The School has a strong focus on external interactions that cover national and international collaboration, securing funding support for its programs from external sources, encouraging staff to play leading roles in professional societies, activities and outreach programs and in exploring opportunities for commercializing its research. This section summarizes such activities in 2001.

Domestic and international collaborations continue to be a major ingredient in the success of all of the major School research programs. We had approximately 200 collaborative projects in 2001 that have either resulted in joint publications or have attracted external funding support. We also report many national and international Collaborative Agreements or MoUs. Such collaborations have brought a large number of visitors to the School. For example, in excess of 100 of these visitors have either presented departmental seminars or have participated in joint research projects. Another important collaborative function for the School is the support of major national experimental facilities that would not otherwise be viable at regional universities. These facilities include the H-1 National Plasma Fusion Research Facility in the Plasma Physics Laboratory, which has received funding under the National Major Research Facilities scheme, and the Heavy Ion Accelerator Facility in the Department of Nuclear Physics that is also unique nationally and attracts a large number of international scientists. Together with major suites of laboratories supporting semiconductor optoelectronic device and photonic components programs, such facilities provide a focus for students and researchers (from ANU and other institutions) to participate in large-scale physics research. The School’s research centres are also a focus for collaboration and we report the activities of the Australian Photonics Cooperative Research Centre, the ANU Centre for Theoretical Physics (now the Centre for Complex Systems) and the Centre for the Mind in this section.

The School has placed an increasing emphasis on attracting external funding in recent years, particularly with progressive entry into the Australian Research Council (ARC) programs and the consequential withdrawal of 20% of the School Block Grant by 2003. One quarter of the academic cohort of the School was eligible to apply for ARC Discovery Grants in 2001 for funding in 2002. The School’s success rate of 29% was well above the program success rate of 20%. In terms of overall external income, the School was the recipient of more than 80 R&D grants (from various government and non-government sources) or industry contracts, amounting to more than $7.5 million in 2001. The range of industrial funding support covered direct project funding and service contracts by industry, support of PhD students and postdoctoral fellows, funding for equipment and facilities in lieu of industry access, partners in government grants and centre funding. Interactions with industry not only bring income into the School but are important precursors to commercialization of the School’s intellectual property. Some of the commercialisation ventures pursued by the School in 2001 are outlined in this section.

Strong involvement in professional societies, demonstrating international leadership in the profession and outreach activities are also important School priorities. It is noteworthy that academic staff of the School serve on the editorial boards of over 30 domestic and international journals, a similar number of international advisory committees, have organized (and chaired) four international conferences/workshops and acted as international proposal reviewers for several organisations in 2001. Outreach activities include strong involvement with high schools, summer school programs, public lecture series and the Australian Science Festival.
Collaborative Ventures, Agreements & Memoranda of Understanding

National and International Links

Applied Mathematics

<table>
<thead>
<tr>
<th>Project</th>
<th>Partners</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr A. Christy</td>
<td>Project: Mesosstructure of Framboidal Sulphide Mineral Aggregates</td>
</tr>
<tr>
<td></td>
<td>Partners: Dr D.J. Large and coworkers, University of Nottingham, UK</td>
</tr>
<tr>
<td></td>
<td>Project: Modelling Incommensurately Modulated Crystal Structures of Non-Stoichiometric Apatites</td>
</tr>
<tr>
<td></td>
<td>Partners: Professor S.A. Lidin and Dr P. Alberius-Henning, Stockholm University, Sweden</td>
</tr>
<tr>
<td>Dr V. Craig</td>
<td>Project: Nanomechanical Measurements with AFM</td>
</tr>
<tr>
<td></td>
<td>Partners: Dr S. Biggs, University of Newcastle</td>
</tr>
<tr>
<td></td>
<td>Project: Surfactant Adsorption: Kinetics & Equilibrium Excess</td>
</tr>
<tr>
<td></td>
<td>Partners: Dr S. Biggs, University of Newcastle</td>
</tr>
<tr>
<td>Professor E. Gamaly; Dr A. Rode and Professor B. Luther-Davies (LPC)</td>
<td>Project: Deposition of Diamond-Like Films by Powerful UV Femtosecond and Nanosecond Laser Ablation combining Deposition and Ion Implantation Modes</td>
</tr>
<tr>
<td></td>
<td>Partners: Professor C. Fokas, Foundation for Research and Technology – Hellas, Greece; Professor A. Perrone and Dr A. Zucco, University of Lecce, Italy</td>
</tr>
<tr>
<td></td>
<td>Project: Excitation of Solids by Femtosecond Lasers: Non Equilibrium Phenomena, Phase Transitions and Ablation of Metals and Dielectrics</td>
</tr>
<tr>
<td></td>
<td>Partners: Professor V.T. Tikhonchuk, University of Bordeaux, France</td>
</tr>
<tr>
<td></td>
<td>Project: Formation of Nanoclusters by Femtosecond Laser Ablation</td>
</tr>
<tr>
<td></td>
<td>Partners: Professor M. Santis and Dr O. Utzca, University of Marseille, France; Professor V.T. Tikhonchuk, University of Bordeaux, France</td>
</tr>
<tr>
<td></td>
<td>Project: Transient Optical Properties and Phase Transition in Solids-induced by Femtosecond Lasers</td>
</tr>
<tr>
<td></td>
<td>Partners: Professor M. Santis and Dr Olivier Utzca, University of Marseille, France; Professor V.T. Tikhonchuk, University of Bordeaux, France</td>
</tr>
<tr>
<td>Professor S. Hyde</td>
<td>Project: Solid State Networks</td>
</tr>
<tr>
<td></td>
<td>Partners: Professor M. O’Keeffe, Arizona State University, USA; O. Yaghi, Michigan State University, USA</td>
</tr>
<tr>
<td></td>
<td>Project: The Computational Surface Geometry of Proteins</td>
</tr>
<tr>
<td></td>
<td>Partners: Professor Y. Nagai, Kokushikan University, Tokyo</td>
</tr>
<tr>
<td>Professor S. Hyde; Dr M. Knackstedt and Dr A. Sheppard and Mr S. Ramsden</td>
<td>Project: Mesoscale Physics Program for Software Development of Fluid Transport and Complex Disordered and Ordered Morphologies</td>
</tr>
<tr>
<td></td>
<td>Partners: The Australian Partnership for Advanced Computation</td>
</tr>
<tr>
<td>Dr M. Knackstedt</td>
<td>Project: CT Imaging of Sedimentary Rock</td>
</tr>
<tr>
<td></td>
<td>Partners: Professor W.V. Puncewicz, University of New South Wales</td>
</tr>
<tr>
<td></td>
<td>Project: Interpretation of Laboratory Core Measurements</td>
</tr>
<tr>
<td></td>
<td>Partners: Professor W.V. Puncewicz, University of New South Wales; Mr C. Ballavres, BHP Petroleum</td>
</tr>
<tr>
<td>Professor S. Marcelja</td>
<td>Project: Gaussian Random Fields with Two Level Cuts</td>
</tr>
<tr>
<td></td>
<td>Partners: Mr. L. Arleth, Rise National Laboratory, Denmark; Professor Th. Zemb, CE Saclay, France</td>
</tr>
<tr>
<td>Mr R. Roberts, Dr T.J. Senden and Dr M. Knackstedt</td>
<td>Project: Fluid Penetration into Paper Products</td>
</tr>
<tr>
<td></td>
<td>Partners: Dr B. Lyne, International Paper, Tuxedo Park, USA</td>
</tr>
</tbody>
</table>

Atomic and Molecular Physics Laboratories

<table>
<thead>
<tr>
<th>Project</th>
<th>Partners</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr A. Sakellarious</td>
<td>Project: High-Speed Data Acquisition Systems</td>
</tr>
<tr>
<td></td>
<td>Partners: Micro-Analytical Research Centre, University of Melbourne</td>
</tr>
<tr>
<td>Dr T.J. Senden</td>
<td>Project: Novel Radio-Therapeutic Products</td>
</tr>
<tr>
<td></td>
<td>Partners: ANSTO</td>
</tr>
<tr>
<td></td>
<td>Project: Development of Novel Radio-Diagnostic Nanoparticles</td>
</tr>
<tr>
<td></td>
<td>Partners: Vincel Biosciences Inc.</td>
</tr>
<tr>
<td></td>
<td>Project: FDA approval of Technegas in the USA</td>
</tr>
<tr>
<td></td>
<td>Partners: Vita Medical Pty Ltd</td>
</tr>
<tr>
<td>Dr R.M. Sok and Dr A. Sheppard</td>
<td>Project: Parallelisation of Slime Skeletonisation Software</td>
</tr>
<tr>
<td></td>
<td>Partners: Dr B. Lindquist, State University of New York, Stony Brook, USA</td>
</tr>
<tr>
<td>Dr R.M. Sok, Dr A. Sheppard and Dr M. Knackstedt</td>
<td>Project: Network Modelling of Multiphase Flow</td>
</tr>
<tr>
<td></td>
<td>Partners: Professor W.V. Puncewicz, University of New South Wales; Dr B. Lindquist, State University of New York, Stony Brook, USA</td>
</tr>
<tr>
<td>Dr V. Yaminsky</td>
<td>Project: Dynamic Wetting</td>
</tr>
<tr>
<td></td>
<td>Partners: The Institute for Surface Chemistry, Stockholm, Sweden</td>
</tr>
<tr>
<td>Project: Water Structure</td>
<td>Partners: The Departments of Bioengineering and Materials Science and Engineering, Pennsylvania State University, USA</td>
</tr>
<tr>
<td>Project: Positron Scattering from Atoms and Molecules</td>
<td>Partners: Dr J. Sullivan and Professor C. Surko, University of California, USA</td>
</tr>
<tr>
<td>Dr S.J. Buckman</td>
<td>Project: Low Energy Electron-Molecule Scattering</td>
</tr>
<tr>
<td></td>
<td>Partners: Dr M.J. Brenger and Professor P.J.O. Teubner, Flinders University</td>
</tr>
<tr>
<td></td>
<td>Project: Electron Scattering from Metal Vapours</td>
</tr>
<tr>
<td></td>
<td>Partners: Professor P.D. Barron, University of Nebraska, USA; Professor K. Bartsch, Drake University, USA</td>
</tr>
<tr>
<td>Dr S.J. Buckman and Professor L.T. Chadderton</td>
<td>Project: Electron-Molecule Scattering</td>
</tr>
<tr>
<td></td>
<td>Partners: Professor H. Tanaka, Sophia University, Japan; Professor H. Cho, Chiang Mai National University, Korea</td>
</tr>
<tr>
<td></td>
<td>Project: Positron Scattering from Atoms and Molecules</td>
</tr>
<tr>
<td></td>
<td>Partners: Dr J. Sullivan and Professor C. Surko, University of California, USA</td>
</tr>
<tr>
<td>Dr S.J. Buckman and Professor L.T. Chadderton</td>
<td>Project: Rainbows in Scattering of Electrons from Molecules</td>
</tr>
<tr>
<td></td>
<td>Partners: Professor S.A. Cruz, Metropolitan Autonomous University, Mexico</td>
</tr>
<tr>
<td>Professor S.A. Cruz</td>
<td>Project: Phase Changes in Transition Metal</td>
</tr>
<tr>
<td></td>
<td>Partners: Professor S.A. Cruz, Metropolitan Autonomous University, Mexico</td>
</tr>
<tr>
<td>Professor L.T. Chadderton</td>
<td>Project: Dichalcogenides due to GeV Heavy Ion and MeV Fullerene Ion Bombardments: Transmission Electron Microscopy and Surface Force Microscopy</td>
</tr>
<tr>
<td></td>
<td>Partners: Dr A. Dunlop, SESI, Ecole Polytechnique, Palaiseau, France</td>
</tr>
<tr>
<td>Project: Radiation Effects on Polymers: Semiconductors</td>
<td>Partners: Dr D. Fink, Hahn-Heinean Institute, Berlin, Germany</td>
</tr>
<tr>
<td>Project: Theory and Practice of Organic Radical Formation and Motion in GeV Ion-Irradiated Polymers</td>
<td>Partners: Professor S.A. Cruz, Metropolitan Autonomous University, Mexico</td>
</tr>
</tbody>
</table>
Professor N.J. Fletcher
Project: Plane Acoustics
Partners: A/Professor J. Wolfe and Dr J. Smith, University of New South Wales

Project: Vibrating Reed Valves and Rotational Aerophones
Partners: A/Professor J. Lat and Dr A. Tarnopolsky, ADFA, University of New South Wales

Project: Biological Acoustics
Partners: Professor W. Bailey, University of Western Australia; Dr H.C. Bremet-Clark, Oxford, UK

Ms L. Fu, Dr H.H. Tan and Professor C. Jagadish
Project: Optical Spectroscopy Studies on Semiconductor Quantum Wires and Dots
Partners: Professor S.C. Shen et al, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, PR China; Dr Ying Fu and Professor M. Willander, Chalmers University of Technology, Sweden

Mr Q. Gao, Ms L. Fu, Ms P. Leyer, Mr S.O. Kuchev, Ms J. Hay, Ms C. Carmody, Dr P.N.K. Deenanpanray, Dr M. Buda, Dr H.H.Tan and Professor C. Jagadish
Project: Optical Spectroscopy of Semiconductor Quantum Structures and Devices
Partners: Dr B.Q. Sun, Dr M. Zhang, Mr P. Reece and Professor M. Gal, University of New South Wales

Ms J. Hay, Dr M. Buda, Dr H.H. Tan and Professor C. Jagadish
Project: Dry Etching of GaN
Partners: Dr F. Karoost, Eindhoven University of Technology, Netherlands

Professor C. Jagadish, Dr H.H. Tan, Mr S. Kuchevyey and Professor J.S. Williams
Project: Processing of GaN and Related Compounds for Blue Light Emission
Partner: Dr A.G. Li, Lexed Corporation, Taiwan

