.

One such area is quantum cryptography the science of sending secret messages via a quantum channel. It uses properties of quantum mechanics to establish a secure key, a process known as quantum key distribution. This key can then be used at a later stage to send encrypted information.

Quantum techniques can also be applied to reducing the noise present in laser beams, a process known as squeezing. We currently have an extensive research program investigating the application of squeezing and other quantum noise reduction techniques in the laser interferometers used to detect gravitational waves.

Selected research highlights

Potential student research projects

You could be doing your own research into fusion and plasma confinement. Below are some examples of student physics research projects available in RSPE.

Please browse our full list of available physics research projects to find a project that interests you.

Analytic solutions of real-world quantum mechanics problems are rare, and in practise we must use numerical methods to obtain solutions. This project will give you practical experience in solving the static and time-dependent Schrödinger equations using a computer.

» Find out more about this project

This research project, with both experimental and theoretical angles, is developing a new perspective on the transition from a quantum superposition to effectively irreversible outcomes in quantum collisions.

» Find out more about this project

The idea of equilibration is ubiquitous throughout nature. Out-of-equilibrium dynamics – be it caused by a disturbance and subsequent “rethermalisation”, or by passing through a phase transition – is a difficult question to characterise. This project looks at both equilibration and phase transitions in a Bose-Einstein condensate of metastable helium atoms.

» Find out more about this project

This project goal is to investigate, theoretically and experimentally, the role of symmetry in space and time in classical and quantum nonlinear photonics. Specific aims include the development of optical signal amplifiers, switches, lasers, and quantum photon sources.

» Find out more about this project

Updated:  15 June 2016/ Responsible Officer:  Director, RSPE/ Page Contact:  Physics Webmaster