Photonics, lasers and nonlinear optics

The School has a very strong research effort in laser physics, photonics, and nonlinear optical phenomena including:

  • laser cooling and trapping of atoms - the use of multiple laser beams and graded magnetic fields to cool (slow down) atoms and atomic beams. This work allows researchers to study the fundamental physics of atoms and also has technological applications in atom beam lithography.
  • optical materials - nonlinear properties of polymers and chalcogenide glasses and the application of polymers to novel optical fibre devices such as all optical amplifiers.
  • photonics - research includes development of novel organic-inorganic polymer glasses IPGTM for the fabrication of optical chips and design/modelling of optical waveguide devices.
  • optoelectronic devices - MOCVD growth of a variety of lasers and detectors including InP-based vertical-cavity surface emitting lasers (VCSELs), quantum well structures and quantum dot infrared photodetectors. Ion beam intermixing is also used for post-growth modification of devices.
  • quantum computing - development of quantum computer architectures based on nuclear/electron spins that are associated with optically active centres. This allows the spins to be manipulated and measured using purely optical techniques.
  • optical solitons - in spatial optical solitons the process of diffraction is prevented by the self-induced change of the refractive index. Spatial solitons are of special interest for applications in all optical switching or processing. We study theoretically and experimentally the formation and interaction of various types of spatial optical solitons in optical systems.
  • Theoretical modelling of nonlinear optical phenomena - guided wave photonics, modelling and design of novel light-processing devices for telecommunications and other applications. modelling of Bose-Einstein condensation and associated applications. Left-handed materials offering a negative index of refraction.

Although much of our research focuses on light lasers, we also have a world-leading research effort in the area of atom lasers based around BECs. In areas such as satellite gyroscope rotation measurement central to positioning measurements, BEC matter lasers offer inherent accuracy millions of times better than current systems.

Selected research highlights

Potential student research projects

You could be doing your own research into fusion and plasma confinement. Below are some examples of student physics research projects available in RSPE.

Please browse our full list of available physics research projects to find a project that interests you.

This project aims to investigate the concepts and strategies required to produce electrically injected semiconductor nanowire lasers by understanding light interaction in nanowires, designing appropriate structures to inject current, engineer the optical profile and developing nano-fabrication technologies. Electrically operated nanowire lasers would enable practical applications in nanophotonics.

» Find out more about this project

This project aims to develop a photonic quantum processor based on a planar waveguide architecture incorporating rare-earth doped crystals.

» Find out more about this project

Terahertz frequency range is the least explored part of the electromagnetic spectrum, and we work towards using it in a range of breakthrough imaghing, security and communication applications. We offer a range of Honours, Masters and PhD projects, which include theoretical, numerical and experimental work with terahertz metamaterials.

» Find out more about this project

Antennas are at the heart of modern radio and microwave frequency communications technologies. They are the front-ends in satellites, cell-phones, laptops and other devices that make communication by sending and receiving radio waves. This project aims to design analog of optical nanoantennas for visible light for advanced optical communiction. 

» Find out more about this project

Updated:  17 August 2017/ Responsible Officer:  Director, RSPE/ Page Contact:  Physics Webmaster