Mr S.O. Kuchevyey
Project: Molecular Effect in Semiconductors under Heavy-Ion Bombardment
Partners: Professor A.I. Titov and Dr V.S. Belyakov, St. Petersbun State Technical University, Russia

Mr S.O. Kuchevyey, Professor J.S. Williams and Professor C. Jagadish
Project: Cathodoluminescence and Environmental SEM Studies of Ion-Implanted GaN
Partners: Mr M. Toth and Dr M. Phillips, University of Technology, Sydney

Ms P. Leyer, Dr H.H. Tan and Professor C. Jagadish
Project: Cathodoluminescence Imaging of Quantum Wires and Dots
Partners: Dr M.R. Phillips and Dr M.A. Stevens Kalceff, University of Technology, Sydney

Project: Optical Spectroscopy of Quantum Dots
Partner: Professor J. Wolter, Eindhoven University of Technology, Netherlands

Dr M. Petravic
Project: Characterisation of Standards for Surface Composition and Sputter Depth Profiling
Partner: Dr D.W. Moon, Korean Research Institute of Standards and Science, Korea

Project: Surface Analysis using a Free Electron Laser
Partners: A/Professor B.V. King, University of Newcastle; Professor R. Clark, University of NSW; Dr J.M. Chen, Synchrotron Radiation Research Center, Hsinchu, Taiwan

Dr M. Pterravic and Dr P.N.K. Deenanpanray
Project: Photon-Induced Fabrication of Atomic Scale Structures on Semiconductor Surfaces
Partner: Dr G.Comtet, University Paris-Sud, France

Project: Selective Photon Stimulated Desorption of H from GaAs Surfaces
Partners: Dr B. Usher, LaTrobe University; Dr J.M. Chen, Synchrotron Radiation Research Center, Hsinchu, Taiwan

Project: Roughening of Si Surface under Oxygen and Nitrogen Ion Bombardment
Partner: Dr D.W. Moon, Korean Research Institute of Standards and Science, Korea

Dr M.C. Ridgway, Dr G. Azevedo and Mr C.J. Glover
Project: EXAFS Characterisation of Amorphous Semiconductors
Partners: Dr G. Foran, ANSTO, Dr K.M. Yu, Lawrence Berkeley National Laboratory, USA

Dr M.C. Ridgway
Project: Formation of Dilute GaAsN1−x, and Ga3AsN5−x Alloys by Ion Implantation
Partners: Dr O. Dubin, University of California (Berkeley), USA; Dr K.M. Yu, Lawrence Berkeley National Laboratory, USA

Dr M.C. Ridgway and Professor J.S. Williams
Project: Nanocrystal Evolution in Si under Ion Irradiation
Partners: Dr X. Zhu, University of Illinois, USA; Dr H. Bernas, Dr M.-O. Ruault and Dr F. Fortume, Centre Nationale Recherche Scientifique (Daisy), France

Dr M.C. Ridgway; Dr A.P. Byrne and Professor N.M. Rao (NP)
Project: Irradiation-Induced Defect Characterisation with Perturbed Angular Correlation
Partner: Dr R. Vriend, Universiteit Bonn, Germany

Dr H.H. Tan and Professor C. Jagadish
Project: Thermonic Cooling in Semiconductors
Partners: A/Professor R. Lewis, University of Wollongong

Project: POLIS Structures and Hot Electron Injection Lasers
Partners: Dr J. Van der Tol and Dr T. Van der Roe, Eindhoven University of Technology, Netherlands

Dr H.H. Tan, Mr M.I. Cohen, Ms L. Fu, Dr M. Buda and Professor C. Jagadish
Project: Design, Fabrication and Testing of High-Power and Multi-Wavelength Lasers
Partner: Dr F. Karoost, Eindhoven University of Technology, Netherlands

Professor J.S. Williams and Ms J.E. Bradby
Project: Microionisation of Semiconductors
Partner: Professor M.V. Sain and Dr P. Munroe, University of Sydney

Professor J.S. Williams, Dr J. Wong-Leung, Dr M. Petravic and Mr M.J. Conway
Project: Metal Gettering to Cavities
Partner: Dr A. Kozmora, ONRJ, Japan

Professor J.S. Williams, Dr J. Wong-Leung, Dr M. Petravic and Mr M.J. Conway
Project: Open Volume Defects in Silicon
Partner: Professor B. Strizicher and Dr J. Lindner, University of Augsburg, Germany

Dr J. Wong-Leung, Dr H.H. Tan, Ms C. Carmody, Professor C. Jagadish and Professor J.S. Williams
Project: Electron Microscopy Study of Defects in Ion Implanted Semiconductors
Partner: Dr J. Zou, University of Sydney; Dr J. FitzGerald, Research School of Earth Sciences, Professor D.J.H. Cockayne, Oxford University, UK

Dr J. Wong-Leung, Dr P.N.K. Deenanpanray and Professor C. Jagadish
Project: Defects and Electron Microscopy of Semiconductors
Partners: Professor B.G. Svensson, Dr M. Linnarsson, Dr A. Knutsson, Dr A. Hallen, Mr M. Janson and Dr P. Levesque, Royal Institute of Technology, Sweden

Dr J. Wong-Leung and Professor C. Jagadish
Project: Defects in Ion Implanted Silicon
Partner: Professor G. Davies and Ms R. Harding, King’s College, London, UK

Dr J. Wong-Leung, Professor J.S. Williams, K. Stewart and Dr M. Pterravic
Project: Removal of Metals from Solar Materials
Partners: Dr A. Kozmora, ONRJ, Japan; Mr D. Macdonald and Dr A. Criuva, FEIT

Laser Physics Centre

Dr K.G.H. Baldwin
Project: High Resolution XVU Laser Spectroscopy
Partners: Dr W. Ubachs and Professor W. Hogeveen, Vrije Universiteit Amsterdam, Netherlands

Dr K.G.H. Baldwin; Dr B.R. Lewis (AMPL)
Project: Development of Ultra-High Resolution XVU Laser Sources
Partner: Professor B.J. Orr, Macquarie University

Dr W. Krollowski
Project: Solitons in Nonlinear Media
Partners: Dr O. Bang and Professor J. Rasmussen, Technical University Denmark; Professor J. Wyller, Norway Agricultural University; Norway

Project: Composite Solitons
Partner: Professor C. Denz, University of Muenster, Germany

Dr M. Lederer
Project: Ultrafast Nonlinear Optical Absorption in Ion-Implanted and Be-doped GaAs
Partners: Dr M. Haimid, Dr U. Siegner and Professor U. Keller, Swiss Federal Institute of Technology, ETH Zuerich, Switzerland

Project: Ultrabroadband Output Coupling Mirrors for Octave-Spanning Frequency Comb Generation in a Kerr-Mode-Locked Titanium Sapphire Laser
Partners: Mr R. Eli, Dr D. Morgner and Professor F.X. Kuehner, Universitat Karlsruhe (TH), Germany

Project: Passive Mode-Locking of the Novel Yb-YAB Laser Crystal
Partner: Dr J. Dawes, Macquarie University

Dr A. Rode and Professor B. Luther-Davies; Professor E.G. Gamaly (AM)
Project: Deposition of Diamond-Like Films by Powerful UV Femtosecond Laser Ablation
Partner: Professor C. Fotakis, Foundation for Research and Technology – Hellas, Greece

Project: Subpicosecond Laser Deposition of Optical Films
Partner: Dr B.N. Chichkov, Laser Zentrum Hannover e.V., Germany

Project: Subpicosecond Laser Ablation of Dental Enamel
Partners: Ms B.T. Taylor and Dr J. Davies, Macquarie University; Mr A. Chau, Dental Practice, Canberra; Dr R.M. Lowe and Professor P. Hamadouf, Swinburne University of Technology

Project: Excitation of Solids by Femtosecond Lasers: Non Equilibrium Phenomena, Phase Transitions and Ablation of Metals and Dielectrics
Partner: Professor V.T. Titichonk, University of Bordeaux, France

Project: Formation of Nanochannels by Femtosecond Laser Ablation
Partners: Professor M. Santis and Dr O. Uetze, University of Marseille, France; Professor V.T. Titichonk, University of Bordeaux, France

Project: Transient Optical Properties and Phase Transition in Solids Induced by Femtosecond Lasers
Partners: Professor M. Santis and Dr O. Uetze, University of Marseille, France; Professor V.T. Titichonk, University of Bordeaux, France

Dr A. Samoc, Dr M. Samoc and Professor B. Luther-Davies
Project: Nonlinear Optical Properties of Substituted Poly(phenylenevinylene)s
Partner: Professor H.H. Hoehold, University of Iowa, USA

Project: Nonlinear Optical Properties of Soluble Oligomers of PPV
Partner: Dr M.S. Wong, Baptist University, Hongkong
Nuclear Physics

Dr. R.A. Bark and Professor G.D. Dracoulis
Project: Intrinsic and Rotational Bands in 100
Partners: G. Sletten, Niels Bohr Institute, University of Copenhagen, Denmark; Eberhard Zschiesche, Clausthal University, Germany

Dr. A.P. Byrne
Project: Development of an Ion Implanter for Radioisotopes
Partners: A/Professor D.H. Chaplin and Dr. H. Timmers, ADEA, University of NSW

Dr. A.P. Byrne and Professor N.M. Rao; Dr M.C. Ridgway (EME)
Project: Diffuse Damage in Semiconductors
Partners: Dr. R. Vanden and Dr. T. Desurvire, Universitat Bonn, Germany

Dr. M. Dasgupta and Dr. D.J. Hinde
Project: Fusion and Breakup of Light Ions Near the Fusion Barrier
Partners: Professor P.R.S. Gomes, Universidade Federal Fluminense, Brazil

Professor G.D. Dracoulis
Project: High-K Isomers
Partners: Professor P.M. Walker, University of Surrey, UK; Dr. D.M. Cullen, University of Liverpool, UK

Professor G.D. Dracoulis and Dr. A.P. Byrne
Project: Laser Spectroscopy of Deformed Isomers
Partners: Dr. J. Bowler, University of Manchester, UK; Professor J.A.R. Griffith, University of Birmingham, UK

Professor G.D. Dracoulis, Dr. G.J. Lane and Dr. A.P. Byrne; Dr. A.M. Baxter (Faculties)
Project: Spectroscopy of Neutron Deficient Lead and Thallium Nuclei
Partners: Dr. A.O. Macchiaveli, Lawrence Berkeley National Laboratory, USA

Professor G.D. Dracoulis, Dr. G.J. Lane and Dr. A.P. Byrne
Project: Neutron Rich Translead Nuclei using Radioactive Beams
Partners: Professor P.M. Walker, University of Surrey, UK

Dr. L.K. Fiefield and AMS Group
Project: Dating of Marine Cores with Carbon-14
Partners: Dr. P. De Deckker and Dr. B. Opdyke, Geology Department, Faculties

Dr. H. Timmers
Project: Stopping and Energy Straggling of Heavy Ions in Technologically Relevant Materials
Partners: Professor H. Whitlow, Lund University, Sweden; A/Professor J. O’Connor, University of Newcastle

Project: Elastic Recoil Detection Analysis of GeF Films
Partners: Dr. S. Bircher, Massey University

Optical Sciences Centre

Professor N. Akhmediev
Project: Observation of Soliton Expansions
Partners: Professor S.T. Cundiff, JILA, National Institute of Standards and Technology and University of Colorado, USA; Dr. J.M. Soto-Crespo, Instituto de Optica, Spain

Project: Interaction of Pulses in Dispersion-Managed Fiber Systems
Partners: Professor F. Zen, Institute of Technology, Bandung, Indonesia; Professor P.L. Chu, City University of Hong Kong, Hong Kong

Project: Pulse Propagation in Optical Fibers with Random Dispersion
Partners: Dr. I. Gabitov, Los Alamos National Laboratory, USA; Dr. G. Kovacic, Rensseler Polytechnique Institute, USA

Project: Soliton States in a Nonlinear Directional Coupler with Internal Dispersion
Partners: Dr. V. Rantogi and Professor K.S. Chiang, City University of Hong Kong, Hong Kong

Project: Linear Guidance Properties of Solitons: Y-Junction Waveguides
Partners: Dr. J.A. Besley, Racal Research Ltd., UK; Dr. P.D. Miller, University of Michigan, USA

Project: Multi-Frequency Pulses in Mode-Locked Fiber Lasers
Partners: Dr. J.M. Soto-Crespo, Instituto de Optica, Madrid, Spain; Dr. G. Town, University of Sydney

Project: The Physics of Network Computation
Partners: Professor T. Bosma, The University of St. Andrews, Scotland

Plasma Research Laboratory

Dr. B.D. Blackwell and Dr. J. Howard
Project: Soft-X-ray Measurements on H-INF
Partners: A/Professor A.D. Cherenkov, University of Canberra

Dr. G.G. Borg, Dr. D.V. Kameniski and Dr. D.G. Miljak
Project: RF Plasma Wave Studies in H-INF
Partners: Dr. T. Seki, National Institute for Fusion Science, Japan

Dr. G.G. Borg and Professor J.H. Harris
Project: Plasma Antenna Concept Demonstrator
Partners: Dr. N.M. Martin, Defence, Science and Technology Organisation

Dr. G.G. Borg and Mr. P. Linardakis
Project: Plasma Switches for Mobile Phones
Partners: Dr. R. Scherz, Motorola, USA

Professor R.W. Boswell and Mr. O. Sutherland
Project: High Brightness Ion Source
Partners: FEI Company, USA

Professor R.W. Boswell and Dr. C. Charles
Project: Helicon Assisted Reactive Etaporation (HARE)
Partners: Professor D. MacKenzie, Dr. B. James and Dr. I. Falconer, University of Sydney

Dr. C. Charles and Professor R.W. Boswell
Project: Plasma Deposition of Palladium
Partners: Dr. P. Brault, University of Orleans, France

Dr. J. Howard
Project: Fibre Optic Probes for Plasma Diagnostics
Partners: Mr. V. Everett and Professor G. Woods, University of New England

