Nanoscience and nanotechnology

We conducts extensive research into the design, growth and fabrication of semiconductor and optical devices on the nanometer scale using techniques ranging from MOCVD growth to ion beam processing. Such devices by virtue of their scale, exploit quantum effects to enhance their performance. A large part of this research program focuses on quantum well lasers and detectors of importance to the telecommunications industry.

We also research the nanoscale modification of bulk materials such as nanocrystals within semiconductors induced by ion irradiation. materials modified in this way can have unusual and technologically useful properties such as light emission at wavelengths incompatible with the bulk material band structure.

Nanotubes as their name suggests are microscopically small pipes of material such as carbon - like an elongated form of a "buckie ball". These have exciting properties such as unimaginably high tensile strengths and the School has an active research program on the efficient production of nanotubes by mechano chemistry.

Potential student research projects

You could be doing your own research into nanoscience and nanotechnology. Below are some examples of student physics research projects available in our school.

Controlling light with nanostructured surfaces

Metasurfaces are ultra-thin nanostructured materials that can shape and control light in extraordinary ways, but to be practical they must be tunable rather than fixed. This project develops liquid crystal–integrated metasurfaces to create reconfigurable flat optical devices for dynamic focusing, beam steering, and advanced sensing.

Professor Ilya Shadrivov, Dr Yana Izdebskaya, Dr Vladlen Shvedov

Nanofluidic diodes: from biosensors to water treatment

Controlling the flow of ions and molecules through nano-sized pores is fundamental in many biological processes and the basis for applications such as DNA detection, water desalination and drug delivery. The project aims to develop solid-state nanofluidic diodes and exploit their properties for applications in bio-sensors and ion-selective channels.

Prof Patrick Kluth

Solid-state nanopore sensors: Unveiling new frontiers in biomolecule detection

Investigate novel nanopore bio-sensors using nanofabrication, bio-chemsity and machine learning.

Prof Patrick Kluth

Nanobubbles

Nanobubbles are simply nanosized bubbles. What makes them interesting? Theory tells us they should dissolve in less than a second but they are in some cases stable for days.

Professor Vincent Craig

Please browse our full list of available physics research projects to find a student research project that interests you.