Fusion and plasma confinement

The ability to confine very high temperature plasmas is central to the issue of fusion power generation. RSPE hosts the H1-NF toroidal helical-axis stellarator which is used to study the physics of confined plasmas and to develop novel diagnostic instrumentation for larger power reactors. Special areas of interest include plasma turbulence and spectroscopic instrumentation.

In support of the experimental efforts, RSPE also undertakes a strong theoretical research program in modelling of plasma flow dynamics and related complex phenomena. We are also a partial host for the ARC Complex Systems Research Network.

Selected research highlights

Potential student research projects

You could be doing your own research into fusion and plasma confinement. Below are some examples of student physics research projects available in RSPE.

Please browse our full list of available physics research projects to find a project that interests you.

This project involves studying the complex plasma-surface interaction region of a fusion-relevant plasma environment through laser-based and spectroscopic techniques.

» Find out more about this project

In this project we would compare the construction of accretion disc and magnetic configuration Grad-Shafranov problems, and apply a recently developed toroidal magnetic confinement equilibrium code to model an accretion disc. A focus of the project will be constraining free functions to observational data. 

» Find out more about this project

At large amplitude these bursty energetic particle driven fishbones have been observed to evolve into long-lived "helical" structures in several tokamaks, notably the Mega Ampere Spherical Tokamak of the Culham Centre for Fusion Energy.  In this project we investigate the role of energetic particles during the transition from bursting fishbone to a long-living mode.

» Find out more about this project

Recent development of a flowing MHD model for the rotating, collisional column of MAGPIE plasmas discovered the intriguing prediction of opposite axial acceleration of the plasma ions in the subsonic and supersonic regimes. This project would examine the regime above, below, and through the shock.

» Find out more about this project

Updated:  17 August 2017/ Responsible Officer:  Director, RSPE/ Page Contact:  Physics Webmaster