Project: The Physics of Network Computation
Partners: Dr. R. Iserbyt, Brussels, Belgium; Dr. P. Taborelli, Institute for Nuclear Physics, University of Florence, Italy; Dr. A. Macchiaveli, Lawrence Berkeley National Laboratory, USA

Project: Measurement of Erosion Rates at a Range of Sites in the Australian Landscape using in situ Produced "10Be" in the Soil
Partners: Dr. J. Mottl, Research School of Earth Sciences, Australian National University, Australia

Research School of Physical Sciences & Engineering 2001
80

National & International Links (Collaborative Ventures)
Theoretical Physics

Dr M.P. Das
Project: Electron Correlation and Metal-Insulator Transition
Partner: Professor D. Neilson, University of New South Wales
Project: Fluctuations in Mesoscopic Systems
Partner: Dr F. Green, CSIRO/University of New South Wales
Project: Two Dimensional Interacting Coulomb Systems
Partner: Professor K.J. Golden, University of Vermont, USA

Professor R.L. Dewar
Project: Anderson Localization of Hallionising Modes, Quantum Chaos and the Stability of Compact Quasarsymmetric Srellators
Partner: M.J. Reitz, Princeton University, USA

Dr M. Gulaci
Project: Effects of Phonons on Magnetic Impurities
Partner: Dr A.R. Bishop, Los Alamos National Laboratory, USA; Dr A. Bussmann-Holder, Max-Planck Institute, Germany
Project: Metal-Insulator Transition in Strongly Correlated Electron Systems
Partner: Professor K.S. Bedell, Boston College, USA; Dr J. Gubanski, Los Alamos National Laboratory, USA
Project: Impurity Effects in Mesoscopic Systems
Partner: Professor A. Rosengren and Mr A. Juszczak, Royal Institute of Technology, Sweden

Dr A.S. Kheifets (also in AMPL)
Project: Convergent Close-Coupling Theory of Double Ionization by Photon and Electron Impact
Partner: Dr J. Bray, Flinders University
Project: Electron Momentum Density Studies in Metals and Metal Oxides
Partner: Dr M. Ford, Flinders University
Project: Electron Impact Double Ionization of the Helium Atom
Partner: Professor A. Lahmann-Bernami, University of Paris (Orsay), France; Dr A. Doria, University of Freiburg, Germany
Project: Multiple Atomic Photoionization of Metal Vapors
Partner: Professor Y. Azuma, Photon Factory, Japan; High Energy Accelerator Research Organization, Japan
Project: Theoretical and Experimental Studies of Double Photoionization of He
Partner: Dr T. Reddish, University of Newcastle; Dr L. Avall and Dr R. Dimier, University of Frankfurt, Germany

Dr S.Y. Kim
Project: Experimental Test of Slow Phase Randomisation and Quantum Chaos in Finite Highly Excited Many-Body Systems
Partner: Professor W. Qi, Dr W. Tian, Dr S. Li and Dr Z. Jiang, Institute of Modern Physics, China; Professor L. Li, Dr X. Lu, Dr K. Xiao, Dr C. Fu, Dr J. Liu, Dr H. Jiang and Dr G. Hu, Chinese Institute of Atomic Energy, China

Project: Critical Phenomena in Microscopic and Mesoscopic Complex Collapse
Partner: Dr L. Benett, Max Planck Institute for Nuclear Physics, Germany; Professor T.H. Schilman, University of Mexico and Cuernavaca International Centre of Science, Mexico
Project: New Method to Probe Coherent Many-Body Dynamics: Concept of Nonergodic Molecules in Continuum
Partner: Professor W. Greiner, Johann Wolfgang-Goethe University, Germany; Dr A.V. Vogov, University of Sheffield, UK

Dr B.A. Robson
Project: Antiproton Scattering
Partner: Professor Zhang Yu-shun, Institute of High Energy Physics, P.R. China
Project: Fusion and Fission Reactions
Partner: Professor G. Do Dang, Universitè de Paris Sud, France

Dr W. Woolcock
Project: Electromagnetic Corrections to Hadronic Processes
Partner: Dr A. Gaal, Dr E. Matinlos and Professor G. Rasche, University of Zurich, Switzerland; Professor G.C. Gudes, University of Aarhus, Denmark

International Collaborative/Cooperative Agreements

The School holds collaborative/cooperative agreements and/or memoranda of understanding with the following institutions and organisations:

- Samsung Electronics Co. Ltd, Korea
- Shanghai Institute of Technical Physics (STIP), Chinese Academy of Sciences
- The Physics Department, University of Pinteria
- Institute of Advanced Energy, Kyoto, Japan
- Tsinghua University, Beijing, China
- The European Union-Australia Science & Technology Agreement, DST
- Deutscher Akademischer Austauschdienst (DAAD) Exchange Service
- ANU-Engineering & Physical Sciences Research Council Agreement (ANU-EPSRC), UK (The ANU-EPSRC agreement in effect covers a range of UK universities)
- Beijing University, China
- National Institute for Fusion Science, Nagoya, Japan
- Lockheed Martin Energy Research Corporation, Oak Ridge National Laboratory, USA
- L’Ecole Polytechnique, Paris, France
- Royal Institute of Technology, Stockholm, Sweden
- Ericsson Components AB, Stockholm, Sweden
- British Telecom Laboratories, UK
- Cambridge University, UK
- Telecom Korea, Seoul
- OET Associates, USA
- Department of Communications, Ottawa, Canada
- ATLAS Accelerator Facility, Argonne National Laboratory, USA
- Physics Division, Lawrence Berkeley Laboratory, USA
- HIREF Oak Ridge National Laboratory, USA
- Physics Department, University of Jyväskylä, Finland
- National Accelerator Facility and FRD, South Africa
- GANIL, IN2P, France
- Hahn-Meitner Institute, Berlin, Germany
- RICOMP, Osaka, Japan
- Institute of Nuclear Physics, Leuven, Belgium
- Ericsson Fiber Optic Research Centre, Stockholm, Sweden
- British Telecom Research Laboratories, UK
- Bell Laboratories, USA
- Lucent Technologies (an offshoot of Bell Labs), USA
- Princeton Plasma Physics Laboratory, Princeton, USA
- Stanford Linear Accelerator Center, Stanford Synchrotron Radiation Laboratory, USA
- Institute of Mathematics Modelling, Technical University of Denmark

National Collaborative Agreements

The School holds the following collaborative agreements under the IAS/Other Australian University Collaboration Scheme and has various independent agreements with Australian industries:

- Royal Melbourne Institute of Technology
- Macquarie University
- La Trobe University
- University of Newcastle
- The University of Canberra
- The University of Wollongong, NSW
- University of Queensland
- Griffith University
- Curtin University of Technology, Western Australia
- University of New England
- University College, Canberra, University of New South Wales
- Monash University, Victoria
- James Cook University, Queensland
- University of Melbourne
- University of New South Wales
- University of Sydney
- Central Queensland University
- Flinders University of South Australia
- University of Western Australia
- Faculty of Business and Technology, University of Western Sydney
- AGEN Pty Ltd
- Ericsson Australia Pty Ltd, Melbourne
- ADC Australia, Canberra (ADFR Pty Ltd)
- Siemens Ltd, Sydney
- Photonic Technologies Pty Ltd, Sydney
- Hypatia Analytic Thought Pty Ltd, Melbourne
- The Powerhouse, Museum of Applied Arts & Sciences, Sydney
- IDS/Uniphase, Sydney
The Australian Photonics Cooperative Research Centre (Canberra Division)

The Australian Photonics Cooperative Research Centre (CRC) is in its tenth year of operation. It is an unincorporated collaborative venture that was established in 1992 under the Commonwealth Government’s Cooperative Research Centre scheme. The following organisations are current partners in the APCRC: The Australian National University, the Universities of Melbourne, Sydney, and New South Wales, RMIT, TAFE NSW, ABB Transmission and Distribution Ltd, ADC Australia Ltd, Allen and Buckridge Pty Ltd, Australian Electrical and Electronic Manufacturers Association, Australian Photonics Pty Ltd, BAEE Systems Australia Limited, Bishop Innovation Pty Ltd, CEOS Pty Ltd, Coherent Australia Scientific Pty Ltd, Defence Science & Technology Organisation, Ericsson Australia Pty Ltd, Filtronic Components Pty Ltd, Future Fibre Technologies Pty Ltd, JDS Uniphase Pty Ltd, Macquarie Photonics Pty Ltd, Nextrom OY, Nortel Networks (Photonics) Pty Ltd, Nufern Inc, Redfern Photonics Pty Ltd, Telstra Corporation Ltd, Electricity Transmission Authority (Transgrid), Tenix Systems Pty Ltd, VPISystems Inc. (Following the closure of Nortel’s Australian operations, Nortel formally withdrew from the CRC at the end of the 2001).

The objectives of the CRC include:

• To enhance the Centre’s status as Australia’s centre of excellence in photonics with an internationally recognised, commercially relevant basic, strategic and applied research program that integrates research strengths from enabling technologies to applications

• To improve the international competitiveness of Australian industry through transfer of photonic technology through a commercialisation program that enables established firms to access technology and skills while creating new firms, through access to technology, markets, skills and finance

The past twelve months have become particularly challenging for the Centre following the downturn of the telecommunications industry world-wide. From the dizzying heights of 60% growth per annum the industry looks set for a 20% contraction this year. Whilst this has caused large numbers of job losses from the production facilities of major companies, and failure of some new ventures, including the Nortel operation in Botany, New South Wales, the record of the electronics industry demonstrates that boom and bust cycles are quite characteristic of high technology sectors. The present downturn is probably the first such cycle that the photonics industry has had to bear, and it has impacted the cash flow to the CRC through loss of industry contracts. Nevertheless, one should never waste a good recession, and CRC management have maintained the view that now is not the time to slow down the R&D program, rather there exists an opportunity to position new technology for rapid uptake once the demand for photonic components again takes off.

In spite of the industry downturn, the CRC and its spin off ventures in the Redfern Photonics group had a rather successful year. Towards the end of 2000 a new company, Redfern Polymer Optics (RPO), was created to commercialise hybrid glass technology developed at the ANU for the production of next-generation planar lightwave circuits. During 2001, RPO has established its prototyping facility in the Innovations Building at the ANU, in two laboratory areas. The first of these contains a class 100 clean room with facilities for spin coating and patterning glass films to create photonic integrated circuits. This area also includes wafer dicing and environmental testing facilities. The second laboratory will be used to scale up hybrid glass production to commercial quantities. The RPO project involves several ANU staff in the role of consultants assisting a team directly employed by RPO.

Redfern Photonics received a considerable boost early in 2001 through an investment of over 54M$ from a consortium consisting of Deutsche Bank’s private equity investment group, DB Capital Partners, GE Equity, Citicorp Equity Capital, Ericsson Deutsche Technology Fund, the Australasian Technology Fund and Temasek Capital. This was a considerable achievement bearing in mind the state of the industry at that time and will be used to develop new commercial opportunities in photonics.

During the year, the CRC received funding of 9.5M$ from the MNRF competitive grants scheme augmented by a 3M$ cash contribution from the NSW government to
build a facility to be known as the Bandwidth Foundry at the Australian Technology Park, Eveleigh. The Bandwidth Foundry will focus on the production of advanced photonic devices such as planar integrated circuits and photonic bandgap structures as well as developing manufacturing technology for photonic components. Dr François Ladouceur, who completed his PhD at ANU in 1992 with John Love, has been appointed Director of the Bandwidth Foundry and will return to Australia in 2002 from his current position with VPISystems, Germany.

In May, the ACT Government launched a new policy aimed at developing Photonics as a major industry within the ACT over the next decade and provided 600k$ over three years to help establish the Photonics Institute in the ACT. The Photonics Institute, a CRC initiative focussing on education and training programs, opened its offices at Bruce CIT on 5 September. The Institute aims to support the development of new photonics courses at Australian Universities and TAFE Colleges as well as having roles in community education and providing consultancy services. The Institute received support from both the Federal Government Science Lectureship Initiative round of competitive grants in 1999 and from the ACT Government. In 2001, funding was provided to Questacon for educational programs in photonics. In addition resources were allocated for the production of photonics teaching modules that will be made available to higher education institutions.

On 20 September, the ANU with the support of CRC members officially launched its new Photonics Degrees at a ceremony involving ACT Chief Minister Gary Humphries at Regatta Point.

In another boost the CRC will be pleased to welcome the return of one of its students with support of a Federation Fellowship. Dr Ben Eggleton will return from his position at Bell Laboratories in his current position with VPISystems, Germany.

Another film-forming technology supported by the CRC is the unique ultra-fast pulsed laser deposition facility in the Laser Physics Centre. CRC supported activities include the production of low-loss chalcogenide glass films as a basis for nonlinear optical processors. Most work so far has focussed on the production of As$_2$S$_3$ films and containing photo-defined waveguides. This year we obtained a number of new glasses from overseas collaborators including Gallium Lanthanum Sulphide (GLS) from the University of Southampton and As-S-Se from the University of Central Florida. We have also established facilities to make GLS glass in the future. Full characterisation of the optical nonlinearity of these materials is underway.

In other projects within the School the CRC contributes to work on Silicon Photonics in the Department of Electronic Materials Engineering; nonlinear optical materials in the Laser Physics Centre; 4D holography for photonic signal processing in the Laser Physics Centre; spatial solitons and other nonlinear guided waves in the Director’s Unit, Optical Sciences Centre and Laser Physics Centre; polymer optical fibres for voltage sensing in the Laser Physics Centre (with support of a contract from ABB and Transgrid); and optical waveguide theory in the Director’s Unit.

During the year three new patents have been filed, making a total of nine patents from ANU APCRC research under prosecution.

The Canberra Division received $784,092 of Commonwealth and $78,409 of ANU funding in 2000/2001. The budget for 2001/2002 is set at $1,093,578 Commonwealth and $100,000 ANU funding. Contract funding in place from 2000 through to 2002 totals $1,028,100.

Research

CRC research in Canberra is focussed on the development of planar integrated circuits, future photonic technologies and optical signal processing.

