Atomic and molecular physics research

The physical properties of atoms and molecules, underpin the nature of all matter and as such their study represents a fundamental discipline. The School has a number of research programs in this area.

The School partially hosts the ARC Centre of Excellence for Quantum Atom Optics, and plays a leading role in the development of laser and magnetic cooling systems designed to create Bose Einstein condensates and atomic beams. RSPhysSE recently became one of only four groups in the world to achieve a BEC using excited metastable helium.

The School is a partial host to The ARC Centre of Excellence for Antimatter-Matter Studies whose experimental and theoretical program is based around the study of the interaction of positrons with matter. Anti-particles give a unique insight into the structure and properties of matter with applications in fundamental science, medicine and nanoscale materials. This work is complimented by a strong research effort in electron physics, especially electron momentum spectroscopy.

We also study ultra violet physics and problems of atmospheric, aeronomic and astrophysical significance, relating to the interaction of vacuum ultraviolet radiation with gaseous matter. Such studies are fundamental to understanding the distribution of ozone, and the behaviour of atmospheric pollutants. Quantum mechanical modelling of spectra is used to interpret photoabsorption spectroscopy measurements.

Selected research highlights

Potential student research projects

You could be doing your own research into fusion and plasma confinement. Below are some examples of student physics research projects available in RSPE.

Please browse our full list of available physics research projects to find a project that interests you.

We create the coldest stuff in the Universe – a Bose-Einstein condensate (BEC) – by laser-cooling helium atoms to within a millionth of a degree Kelvin. At these extremely low temperatures particles behave more like waves.  You will use the BEC to study fundamental quantum mechanics and for applications like atom interferometry.

» Find out more about this project

Using methods of quantum many-body theory to describe elementary processes in atoms and molecules interacting with strong electromagnetic fields.

» Find out more about this project

The project studies double photon ionization of a helium atom using simplified one-dimensional model. This allows to elucidate some features of the process (such as possible existence of the effect of the Rabi oscillations in the double ionization probabilities), which (for computational reasons) are difficult to study using the 3D model.

» Find out more about this project

Auger electrons are emitted after nuclear decay and are used for medical purposes. The number of Auger electrons generated per nuclear decay is not known accurately, a fact that  hinders medical applications.  This project aims to obtain a experimental estimate of the number of Auger electrons emitted per nuclear decay.


» Find out more about this project

Updated:  15 June 2016/ Responsible Officer:  Director, RSPE/ Page Contact:  Physics Webmaster