The creation of RPO has led to a large boost in interest in hybrid glasses and ANU CRC researchers continue to work in parallel with the RPO team. Whilst RPO is operating a focussed program aimed at the production of commercial prototypes by mid next year, the CRC programs are focussed more on developing hybrid glasses with improved optical properties or functionality. There have been a number of very promising materials developments that should yield reduced loss glasses for the next generation of devices.

The APCRC also supports work on the HARE PECVD system in the Plasma Research Laboratory. A new team is now in place and has focussed on the development of hydrogen-free, low-loss silica films using the HARE process. A new clean room facility has been installed around the HARE reactor to reduce wafer contamination. Good progress is being made.

Another film-forming technology supported by the CRC is the unique ultra-fast pulsed laser deposition facility in the Laser Physics Centre. CRC supported activities include the production of low-loss chalcogenide glass films as a basis for nonlinear optical processors. Most work so far has focussed on the production of As$_2$S$_3$ films and containing photo-defined waveguides. This year we obtained a number of new glasses from overseas collaborators including Gallium Lanthanum Sulphide (GLS) from the University of Southampton and As-S-Se from the University of Central Florida. We have also established facilities to make GLS glass in the future. Full characterisation of the optical nonlinearity of these materials is underway.

In other projects within the School the CRC contributes to work on Silicon Photonics in the Department of Electronic Materials Engineering; nonlinear optical materials in the Laser Physics Centre; 4D holography for photonic signal processing in the Laser Physics Centre; spatial solitons and other nonlinear guided waves in the Director’s Unit, Optical Sciences Centre and Laser Physics Centre; polymer optical fibres for voltage sensing in the Laser Physics Centre (with support of a contract from ABB and Transgrid); and optical waveguide theory in the Director’s Unit.

During the year three new patents have been filed, making a total of nine patents from ANU APCRC research under prosecution.

The Canberra Division received $784,092 of Commonwealth and $78,409 of ANU funding in 2000/2001. The budget for 2001/2002 is set at $1,093,578 Commonwealth and $100,000 ANU funding. Contract funding in place from 2000 through to 2002 totals $1,028,100.

RSPhysSE APCRC Staff

Group Head (ANU); Director of Research; Director of Australian Photonics Pty Ltd	Professor John Love (Program Manager, Key Researcher)
Researchers	Professor Neil Manson
Dr Adrian Ankiewicz	Dr Elena Ostrovskaya
Professor Rod Boswell	Dr Andrei Rode
Dr Rob Elliman	Dr Anna Samoc
Dr Anke Freydank	Dr Marek Samoc (Key Researcher)
Dr Reiner Friedrich	Dr Matt Sellars
Mr Keith Gaff (until May)	Dr Congji Zha (until September)
Ms Ruth Jarvis	Technical Officers
Professor Yuri Kivshar (Key Researcher)	Mr Peter Alexander
Dr Wieslaw Krolikowski	Ms Maryla Krolikowska
Mr Tristram Alexander	Ms Lily Luo
Ms Sam Ashby	Mr Craig Macleod
Ms Kristina Milas (from September)	Mr Ian McRae
Ms Cindy Bradley (until September)	Ms Therese Martin (until January)

Office Manager Ms Helen McMartin
Administrative Assistants Ms Cindy Bradley (until September) Ms Kristina Milas (from September)
Postgraduate Students Mr Tristram Alexander Ms Sam Ashby Mr Keith Gaff (until May) Ms Ruth Jarvis Ms Glen McCarthy (from October) Ms Yinlan Ruan Mr Darryl Scott Mr Andrej Sukhorukov Ms Snjezana Tomljenovic-Hanic
Centre for Complex Systems

Theoretical Studies: From the Cosmos to quantum systems, from statistical mechanics to biophysics.

The Centre for Complex Systems (formerly the ANU Centre for Theoretical Physics) is based within the National Institute for Physical Sciences, administratively supported by the Department of Theoretical Physics. The aims of the Centre for Complex Systems are:

• to provide a framework for bringing researchers together and stimulating interaction and synergy between them
• to promote innovative, interdisciplinary research through seminars and topical workshops
• to foster graduate education and research through summer schools

The theoretical activities in the Department and School overall are focused on such fields as condensed matter and materials physics, biophysics, surface physics, plasma physics, photonics, molecular, atomic and nuclear physics. In most of these areas there are many particles interacting collectively and the emphasis is on the emergence of behaviour beyond the elementary laws of interaction. The unifying theoretical and mathematical tools include statistical mechanics, many body theory and nonlinear dynamics, as well as numerical simulation.

A meeting of senior theorists convened by the Director of the Research School of Physical Sciences proposed the name Centre for Complex Systems (CCS) in place of ANU Centre for Theoretical Physics. The CCS is to continue the outreach activities of the ANU CTP while fostering innovative application of the powerful tools of modern theoretical physics and applied mathematics to a wide range of problems in the physical and biological sciences. This name was approved by a meeting of the ANU CTP Board, which has representatives from across campus, on 31st of August 2001.

The main activities of the CTP this year were the 14th Canberra International Physics Summer School on Biophysics: From Proteins to Cells (15–26 January, convenor: Dr S. Kuyucak), a Mini Summer School on Plasma and Gaseous Electronics (29 January – 2 February, convenor: Dr H.J. Gardner), and the 25th International Workshop on Condensed Matter Theories (3–8 December, convenor: Dr M.P. Das). The CTP was also one of the sponsors of the Australian Workshop on Nanotubes and Fullerenes AWF2001, Canberra 3–4 May.

The Condensed Matter workshop was partially funded as an External Activity of the Asia Pacific Center for Theoretical Physics (US$5,000) and other sources.

A significant part of the CTP effort in 2001 was preparation for the 2002 Summer School on Topics in Nonlinear Dynamics, Collective Phenomena and Complexity (January 21 to February 1 2002, convenor: Dr R. Ball).

The 14th Canberra International Physics Summer School in Biophysics: From Proteins to Cells, ANU, January 15-26

Convenor: Dr Serdar Kuyucak

The purpose of the School was to provide physics perspectives on the emerging molecular structure of biosystems for a broad audience with backgrounds in physics, chemistry and biology. The lecturers and topics were:

Robert Austin (Physics, Princeton)
Energy and population landscapes in biology: a physics perspective

Avinoam Ben-Shaul (Physical Chemistry, Hebrew University)
Interaction mechanisms and phase transitions in membrane-macromolecule systems
Ken Dill (Pharmaceutical Chemistry, UC - San Francisco)
The statistical mechanics of protein folding

Peter Kollman (Pharmaceutical Chemistry, UC - San Francisco)
Structures and free energies of proteins and nucleic acids from molecular dynamics simulations

Jack Tuszynski (Physics, Alberta)
Models of the collective behavior of proteins in cells: actin, tubulin and motor proteins

David Adams (Biomedicine, Queensland)
Expression and function of membrane ion channels

Serdar Kuyucak (Theoretical Physics, RSPPhysSE, ANU)
Theories of ion permeation in membrane channels

Hans Coster (Biophysics, UNSW, Sydney)
Physics of cell membranes

Paul Gooley (Biochemistry, Melbourne)
Analysis of proteins and their complexes by nuclear magnetic resonance

Michael Parker (St. Vincent’s, Melbourne)
Protein structure from x-ray diffraction

Ron Pace (Chemistry, Faculties, ANU)
Biosensors

Tim Senden (Applied Mathematics, RSPPhysSE, ANU)
Atomic force microscopy

Edith Sevick (RSC, ANU)
Optical tweezers

Fred Chow (Photobioenergetics, RSBS, ANU)
Photosynthetic systems

The School was attended by 60 participants. The proceedings of the School will be published by World Scientific.

Mini Summer School Plasma Physics, ANU, 29 January - 2 February

(Supported by the Australian Institute for Nuclear Science and Engineering (AINSE))

A Summer School for senior undergraduates, graduate students and academic staff with interests in plasma science and technology.

Plasma physics underlies much of our understanding of stellar and galactic structure; it determines the magnetospheric environment of the earth and other planets; it forms the research frontier in areas such as nuclear fusion, advanced accelerators and high frequency lasers and is being increasingly used in industry – notably in the fabrication of computer chips. This course emphasised the intrinsic scientific interest of the plasma state of matter and attempted to develop an understanding on plasma behaviour in a thorough and systematic fashion.

Based on the recent text, “The Framework of Plasma Physics” by Richard Hazeltine and Francois Waelbroek, lectures were presented by Professor Hazeltine with the assistance of ANU staff.

There was also a series of experimentally oriented lectures given by

Professor I.H. Hutchinson (MIT, Author of “Principles of Plasma Diagnostics”)

Dr B. James (U. Syd)

Dr J. Howard (ANU)

Professor J. Harris (ANU)

The “Framework of Plasma Physics” contains the following chapter headings

- The Nature of Plasma
- Charged Particle Motion
- Fluid Description of a Plasma
- The Cold Plasma Model and Waves
- MHD and the Drift Model
- Vlasov Description of a Plasma
- Binary Collisions
- Collisional Transport
- Turbulent Transport

The 25th International Workshop of the Condensed Matter Theories was held in conjunction with the 11th Gordon Godfrey Condensed Matter Research Workshop in Belconnen during 3-7 December. The Workshop was an external activity of the Asia-Pacific Centre for Theoretical Physics. Dr Mukunda Das was the Chair of the Organising Committee.

The general orientation of these Workshops has been interdisciplinary, with emphasis on the common concerns of theorists applying advanced many-particle methods in areas as diverse as solid state and low temperature physics; atomic, sub-atomic and statistical physics. Within the framework of this tradition, the primary topics of CMT25 were planned to emphasise Physics of Novel Materials with exotic properties. The topics covered were in the currently researched areas of mesoscopic and strongly correlated systems including quantum liquids, boson condensates, superconductivity, superfluidity, and Monte Carlo simulations etc. Forty one invited talks were presented covering the above topics.

The Workshop was financially sponsored by the US Army Research Office, Asia Pacific Centre for Theoretical Physics, University of NSW, University of Melbourne, University of Wollongong, RSC (ANU) and RSPPhysSE (ANU).
Cooperative Research Centre for Functional Communication Surfaces

The CRC FCS began operations on July 1, 2001, following funding from the Australian Government. Principal academic partners are located in Chemical Engineering, Monash University, Applied Mathematics Department, RSPhysSE and the CSIRO Divisions of Forestry and Forest Products and Molecular Sciences (Clayton, Vic.). Industrial partners include AMCOR Packaging (Australia) Pty Ltd, Carter Holt Harvey Tissue Pty Ltd, Norske Skog Paper Mills (Australia) Ltd, Note Printing Australia Ltd and PaperlinX Pty Ltd (Australian Paper). Total Commonwealth funding over a seven year period is ca. $14 m, to be distributed among the various research groups.

The brief of the CRC is to advance Australia’s printing and packaging technology and expertise, with particular emphasis on advanced papers and polymeric materials (including banknotes), smart packaging indicators, improved recycling of paper and enhancement of cardboard packaging. Unglamorous though these areas sound, they are major industries in the Western world, and even minor incremental improvements in these areas are of major benefit to consumers and producers. A number of research areas are covered by the CRC partners, including extensional rheology, surface chemistry and energy, polymer rheology, colloid science, three-dimensional imaging of microstructures, and print quality analyses. The ANU node is focussed on providing accurate microstructural data of relevant materials, analysing the surface physics of imbibition of e.g. inks into papers, developing accurate mechanical models and measures of mechanical properties of various printing substrates. A novel feature of our contribution is the insistence that Applied Mathematics focus on the fundamental aspects of research. This tack has been welcomed by our industrial partners, who recognise the dearth of fundamental understanding of many processes associated with printing and paper and board production. The industry remains largely empirical, despite its enormous economic importance, and the group in Applied Maths are ideally equipped to investigate a number of important and interesting questions from our fundamental research perspective. While the issues are industrial in motivation, a number of fascinating problems that call on our skills are to be tackled. The work is experimental, theoretical and computational, in keeping with the philosophy of Applied Maths. Projects will make extensive use of the new X-ray CT machine, the Surface Forces Apparatus, Atomic Force Microscope and Ellipsometer.

In the first year of the Center, the ANU program was refined to address 4 projects of fundamental science to be undertaken and a fifth, strategic project aimed at addressing specific industry problems. Three of the four fundamental projects that have commenced and some research highlights from these projects are outlined below.

- **Structural characterisation of Paper and Coatings:**
 In this program we aim to experimentally image and characterise the morphology of paper and coatings in three dimensions. We have utilised the Applied Maths X-ray micro-CT facility along with two-photon confocal facilities overseas. A limitation of X-ray CT techniques to paper science has been the poor contrast of different soft (lower x-ray dense) materials. Phase contrast tomography has been proposed as a method to quantitatively image samples consisting of lighter elements. We have shown the feasibility of using x-ray phase contrast tomography for paper samples.

- **Dynamic behaviour in paper and coatings:**
 In this program we aim to experimentally study fluid wetting phenomena in fibre webs and porous coatings. The structure of the pore space together with local surface energy considerations are the chief determinants of fluid penetration processes. In the first year we have conducted experiments visualising the penetration of a wetting fluid into paper fibre webs. To date, industry has characterised fluid flow by an advancing wetting front moving through the bulk of the pores. Experiments on saturating papers has shown that the fluid movement is instead in the form of bulk liquid films moving along channels formed by fibre overlaps. The implications of this observation to printing interactions and production of décor paper is being considered.

- **Force measurements applicable to papermaking and paper performance:**
 In this program we aim to experimentally determine fundamental surface properties of papers and pulps and evaluate their role in paper performance. Work in the first year includes the development of an chamber to perform environmentally controlled experiments and a capacitance sensor to measure the mechanical properties of paper fibres. Other work involves characterisation of surface defects and pigment morphology in polymer bank notes.
The Centre for the Mind is a joint venture of two of Australia’s premier universities, The Australian National University and the University of Sydney. The Centre invests in daring research on fundamental topics of a wide general interest. It stage manages spectacular initiatives which challenge and inspire and it acts as a nexus for the great minds of the world.

Research Summary

The Centre’s research is primarily concerned with scientific ways to enhance creativity and “What makes a Champion” in the broadest sense of the word, and exceptional creativity and performance in all domains of human endeavour.

Commercialisation

Professor Snyder received an ARC Linkage-Project grant this year, in which he is Chief Investigator on the project “What Makes a Corporate Champion?” Professor Janet George from the University of Sydney is a partner investigator in this project.

The world’s largest consultancy company, McKinsey & Company, have joined this proposal which aims to assist realising this goal by developing a framework to identify and replicate championship in individuals and organisations. A multi-disciplinary team will apply quantitative and qualitative measures to address issues raised from the Centre for the Mind’s existing research. Findings will contribute significantly to the social and economic benefit of private and public sector organisations. We envisage that learnings from this joint effort will lead to an exciting program of research and application that will positively impact the many thousands of people in businesses in Australia and globally.

The Physics of Network Computation

Professor Snyder was also successful in obtaining an ARC Discovery Project Grant and is Chief Investigator on “The Physics of Network Computation”. Professor Terry Bossomaier from Charles Sturt University is partner investigator on this project.

This project combines the expertise in nonlinear soliton physics and computational sciences in order to provide new insights into the physics of network computation. The proposal addresses the mathematics and computer modelling underlying nonconscious problem solving. We will develop a new template concept, the meta-mode, which embodies the network structure of knowledge and the linking mechanisms, which underpin human creativity. We will establish the optimal connectivity distributions to preserve distinct pattern classes yet allow model radical shifts in paradigms, and develop algorithms for autonomous connectivity optimisation. We investigate nonlinear processes such as solitons and random Boolean.

Publications

Snyder, A.W. Paradox of the Savant Mind – The provocative exceptions to our understanding of intellectual ability Book review on Bright Splinters of the Mind by Beate Hermelin Nature Vol 413 (2001) 251-252

Staff (ANU & University of Sydney)

Director
Professor Allan Snyder FRS

Researchers
Professor John Mitchell
Dr Elaine Mulcahy

Visiting Fellows
Professor Terry Bossomaier
Dr Michael Djordjevic
Mr Andrew Meikle
Dr John Merson
Dr Timothy Thompson

Executive Officers
Mr Stuart Stark
Mr Doug Thompson

Project Officer
Ms Katy Ayoub

Administrator
Ms Cheryl Morse

Web Designer
Mr Matthew Immonen (part-time)

PhD Student
James Moody
The School recognised during the year that it needed a more proactive and professional approach to commercialisation. A School Commercialisation Committee has been set up to: i) establish a set of guidelines and procedures within the School for protecting and exploiting its intellectual property (IP), ii) provide advice to School staff on commercialisation matters, iii) maintain a register of the School’s IP, including know how, disclosures and patents, and iv) make sure the School’s approach to commercialisation conforms with the ANU’s procedures. As well as five academic members with experience in commercialisation, the committee has members from Anutech and the general staff. The committee’s first task has been the preparation of a set of draft procedures for adoption by the School to guide staff, students and visitors in their responsibilities and obligations regarding the IP generated by the School’s activities. It is expected that, after harmonization with the IP policies of the University, the School will adopt these procedures. The procedures will be used as the basis for staff training in IP management and will be included in new employee and departmental visitor orientation and during induction of new students to the School. The School was particularly active in 2001 with a range of projects that were at various stages of commercialisation. In addition, the School was determined to work more closely with Anutech, Mr Tony Cooke, in its attempts to exploit its IP. This section reports on commercialisation ventures and also projects showing promise for commercialisation. Some of these activities are contained in the report of Anutech.

RPO Pty Ltd

A new start-up venture has been established to commercialise organically modified silicate glasses developed by the Laser Physics Centre with support from the Australian Photonics CRC. ANU developed IP has been transferred to RPO, the newest member of the Redfern Photonics group of companies with headquarters in Sydney. RPO has established clean room facilities in the Innovations Building at ANU for device fabrication and characterisation. RPO was awarded a 2.7M$ START grant to support work on Advanced Polymer Switching Devices. A number of RSPhysSE staff are contracted to assist the commercialisation process. These include Professor Barry Luther-Davies, Dr Wieslaw Krolikowski, Dr Reiner Friedrich, Dr Anke Freydank, Ms Ruth Jarvis, Professor John Love, Dr Congji Zha, Mr Ian McRae and Ms Maryla Krolikowska.

Acton Semiconductors

This spin-off company was established in late 2000 to commercialise novel semiconductor laser technology that was developed in the Electronic Materials Engineering Department. A detailed Business Plan was developed for manufacture of high power lasers for the global telecommunications market in early 2001. Venture capital and corporate funding was explored and term sheets were signed for a multi-million dollar investment in May 2001. However, before the deal was concluded the Telecommunications sector suffered a major downturn and all parties decided that to put the venture on hold. Subsequently the ANU decided to forgo venture funding for the time being and reassess commercialisation options. A $350,000 grant was obtained from the ACT government to keep the R&D on track and to explore alternative funding options. Recently, considerable interest has been shown by an Australian company in the technology and in the Acton Semiconductors opportunity. The current direction, while the telecommunications market remains depressed, is to pursue and consolidate semiconductor laser IP and to further develop novel prototype components. Indeed, considerable new IP has been generated and consolidated in this laser area, comprising two full patents and five provisionals. Professor C Jagadish and a large team from EME and the School have been involved in this project.
The Plasma Antenna and the BushLAN Project

The Plasma Research Laboratory, the University of Canberra, CEA Technologies Pty Ltd and the DSTO are collaborating to produce a Plasma Antenna whip for radar and communications applications. The project is driven by a SPIRT grant. Several applications are being considered for continuously adaptive arrays for radar and low radar cross-section antennas for communications. Investigations are continuing into the plasma lens for beam steering of high power microwaves developed under a contract from the DSTO. The project is also being partly funded by Motorola USA to develop small switches for antenna taps in multi-band mobile phones, which is the subject of a PhD thesis.

Recently a new project has commenced to investigate how to improve Internet connectivity in regional and central Australia. The project, BushLAN, anticipates the use of the VHF TV band (45 – 70 MHz) spectrum which will be decommissioned after the uptake of digital TV. These frequencies have many advantages over UHF and microwave wireless networks such as satellite and WiFi for the provision of data services to remote areas where high infrastructure costs cannot be justified. BushLAN connects the Internet Service Provider and the Customer with a low powered wireless link operating in the frequency bands currently occupied by analog TV. Typically, people living within major regional centres have access to copper telephone lines that can provide dialup connections to the Internet with reasonable access speed. The main exchange in such towns is often connected to the Internet with high speed connection and a good service can be supplied simultaneously to the town as a whole. However, as the distance from the exchange increases there is a tendency for the telephone service to deteriorate and customers, if they can get an Internet connection at all, experience frequent drop outs. Moreover, in central Australia there are no telephone lines at all and so BushLAN could provide VoIP telephone services.

In the current project, the feasibility of transmitting signals in this bandwidth has been demonstrated up to 40 kms at 250 kbps and wireless modems and other devices have commenced development. The project work for BushLAN is being carried out by seven students from the FEIT Engineering Department who are developing the different components for their fourth year theses. Preliminary cost studies indicate that BushLAN is considerably cheaper than the satellite and WiFi services.

BushLAN has been demonstrated at the ACT “Focus on Business” exhibition during March and has generated substantial interest. Funding is now being sought to carry the development forward. Visit the BushLAN web site http://wwwrsphysse.anu.edu.au/bushlan/.

(Prof J. Harris, Mr L. Lungu, Ms L. Caillault, Mr P Linardakis, ANU and Dr A Cheetham, J. Rayner (University of Canberra) and Dr. N. Martin (DSTO)).

Deep Vein Thrombosis (DVT) and Blood Clot Detection

Through a collaboration of over 8 years with Vita Medical Pty Ltd, an ANU owned medical diagnostic technology is to be commercialised via the start-up Vimed Biosciences, Inc. Already tested in the clinical setting, this technology has the capability of pinpointing in 3 dimensions the location of blood clots, or thrombi which may be life threatening. Early detection, assessment and treatment of this condition could drastically reduce the incident of fatalities caused by strokes, cardiac disease and pulmonary emboli, the later being a direct result of DVT. The agreement funds lab space in the Innovations Building, staff and considerable capital equipment. An office in Boston has been established to direct the FDA submission. All work done at the ANU will be at a cGLP level. Dr T Senden and a team from the Applied Mathematics Department have driven this project.

Anutech Report

To facilitate closer interaction between Anutech Pty Ltd and the School to facilitate industry interaction and commercialization, the School has provided an office for Anutech within the School. This office was opened in January 2002 and is presently manned approximately 50% of the time by Mr Tony Cooke, Technology Manager - Physical Sciences and Engineering. Anutech have been actively involved in assessing and negotiating the commercial potential of a number of the School’s projects. These include the Plasma Antenna/BushLAN and DVT ventures reported above as well as projects outlined below.

High Brightness Helicon Plasma.

FEI Corporation of Massachusetts USA approached Prof Rod Boswell to assist their development of a high brightness plasma source for use in their machines that make repairs to optical lithographic masks. A research contract resulted from this inquiry that has so far generated over $100,000 in research funds to the School.

Emissivity Independent Infrared Thermography.

Dr John Howard has developed a means of determining temperature by measuring the shape of the black body radiation curve. This approach avoids the need to know the emissivity of the object whose temperature has been measured. He has developed a non-contact optical instrument based on this principle that can be used like a thermocouple to measure the temperature at a point on an object or can be used with a telescope and charge coupled array to provide a measurement of the temperature of an imaged surface. The instrument equals the performance of double beam instruments, which do the same job, but with much greater simplicity and reduced cost. A provisional patent application has been lodged for the concept. Considerable interest has been expressed by BHP Steel for the use of such an instrument in their steel making operations – it is potentially very useful for determining the temperature of streams of molten metal or the surface of billets about to be rolled. A prototype instrument will be funded and made for them and trialed in their steel-making facilities. Invetech (a company specialising in contract research and development) has indicated an interest in the rights to manufacture instruments using this principle when the prototype has reached a more advanced state of development. This project has also formed the basis for a further development of the principle to spectroscopically detect
the difference between a rocket engine and a jet engine and has attracted a research contract from DSTO.

Visualisation of Pore Structures and Modeling of the properties of Porous Structures.

Dr Mark Knackstedt’s group in the Department of Applied Mathematics have developed high resolution x-ray based computerised scanning tomography to visualise the pore structure of porous materials. The equipment was developed jointly with the University of NSW Oil and Gas Petrology Group to study porous oil bearing rocks for the oil and gas industry, which requires knowledge of the properties of oil bearing rocks to determine the yield and rate of extraction of oil or gas from those rocks. Normal practice takes core samples of rocks from exploratory drill holes and determines their extraction properties from a variety of physical tests. This is a costly procedure because complete core samples must be retrieved from the drill hole that can only be done by removing the drill pipes and then reinserting them in the hole. Testing is also costly and time consuming taking up to 2 weeks to complete. Models of the pore structure at various levels of resolution can provide more information than conventional testing of the rocks and it appears that the same results can be obtained from rock fragments eliminating the need to obtain complete cores. Thus there is significant commercial potential for the provision of rock analysis samples. In addition the technique is applicable to any porous material and contracts have been obtained with BASF Germany to study polymer foams. In addition the group is involved with the CRC for Paper Technology and is engaged in a study of wetting of papers with inks and resins. Clearly there is potential for the study of many porous materials and the ability of the group to visualise the internal pore structure of such materials will provide both fundamental and applied researchers with many new insights into their structure and properties. The commercial application of this equipment beyond the research projects within the department will be investigated and the possibility of supplying instrumentation and computer programs for other groups is under consideration.

Array Optical Devices.

Array optical devices were developed by Dr Andre Rode of the Laser Physics Department in the early 1990’s. Several attempts have been made to interest commercial companies in their use as they offer the advantages of lenses for solar energy collection without the disadvantage of having to track the sun as in conventional trough and dish collectors. The technology has been promoted at the ACT “Focus on Business” Exhibition and the Bench to Business forum jointly run by UNSW, ANU, UTS and University of Sydney.

Carbon and Boron Nitride Nanotubes.

Dr Ying Chen of Electronic Materials Engineering has developed a method of producing large quantities of either Carbon or Boron Nitride nanotubes. This has generated many requests for samples of these materials for testing by other laboratories and has prompted a review of the prospects for commercialising the technology.

Surface Forces Apparatus.

The Applied Mathematics Group has developed additional equipment for the surface forces apparatus to measure friction. Several papers will shortly be published on the measurement of friction and this provides a means to measure friction not previously available. The publication of these papers provides opportunity to re-market the basic apparatus and to attempt to market the friction add-on to existing customers. It is expected that this will be of interest to tribologists and lubricant manufacturers who may not have been targeted in previous marketing.
Outside Grants and Contracts

In 2001, the School’s annual recurrent grant of $14.789M was supplemented by additional income from University Major Equipment Committee funds ($1.074M), from full fee paying students ($109k) and by a significant number of outside grants from a variety of sources. These grants, which are shown below, reflect the School’s income opportunities and some of its collaborative activities.

Applied Mathematics

CRC for Functional Communication Surfaces
The Department is one of three academic nodes for the new CRC for Functional Communication Surfaces, to be funded for seven years from July 2001. The ANU portion of the budget is $2.7M.

Australian Partnership for Advanced Computing
Dr M. Knackstedt, Dr A.P. Sheppard and Professor S.T. Hyde
July 2000 – March 2003 $250,000

DETYA (Australian Research Council)
Dr V.S. Craig
Australian Postdoctoral Research Fellowship
February 1999 – February 2001 $177,009

Vice Chancellor’s Plan for Growth
Professor S.T. Hyde
January 2001 – December 2003 $287,000

Atomic and Molecular Physics Laboratories

Australian Academy of Science
Dr A. Klefiris (jointly with TP)
Travelling Fellowship to Germany
July 2001 – December 2002 $9,000

Australian Fulbright Association
Professor S.J. Buckman
Senior Scholarship
September 2000 – September 2001 $28,500

CSIRO
Professor L. Chaderton
Swift Iota Project
August 1998 – August 2003 $150,000

DETYA (ARC Fellowships)
Dr R.J. Galley
Australian Postdoctoral Research Fellowship
March 1998 – February 2001 $187,000

Dr S.J. Cavanagh
Australian Postdoctoral Research Fellowship
May 2001 – April 2004 $195,000

Dr M. Vos
QE II Research Fellowship
November 1996 – June 2001 $308,000

DETYA (ARC Large Grants)
Dr K.G.H. Baldwin and Dr B.R. Lewis
Pulsed Nonlinear-Optical Spectroscopic Sources: Tunable Nanowaveband and Multimode Applications (Held jointly with Macquarie University)
January 2000 – December 2002 $153,000

DETYA (RIEF)
University of Western Australia (ANU participant)
Dr M. Vos and Professor E. Weigold
National Facility for Electron Spin-Correlations & Spintronics
January 2001 – December 2001 $450,000

DESY and Institution of Engineers
International Conference Support Scheme
Dr B.R. Lewis
14th International Conference on Vacuum Ultraviolet Radiation Physics
July 2001 $2,500

University of Adelaide
Australian-German Joint Research Co-Operation Scheme
Professor E. Weigold and Dr J. Lower
Investigations into Atomic Collisions through the Development of Advanced Technologies

Director’s Unit

Australian Academy of Science
Professor Yuri Kivshar
Research visit to Japan
April 2001 – March 2002 $1,800

DETYA (Australian Research Council)
Professor J.D. Love and Dr M.C. Elias (ADC Australia Pty Ltd)
Australian Postgraduate Award (Industry)
Ms K.W. Gaff
February 1997 – May 2001
ADC contribution $15,000

Professor J.D. Love & Dr M.C. Elias (ADC Australia Pty Ltd)
Australian Postgraduate Award (Industry)
Ms S. Tomljenovic-Hanic
June 1999 – May 2002
ADC contribution $15,000

Dr S. Huntington (Uni of Melbourne), Professor J.D. Love & Dr A. Carter (Nufern Inc)
Australian Postgraduate Award (Industry)
Mr P. Pace
December 2001 – November 2004
Nufern contribution $15,000

DESR
Professor J.D. Love & Dr A. Anikiewicz
Support from Australian Photonics Cooperative Research Centre
May 1999 – April 2005
$700,000

Japan Society for Promotion of Science
Professor Yuri Kivshar
Nonlinear Photonic Crystals
April 2001 – March 2002
$10,000

University of Adelaide
Australia-German Joint Research Cooperation Scheme
Professor Y. Kivshar
Generation, Dynamics, and Interaction of Solitary Waves in Photorefractive Crystals and Magnetic Films
August 2001 – December 2002 $14,948

Electronic Materials Engineering

ACTON LASERS
AU National Commercialisation (Venture Capital) Fund
Professor C. Jagadish
Develop Stage 1 of Acton Lasers
March 2000 onwards $500,000

ACT R&D Grant
ACT Chief Minister’s Department
Professor J.S. Williams
Developing Technology Prototype Products & Markets for Semiconductor Lasers
September 2001 – September 2002 $350,000

ANSTO
Dr M.C. Ridgway
Access to Major Research Facilities Program
EXAFS Characterisation of Implantation-induced Disorder in Compound Semiconductors
April 2001
December 2001 $10,300

ANSTO
Dr M.C. Ridgway
Australian Synchrotron Research Program
Diffraction and EXAFS Measurements of Metal-decorated Nanocrystals in Si
May 2001
EXAFS Measurements of Amorphised Compound Semiconductors and Nanocrystals in SiO2
October 2001 $6,690
DETYA (ARC Fellowships)

- **Dr. H.H. Tan**
 - QREE Research Fellowship
 - Growth, Characterisation and Fabrication of Gallium Nitride Lasers
 - May 2001 – May 2006
 - $357,590

- **Dr. Y. Wong-Leung**
 - Australian Postdoctoral Research Fellowship
 - $164,000

- **Dr. H. Timmers** (jointly with NP)
 - Australian Postdoctoral Research Fellowship
 - $174,576

- **Dr. P.K. Dringanpay**
 - Australian Postdoctoral Research Fellowship
 - July 2001 – June 2004
 - $168,702

DETYA (ARC Large Grants)

- **Dr. Y. Chen**
 - Formation Mechanism of Boron Nitride Nanotubes
 - produced by Reactive Ball Milling
 - 2000 – 2002
 - $210,563

- **University of New South Wales**
 - (ANU participant)
 - **Dr. M. Petravic**
 - Surface Analysis using a Free Electron Laser
 - 1999 – 2002
 - $120,000

- **University of New South Wales**
 - (ANU participant)
 - **Professor S. Williams**
 - Characterisation of Structural Defects in Ion-beam processed BLV Nitrides
 - 2001 – 2003
 - $208,126

DETYA (SPIRIT)

- **Professor J.S. Williams**
 - Ionisation Studies of Semiconductor Thin Films
 - $62,268

- **DISR**
 - **Professor J.S. Williams**
 - Technology Diffusion Program
 - Harnessing Materials Research & Development Resources
 - 2000 – 2001
 - $113,000

- **Dr. M. Petravic**
 - Access to Major Research Facilities Program
 - Selective Photo-deposition of Hydrogen from Hydrogenated Gallium Surfaces
 - August 2001 – September 2001
 - $5,120

DISTO

- **Dr. H.H. Tan** & **Professor C. Jagadish**
 - Optical Device Processing
 - 1999 – 2002
 - $59,000

- **French Embassy, Canberra**
 - **Dr. M.C. Ridgway**
 - Nanoscale Evolution under Ion Irradiation in collaboration with CNRS, France
 - February 2002
 - $3,685

- **Stamley Melbourne Bruce Science & Industry Fund**
 - **Professor S. Williams**
 - Protection of IP in respect of an Optoelectronics Materials Opportunity
 - May 2000 – February 2002
 - $69,000

- **University of Adelaide**
 - **Australian-German Joint Research Co-Operation Scheme**
 - Sub-Picosecond Laser Deposition of Optical Films
 - 2001 – December 2002
 - $18,000

Nuclear Physics

- **DETYA (ARC Fellowships)**
 - **Dr. M. Dassau**
 - QREE Research Fellowship
 - April 1999 – March 2003
 - $360,000

- **Dr. C.R. Morton**
 - Australian Postdoctoral Research Fellowship
 - June 1999 – June 2002
 - $174,576

DETYA (RIEF)

- **Dr. A.E. Stuchbery**
 - Partners: A/Professor D.H. Chaplin (University of New South Wales), Dr. A.P. Byrne (ANU, The Faculties), Professor H.H. Bolotin (University of Melbourne)
 - Hyperfine Interactions Spectrometer for Probing Dynamic and Static Atomic Environments
 - March 2001 – March 2002
 - $200,000

Optical Sciences Centre

- **News LTD**
 - **Professor A.W. Snyder**
 - Contribution to Research (Centre for the Mind)
 - $174,576

- **US Army Research Office (Far East)**
 - **Professor N. Ahmedi**
 - Four Wave Mixing in Dispersion Managed Optical Fiber Links
 - March 2001 – February 2002
 - $20,000

Plasma Research Laboratory

- **Australian Academy of Sciences**
 - **Dr. M.G. Shute**
 - Comparitive Studies in Stellarator Transport
 - July 2000 – June 2001
 - $5,225

- **ADFA**
 - **Professor R. Boswell**
 - Wedge Contract
 - January 2001 – December 2001
 - $31,750

DETYA (ARC Large Grant)

- **Associate Professor B. James (U. Sydney)**, Dr. J. Howard and Professor S. Buckman
 - LIF Measurement of Plasma E Field
 - 2000 – 2002
 - $250,000

DETYA (RIEF)

- **Professor J.H. Harris** and **Dr. G. Borg**
 - Development of Novel Systems for Wireless Communications and Radar
 - January 2001 – December 2001
 - $150,000

DETYA (SPIRIT)

- **Dr. G. Borg**, **Professor J.H. Harris**, **Dr. N.M. Martin**, **Dr. D. Thomsett** and **Mr. L. Lums**
 - CEA Technologies and Neodim Neon
 - The Application of Plasma Antennas to Communications and Radar
 - June 2000 – May 2002
 - $62,466

 - **CEA Technologies Pty Ltd component**
 - $15,000

DISR (ANFRE)

- **Professor J.H. Harris et al**
 - National Plasma Fusion Research Facility
 - December 1995 – December 2001
 - $8,700,000

DISTO

- **Dr. G. Borg**, **Professor J.H. Harris**, and **Dr. N.M. Martin**
 - Research Agreement
 - Production of a Demonstration Plasma Antenna
 - May 2000 – March 2001
 - $37,000

MOTOROLA Inc. USA

- **Professor J.H. Harris** and **Dr. G. Borg**
 - Application of Plasma Switches to Mobile Personal Communication Systems
 - June 2000 – June 2002
 - $27,413

MOTOROLA Postgraduate Scholarship

- **Professor R. Schmit** and **Mr. J. L. A. J. de T.**
 - June 2000 – June 2002
 - $30,000

Theoretical Physics

- **Australian Academy of Science**
 - **Dr. A. S. Kehlert** (jointly with AMPL)
 - Travelling Fellowship to Germany
 - July 2001 – December 2002
 - $9,000

- **Australian Partnership for Advanced Computing**
 - **Dr. C.H. Chang**
 - Modelling Biological Ion Channels
 - March 2001 – March 2002
 - $71,428

DETYA (ARC Fellowships)

- **Dr. R. Ball**
 - Australian Postdoctoral Research Fellowship
 - June 2000 – June 2001
 - $177,009

- **Dr. M. H. M. Hosley**
 - Australian Postdoctoral Research Fellowship
 - June 2000 – January 2001
 - $3,970

Japan-Australia Collaboration Fund

- **Dr. R. Ball**
 - Visit to National Institute for Fusion Science, Japan
 - March 2001
 - $3,970

School Services

- **Vice Chancellor’s Plan for Growth**
 - Recruitment and Training of Technical Staff
 - January 2001 – December 2003
 - $157,500

General Endowments

- **Donation from Personal Estate**
 - June 1997 – indefinite
 - $183,000

- **Named Scholarships and Prizes**
 - Jagdishwar Mahanty Prize
 - $1,500
Service to Outside Organisations

Applied Mathematics

Dr A. Christy
Editorial Board, Mineralogical Magazine, UK

Dr T. Sendon
Member, Board, Australian Science Olympiads

Dr A. Stewart
Vice President (Academic), Treasurer, ANU Branch, National Tertiary Education Union

Professor S. Marcella
Member, ACT Division Council, National Tertiary Education Union

Professor R.W. Crompton
Convenor, ACT Chapter, Australian Fulbright Association
Member, International Advisory Board, International Conferences on Atomic and Molecular Data and their Applications
Chair of Board, National Youth Science Forum

Dr S.T. Gibson
Honorary Member and Web Membership Database Administrator, Australian Optical Society

Dr B.R. Lewis
Member, International Advisory Board, International Conferences on Vacuum Ultraviolet Radiation Physics
Chairman, 14th International Conference on Vacuum Ultraviolet Physics, Cairo, 2006
Associate Editor, Journal of Quantitative Spectroscopy and Radiative Transfer

Professor E. Weigold
Member, Board, Australian Photonics CRC
Member, Board, CRC for Functional Communication Surfaces
Member, International Scientific Committee: International Conferences on X-Ray and Inner Shell Processes
Member, International Scientific Advisory Committee, International Symposium on (e,2e) Double Photionization and Related Topics, Rolla, USA
Member, International Organizing Committee, Sagamore (International Conference on Charge, Spin and Momentum Densities)
Member, Nominating Committee, American Physical Society Few-Body Topical Group
Member, Australian Academy of Science Committee, Major National Research Facilities
Director, Action Lasers
Member, Advisory Committee, LPMC, Institut de Physique

Atomic and Molecular Physics Laboratories

Professor S.J. Buckman
Member, General Committee, International Conferences on the Physics of Electronic and Atomic Collisions (ICPEAC)
Member, Organising Committee, 12th Gaseous Electronics Meeting, Murramarang Resort, NSW
Member, International Scientific Committee, International Symposium on Electron-Molecule Collisions and Swarms, Nebraska, USA
Member, Executive Committee, Gaseous Electronics Conferences, USA
Member, International Scientific Committee, Symposium on the Physics of Ionized Gases, Yugoslavia
Member, International Scientific Committee, Symposium on Radiation Effects in Insulators
Member, Steering Committee: Bilateral Science & Technology Agreement, Mexico and the Federal Republic of Germany
Member, United Nations Committee on Photovoltaic Applications in Less-developed Countries, UN Centre for Science & Technology for Development
Member, International Committee, Biennial Conference Series on Radiation Effects in Insulators
Member, International Committee, Biennial Conference Series on Particle Tracks in Solids
Member, International Committee, Biennial Conference Series on Quantum Electrodynamics and Statistical Physics
Member, Advisory Committee, 1st Australian Workshop on Nanotubes and Fullerenes

Professor J.D. Love
Senior Vice-President Education, Photonics Institute
Member, Council, Australian Optical Society
Member, ACT Government Information Industry Development Board
Honorary Ambassador for Canberra
Program Manager, Photonic Integrated Circuits, Australian Photonics CRC
Deputy Chair, 2002 Congress of the Australian Institute of Physics, Sydney
Member, Executive Committee, Australian Photonics CRC
Member, Executive Committee, Photonics Institute
Director, Siemens Science & Engineering Experience ANU
Chair, Program Reference Group, Canberra Institute of Technology
Convenor, Optical-Electronics Communications Conference, Integrated Optics & Optical Communications Conference and Australian Conference on Optical Fibre Technology, Sydney, 2001

Director’s Unit

Professor L.T. Chadderton
Founding Editor, International Journal of Radiation Effects and Defects in Solids
Member, Editorial Advisory Board, Nuclear Tracks and Radiation Measurement
Member, Editorial Advisory Board, International Materials Science Forum
Member, Steering Committee: Bilateral Science & Technology Agreement, Mexico and the Federal Republic of Germany
Member, United Nations Committee on Photovoltaic Applications in Less-developed Countries, UN Centre for Science & Technology for Development
Member, International Committee, Biennial Conference Series on Radiation Effects in Insulators
Member, International Committee, Biennial Conference Series on Particle Tracks in Solids
Member, International Committee, Biennial Conference Series on Quantum Electrodynamics and Statistical Physics
Member, Advisory Committee, 1st Australian Workshop on Nanotubes and Fullerenes

Professor Yu.S. Kivshar
Associate Editor, Physical Review E
Member, Advisory Board, CHAOS: An Interdisciplinary Journal of Nonlinear Science
Electronic Materials Engineering

Dr K.G. Elliman

Chair, International Conference on Ion Beam Modification of Materials, Eindhoven University of Technology, The Netherlands, June 2002

Chair, International Conference on Atomic Collisions in Solids, Canberra, Australia, 15–20 July 2001

Chair, AINSE National Conference on Nuclear Techniques of Analysis, 2001

Member, Editorial Board, Nuclear Instruments and Methods B, Elsevier, Amsterdam

Member, ACT Branch Committee, Australian Institute of Physics

Member, Governing Council, Electronic Materials and Processing Division, International Union of Vacuum Science Techniques and Applications

Member, AINSE Accelerator Science Specialist Committee

Member, Program Review Committee, ANSTO Accelerator Applications Affinity Area

Member, External Advisory Committee, Microanalytical Research Centre (MARC), School of Physics, Melbourne University

Professor N.H. Fletcher

Editor, Acoustics Australia

Associate Editor, Journal of the Acoustical Society of America

Member, Editorial Board, Journal of Sound and Vibration

Member, Editorial Board, Applied Acoustics

Member, Editorial Board, Institute of Physics/Springer-Verlag Monograph Series, Modern Acoustics and Signal Processing

Member, Scientific Advisory Committee, Australian National Acoustic Laboratories

Member, International Scientific Advisory Board, International Symposium on Musical Acoustics (Perugia, Italy, September 2001)

Professor C. Jagdish

Member, Editorial Board, Journal of Nanoscience and Nanotechnology

Member, Review Committee, Gigahertz Facility, CSIRO Telecommunications & Industrial Physics

Chair, IEEE Australian Chapter, Electron Devices and Lasers & Electro-Optics Committees

Chair, Optoelectronic Devices Technical Committee, IEEE Electron Devices Society, USA

Dr M. Petrovic

Member, Program Committee and Organising Committee, 15th International Conference on Ion Beam Modification of Materials, Cairns, 2001

Dr M.C. Ridgway

Member, Organising Committee/Program Committee, 15th International Conference on Ion Beam Analysis

Member, Organising Committee/Program Committee, 14th International Conference on Vacuum Ultraviolet Radiation Physics

Member, Photon Factory Specialist Committee, Australian Synchrotron Research Program

Member, National Scientific Advisory Committee, Australian Synchrotron Project

Evaluator, Foundation for Research Development (South Africa) – Evaluation of Research Outputs of Principal Grant Holders

Dr H.J. Tan

Vice Chair, IEEE ACT Section

Treasurer, IEEE ACT Section

Dr N.J. Welham

Associate Editor (Metallurgy), Proceedings of the Australasian Institute of Mining and Metallurgy

Committee Member, Canberra Branch, Australasian Institute of Mining and Metallurgy

Program Director, Canberra Branch, Australasian Institute of Mining and Metallurgy

Dr J.S. Williams

President, Australian Materials Research Society

Member, International Advisory Committee, International Conference Series on Ion Beam Analysis

Member, International Advisory Committee, International Conference on Ion Implantation Technology

Member, Adhering Body Committee, International Union of Materials Research Society

Dr M.C. Ridgway

Member, Editorial Board, Radiation Effects and Defects in Solids

Member, Advisory Board, Applied Physics Reviews

External Member, Advisory Board, Strategic Program in Functional Materials, ANSTO

Professional Advisor, LEDEX Corp, Taiwan

Director, Acton Semiconductors Pty Ltd

Dr R.G.H. Baldwin

Member, International Council on Quantum Electronics

Member, General Organising Committee, International Conference on Laser Spectroscopy 2003

Chair, Australian Conference on Optics, Lasers and Spectroscopy Liaison Committee

Member, National Committee for Spectroscopy, Australian Academy of Science

Member, National Committee for Physics, Australian Academy of Science

Chair, Science Policy Committee, Federation of Australian Scientific and Technological Societies

Member, ACT Branch Committee, Australian Institute of Physics

Member, Science Policy Committee, Australian Institute of Physics

Professor B. Luther-Davies

Director, Research, Australian Photonics CRC

Member, Executive and Board, Australian Photonics Pty Ltd

Member, DISR Australian Nanotechnology Delegation to Japan and Korea, 8–16 July 2001

Member, Organising Committee, LEOS 2001

Professor N. B. Manson

Member, International Advisory Committee, International Conference on Dynamical Processes in Excited State of Solids

Dr M. Lederer

Member, ACT Section Committee, IEEE

Member, Elected Member of Administrative Committee, IEEE Electron Devices Society, USA

Member, IEEE Compound Semiconductor Devices and Circuits Technical Committee, Electron Devices Society, USA

Member, IEEE Electron Devices Society Meetings Committee, USA

Member, Nanotechnology Technical Committee, IEEE Electron Devices Society, USA

Member, Program Committee, Optoelectronic Materials and Processing, The 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society, San Diego, USA, 15–11 November 2001

Member, Advisory Board, Australian Workshop on Nanotubes and Fullerenes, Canberra, 3–4 May 2001

Co-Chair, Optoelectronic Devices Technical Committee, The 11th International Workshop on Physics of Semiconductor Devices, New Delhi, India, 11–15 December 2001

Member, Program Committee, Symposium on Quantum Dot Sources and Detectors, SPIE International Symposium on Optoelectronics 2002, San Jose, USA, 20–25 January 2002

Member, Steering Committee, The 23rd International Conference on Microelectronics, Nis, Yugoslavia, 12–15 May 2002

Member, Program Committee, The 8th International Conference on Electronic Materials, Xian, China, 10–14 June 2002

Co-Chair, Symposium on Materials and Technologies for Electronic and Optoelectronic Devices, The 8th International Conference on Electronic Materials, Xian, China, 10–14 June 2002

Chair, International Advisory Committee, 12th International Semiconductor and Insulating Materials Conference, July 2002, Bratislava, Slovakia

Member, Program Sub-Committee on “Active and Compound Semiconductor Devices”, The Integrated Photonics Research Conference (IPRC 2002), Vancouver, Canada, 17–19 July 2002

Member, Scientific Advisory Committee, 2002 Conference on Optoelectronic and Microelectronic Materials and Devices, Sydney, Australia, 9–13 December 2002

Member, International Advisory Committee, COBRA, Inter University Research Institute for Communications Technology, Eindhoven University of Technology, The Netherlands

Member, Advisory Committee for the Centre for Materials Technology, University of Technology, Sydney

Member, Program Committee, 12th International Semiconductor and Insulating Materials Conference, July 2002, Bratislava, Slovakia

Professional Advisor, LEDEX Corporation, Taiwan

Dr M. Petravic

Member, Program Committee and Organising Committee, 15th International Conference on Ion Beam Modification of Materials, Cairns, 2001

Member, Organising Committee/Program Committee, 14th International Conference on Ion Beam Analysis

Member, Organising Committee/Program Committee, 13th International Conference on Vacuum Ultraviolet Radiation Physics

Member, Photon Factory Specialist Committee, Australian Synchrotron Research Program

Member, National Scientific Advisory Committee, Australian Synchrotron Project

Evaluator, Foundation for Research Development (South Africa) – Evaluation of Research Outputs of Principal Grant Holders
Dr M. Samoc
Member, Editorial Board, Photonics Science News

Nuclear Physics

Dr A.P. Byrne
Member, ACT Branch Committee, Australian Institute of Physics
Member, Committee (Sec/Treasurer), Nuclear and Particle Physics Group, Australian Institute of Physics.
Participant, Adopt-a-Physicist Program, ACT Branch, Australian Institute of Physics.
Member, Organising Committee, 19th AINSE Nuclear and Particle Physics Conference, Sydney, July 2002

Dr M. Dasgupta
Member, ACT Branch Committee, Australian Institute of Physics
Participant, Adopt-a-Physicist Program, ACT Branch, Australian Institute of Physics.
Member, Committee, Nuclear and Particle Physics Group, Australian Institute of Physics.

Mr L.K. Fifield
International Member, AMI Strategy Group, UK Natural Environment Research Council
Member, ACT Radiation Council

Professor G.D. Dracoulis
Member, Committee, Nuclear and Particle Physics Group, Australian Institute of Physics.
Member, 19th AINSE Nuclear and Particle Physics Program Committee, (in association with the AIP Congress), Sydney, July 2002
Member, International Advisory Committee, Conference on Nuclear Structure, Certe, July 2001 & 2002
Member, North America Committee, Australian Academy of Science, International Program of Scientific visits
Member, Program Advisory Committee of the 88-inch Cyclotron (including Gammasphere), Lawrence Berkeley National Laboratory, May 2000 – 3-year term
ANU Representative, Engineering and Physical Sciences Research Council (UK), ANU-EPSRC Agreement: Beam Time Allocation
Referee, Engineering and Physical Sciences Research Council (UK), Senior Research Fellowship Scheme
Expert Referee, Engineering and Physical Sciences Research Council (UK), Research Grants, Nuclear Physics Programme
Expert Reviewer, University of Sydney, ARC Small Grants
Evaluator, Foundation for Research Development (South Africa) – Evaluation of Research Outputs of Principal Grant Holders
Reader, Physical and Earth Sciences, Australian Research Council

Dr K.J. Fitzpatrick
Member, Editorial Board, Australian Journal of Physics
Member, ACT Branch Committee of the Australian Institute of Physics (now defunct)
Member, Editorial Board, Australian Journal of Physics
Member, Editorial Board, Australian Journal of Physics
Member, Editorial Board, Australian Journal of Physics
Member, ACT Branch Committee of the Australian Institute of Physics

Dr M.G. Shats
Member, Plasma Specialist Committee, AINSE

Mr S. Collis
Participant, Adopt-a-Physicist Program, ACT Branch, Australian Institute of Physics

Mr F. Glass
Participant, Adopt-a-Physicist Program, ACT Branch, Australian Institute of Physics

Professor J.H. Harris
Member, Stellarator Physics Advisory Committee, Princeton Plasma Physics Laboratory, Princeton, USA
Member, Plasma Specialist Committee, AINSE
Member, Executive Committee for the International Energy Agency Implementing Agreement for Research on Stellarators
Chairman, 15th International Stellarator Workshop, Canberra, Australia

Dr J. Howard
Member, Plasma Specialist Committee, AINSE

Dr M.G. Shats
Member, 11th International Congress on Plasma Physics, Program Committee

Theoretical Physics

Dr R. Ball
Committee Member, Minutes Secretary, ACT Branch, Australian Institute of Physics

Professor R.J. Baxter
Member, Editorial Board, Journal of Geometric and Functional Analysis
Member, Advisory Board, Physica A
Member, Editorial Board, Annales of Combinatorics
Member, Editorial Board, Theoretical Physics and Related Mathematics
Chair, Board, Australian National University Centre for Complex Systems
Senior Fellow, Asia-Pacific Center for Theoretical Physics, Seoul, Korea

Dr M.P. Das
Member, Editorial Board, Condensed Matter and Materials Communications
Co-Convenor, Annual Gordon-Godfrey Research Workshop on Condensed Matter Physics
Co-Convenor, International Conference on Science and Technology of Nanostructured Materials, Puri, India
Chair, Organising Committee, The 25th International Workshop on Condensed Matter Theorists and 11th Gordon Godfrey Condensed Matter Workshop, Canberra

Professor R.L. Dewar
Member, Commission 16, International Union of Pure and Applied Physics
Member, National Committee for Physics
Member, Editorial Board, Australian Journal of Physics (now defunct)
Member, ACT Branch Committee of the Australian Institute of Physics
Associate Editor, The Physicist for the ACT
Chair, International Congress on Plasma Physics, July 2002
Member, Local Organising Committee, World Space Environment Forum, July 2002

Dr H.J. Gardner
Australian Representative, IUPAP Commission on Computational Physics (C20)

Dr M. Galassi
Associate Editor, Philosophical Magazine
Deputy Director General, International Biographical Center, UK

Dr K. Kumar
Member, Editorial Board, The Journal of Transport Theory and Statistical Mechanics

Dr S. Kayeck
Convenor, Physics Summer School on Biophysics, 15–26 January 2001, ANU

Dr R.A. Robson
Member, Organising Committee, 19th AINSE Nuclear and Particle Physics Conference, Sydney, 7–11 July 2001

Dr M. Walker
Participant, Adopt-a-Physicist Program, ACT Branch, Australian Institute of Physics
Outreach Activities

Founder’s Day was held on 12 October with invited guests from the ANU, government organisations, industry and the media, as well as former employees. It is a day of celebration of our Founder, Sir Mark Oliphant. The following members of staff were Founder’s Day speakers:

Professor Allan Snyder, Centre for the Mind and Optical Sciences Centre
Switching on Hidden Skills by Turning off Part of the Brain

Mr Tony Cullen, Electronics Unit
Coping with Noise by Visiting a Tropical Island

Dr Anatoli Kheifets, Theoretical Physics
Reaction Microscope, Photon Factory and Few Simple Formulas

Dr Wayne Solomon, Plasma Research Laboratory
Fluctuations: The Bigger they are the Harder they Fall

Dr Andrew Stewart, Applied Mathematics
Why doesn’t the Universe Collapse into a Black Hole?

Dr Nanda Dasgupta, Nuclear Physics
Spiralling into the Future

Dr Julian Lower, Atomic and Molecular Physics Laboratories
Probing the World of Atoms

Ms Jodie Bradby, Electronic Materials Engineering
Silicon under Stress

Dr Elena Ostrovskaya, Director’s Unit
On Solitons, Necklaces and Propellers

Professor Neil Manson, Laser Physics Centre
Superman v Diamond

The Australian Institute of Physics “Adopt-a-Physicist” Program. Now in its fourth year of operation, the ACT AIP “Adopt a Physicist” program visited ten ACT Secondary Colleges. Dr Ken Baldwin (LPC) who implemented the program was assisted by Dr Aidan Byrne (NP) and Dr Nanda Dasgupta (NP). Students participating in the program included Elliot Fraval (LPC), Vanessa Leung (AMPL), Penelope Lever (EME), Ed Roberts (AMPL) and Anthony Searle (Physics, Faculties)

The Australian Industrial Development Corporation Forum
The Plasma Research Laboratory hosted a visit by a number of students attending the Australian Industrial Development Corporation Forum from 6–21 January. Students undertook hands-on experiments in both the Toroidal and Space Groups of the Laboratory.

The Australian Nuclear Science and Technical Organisation
The Plasma Research Laboratory hosted a visit by a group of twelve engineers from The Australian Nuclear Science and Technical Organisation in January. During this visit, the engineers were taken on a tour of the H-1 Facility and took this opportunity to have discussions with Plasma Research Laboratory academic and technical staff.
Wedge
Following an invitation by the Conference organizers, Peter Alexander, Orson Sutherland, James Constable and Rod Boswell demonstrated the WEDGE at the OZeCulture Conference in the Sofitel, Melbourne, 13–14 June.

Peter Alexander and Rod Boswell (PRL) demonstrated the WEDGE at the Apple Users Consortium, Academic and Developers Conference 2001, held in Townsville from 23–26 September.

National Youth Science Forum
The Forum provides a unique experience for year-11 students to visit the School and meet with leading scientists and tour the laboratories and major national research facilities. This year 160 students visited the School in two sessions from 8–11 January, and tours were conducted by Dr Tim Thompson, PR Unit. The help of the following staff members and students from various departments was very much appreciated: Dr Vince Craig (AM); Dr Maarten Vos (AMPL); Dr Mladen Petravic, Dr Jenny Wong-Leung, Mr David Brett, Mr Sanju Deenapanray and Mrs Lan Fu (EME); Dr Aidan Byrne, Dr Nanda Dasgupta and Dr Greg Lane (NP); and Professor Jeff Harris (PRL).

National Science Week
Professor J.D. Love of the Director’s Unit gave a talk on photonics entitled The Future is Bright at the National Science Festival, Canberra Convention Centre, on 5 May. He also gave promotional talks about photonics to: 25 fourth year Electrical Engineering students at Curtin University of Technology in Perth on 14 May; 50 graduate students at the Gwangju Institute of Science and Technology, Korea, on 11 September; 85 year-9 students at ANU during the Siemens Science & Engineering Experience, and 50 first year Physics students in the Faculties at ANU on 18 October. He was a member of the adjudication panel at Lidcombe TAFE judging presentations by final year students in telecommunications.

Siemens Sciences and Engineering Experience
The 2001 Siemens Sciences and Engineering Experience was conducted for students entering Year 10 in 2001. See page 75 for details.

Australian Science Festival
The School was, as usual, a contributor to the ANU stand at the Australian Science Festival. The ANU theme this year was DNA and genetics so the School developed a display based on the theoretical DNA packing work done by Dr David Williams of Applied Maths. The Display consisted of two lengths of flexible tube of differing stiffness, that students attempted to wrap around pegs. The flexible tube curls into a ball like flexible polymers such as polystyrene. The stiffer tube, like DNA, forms a torus or doughnut shape.

Other Outreach
Interaction with local schools has continued this year with Dr Aidan Byrne (NP) presenting several tours of the School’s Heavy-Ion Facility to a group from Narrabundah College. He also presented a talk to the Wanniassa School on Crystals designed for younger students and supervised a student project for the Narrabundah College IB program.

Dr Keith Fifield organised and presented a 3-hour laboratory session on Accelerator Mass Spectrometry for the Australian Defence Force Academy’s (ADFA) Environmental Physics course. He also gave a guest lecture on the nuclear fuel cycle as part of the ADFA third year Nuclear and Particle Physics course.

Dr Andrew Stuchbery gave a seminar at University College ADFA, UNSW on Hyperfine Interactions in Ion-implantation and Nuclear Physics on 30 April.

Dr S. Kuyucak gave a 12-lecture course on Ion-channels in Okazaki National Research Institutes, Japan.

Students explore the implications of stiffness in polymers such as DNA at the Science Festival.
Workshops and Conferences

Applied Mathematics

Applied Mathematics Kioloa Workshop, 24–28 October, 2001. Three days of talks by all Department staff and students, plus invited guests from Sydney and Melbourne.

Electronic Materials Engineering

Australian Workshop on Nanotubes and Fullerenes (AWN2001), 3–4 May, ANU, Canberra. The workshop received sponsorships from the Department of Theoretical Physics, the Electron Microscopy Unit, the Department of Engineering, ANU, and Particle and Surface Sciences Pty Ltd, NSW.

Dr Y. Chen was the Workshop Chair. Topics covered theory, synthesis, property and application of nanotubes and fullerenes. Invited international speakers included Professor D. Tomanek (USA), Professor H.M. Cheng (China) and Dr D. Golberg (Japan). The workshop attracted 50 participants and 35 presentations.

15th International Conference on Ion Beam Analysis, Incorporating the 12th AINSE Conference on Nuclear Techniques of Analysis, 15–20 July, Cairns

The 15th International Conference on Ion Beam Analysis (IBA) was held in Cairns between 15-20 July 2001. The conference was chaired by Prof. Rob Elliman and was extremely successful with over 230 participants and an additional 40 accompanying persons. The conference ran over 5 days during which 290 scientific papers were presented in oral and poster sessions. The conference proceedings contained was subsequently published in the Elsevier journal: Nuclear Instruments and Methods in Physics Research.

Laser Physics Centre

Quantum Optics and Bose Einstein Condensation Workshop, ANU Field Station, Kioloa, December 9 - 11

The second in a series of workshops on Atom and Quantum Optics organised jointly between the School and the Physics Department, The Faculties was held in December as a satellite meeting following the Australasian Conference on Optics Lasers and Spectroscopy (ACOLS) in Brisbane. The linkage between the two fields was provided through a keynote presentation by Professor Mark Kasevich, the 2001 Frew Fellow of the Australian Academy of Science, who spoke on Quantum state manipulation in BEC. Other international speakers included Hideo Mabuchi (Caltech - quantum information and quantum feedback using atoms) and Juergen Eschner (Innsbruck - experiments with trapped ions for quantum logic). Around fifty participants from Australia and overseas enjoyed two days of presentations linking the two fields of atom and quantum optics.

Nuclear Physics

The inaugural **Workshop in Nuclear Techniques** (24–28 September) was conducted for undergraduate students from the University of Wollongong and the Department of Physics, the Faculties. The Workshop provided a hands-on introduction to nuclear methods designed for students in the Bachelor Medical Physics Program at the University of Wollongong. Lectures in the workshop were presented by Drs Aidan Byrne, David Weisser, Greg Lane, Anna Wilson, David Hinde and Professor Rob Elliman. Fifteen students participated in an intensive five-day program that included experiments on the 14UD heavy-ion accelerator and the 5SDH accelerator. Topics covered included radiation safety, detector design and operation, isotope production, accelerator operation and Rutherford backscattering methods. The Workshop was highly successful and will become an annual event.
Plasma Research Laboratory

The tragic events of 11th September 2001 led to the postponement of The 13th International Stellarator Workshop which was scheduled to be held at the Leonard Huxley Theatre, ANU from 25–29 September. The Workshop took place on 25th February–1 March, 2002. The Workshop attracted over 80 participants from a wide range of overseas institutions and a number of national delegates. Topics included recent experimental projects; transport and confinement improvement; MHD equilibrium and stability; turbulence and plasma heating; diagnostics; configuration optimisation; new devices and reactor studies.

Theoretical Physics

The 14th Canberra International Physics Summer School in Biophysics: From Proteins to Cells, was held at the ANU from 15–26 January. Dr Serdar Kuyucak was the Convenor. The purpose of the School was to provide physics perspectives on the emerging molecular structure of biosystems for a broad audience with backgrounds in physics, chemistry and biology. Participants numbered 60 and lecturers 12. As always, the Summer School was visited by people from around the world.

A Mini Summer School on Plasma Physics was held from 29 January–2 February. The School was intended for senior undergraduates, graduate students and academic staff with interests in plasma science and technology and was supported by the Australian Institute for Nuclear Science and Engineering (AINSE). Lectures on “The Framework of Plasma Physics” were presented by Professor Hazeltine as well as a series of experimentally oriented lectures. The School was attended by 31 participants.

The 25th International Workshop of the Condensed Matter Theories was held in conjunction with the 11th Gordon Godfrey Condensed Matter Research Workshop in Belconnen during 3–7 December. The Workshop was an external activity of the Asia-Pacific Centre for Theoretical Physics. Dr Mukunda Das was the Chair of the Organising Committee.

The topics covered were in the currently researched areas of mesoscopic and strongly correlated systems including quantum liquids, boson condensates, superconductivity, superfluidity, and MonteCarlo simulations, etc. Forty-one invited talks were presented to 60 participants.

The Workshop was financially sponsored by the US Army Research Office, Asia Pacific Centre for Theoretical Physics, University of NSW, University of Melbourne, University of Wollongong, RSC (ANU) and RSPhysSE (ANU).

For more detailed information please refer to section “Centre for Complex Systems” on page 84.
Visitors

Applied Mathematics

- Dr. C. Arns, University of NSW
- Dr. C. Neto, University of Florence, Italy
- Professor R. Netz, Max Planck Institute, Germany

Atomic and Molecular Physics Laboratories

- Dr. E. Bieske, University of Melbourne
- Dr. A. Dorn, Max Planck Institute for Nuclear Physics, Germany
- Professor H. Schmidt-Böcking, University of Frankfurt, Germany
- Dr. J. Sternberg, High Energy Accelerator Research Organization, Japan
- Dr. K. Ullman-Pfleger, University of Frankfurt, Germany

Director’s Unit

- Dr. A. Akulshin, University of Melbourne
- Mr. M. Elias, ADC Australia Pty Ltd
- Professor A. Fetter, Stanford University, USA
- Professor E. Foerster, Friedrich-Schiller University, Germany (jointly with LPC)
- Professor J. Hullett, Curtin University
- Dr. D. Liley, Swinburne University
- Professor L.C. Woods, Oxford University, UK
- Professor W. Zakrzewski, Durham University, UK

Electronic Materials Engineering

- Dr. W. Assmann, University of Munich, Germany (jointly with NP)
- Dr. S.L. Bai, Beijing University, China
- Dr. A. Balogh, Darmstadt University of Technology, Germany
- Professor S. Bandopadhyay, Virginia Commonwealth University, USA
- Mr. W. Berky, Darmstadt University of Technology, Germany
- Professor H.M. Cheng, Chinese Academy of Science, China
- Professor J.A. Davies, Chalk River, Canada
- Ms T. Dessauvage, University of Bonn, Germany
- Dr. A. Dowd, ANU (until January)
- Dr. J. Evans-Freeman, University of Manchester Institute of Science & Technology, UK
- Dr. B. Gallagher, University of Nottingham, UK
- Dr. D. Golbert, National Institute of Materials Research, Japan
- Dr. M. Janson, Royal Institute of Technology, Sweden
- Dr. C. Jeynes, University of Surrey, UK (jointly with NP)
- Dr. A. Kuznetsov, Royal Institute of Technology, Sweden
- Dr. M. Linnarsson, Royal Institute of Technology, Sweden
- Dr. R. Pal, University of Western Australia
- Professor G. Ross, INRS – Énergie et Matériaux, Canada
- Professor D. Tomanek, Michigan State University, USA
- Dr. A. Uddin, University of Canberra
- Professor H. Whitlow, University of Lund, Sweden

Laser Physics Centre

- Dr. A. Boiko, Electro Optic Systems, Canberra
- Professor E. Foerster, Friedrich-Schiller University, Germany (jointly with DU)
- Mr. R. McMurtrie, University of Essex, UK
- Professor B.J. Orr, Macquarie University
- Dr. D. Pulford, Defence Science & Technology Organisation, Canberra
- Professor M. Saffman, University of Wisconsin, USA
- Professor G. Stegeman, University of Central Florida, USA
- Dr. O. Uteza, Université Aix-Marseille II, France

Nuclear Physics

- Dr. W. Assmann, University of Munich, Germany (jointly with EME)
- Professor P. Barker, University of Auckland, NZ
- Dr. A. Bruce, University of Brighton, UK
- Dr. W. Catford, University of Surrey, UK
- Dr. M. Carpenter, University of Tennessee, USA
- Dr. N. Clarke, University of Birmingham, UK
- Dr. N. Curtis, University of Birmingham, UK
Postdoctoral Fellowship Completions and Destinations

Atomic and Molecular Physics Laboratories

Dr Robert Gulley took up a position at the Department of Physics, University of Western Australia in February.

Laser Physics Centre

Dr Matt Sellars completed his ARC Fellowship and has been appointed as a Fellow in the Laser Physics Centre.

Nuclear Physics

Dr Paul Hausladen of the Accelerator Mass Spectrometry Group resigned his position as a Postdoctoral Fellow to take up a Postdoctoral Fellowship with the Physics Division, Oak Ridge National Laboratory, USA.