Materials science and engineering

The Research School of Physics undertakes a wide range of materials science research including:

Use of ion beams to modify both electrical physical properties of materials - especially semiconductors. The School has an 1.7MeV tandem accelerator dedicated to this purpose together with a number of smaller machines used for both modification of materials and diagnostic techniques such as RBS. This ion beam modification of semiconductors is complimented by a MOCVD growth program focusing on production of semiconductor optoelectronic devices such as quantum well lasers and detectors.

Design and development of advanced polymers and glasses for use in photonic devices such as all optical fibre amplifiers, nonlinear optical devices and planar wave-guides. The School has a laser direct write system for the production of prototype optical waveguide devices such as smart couplers. We also have facilities for production of optical fibre and a major program dedicated to novel fibre materials.

Interaction between materials occurs primarily at surfaces making the study of surface topology, physics and chemistry a priority area for the School. We also have several groups studying: interactions between solute particles, from molecules to proteins. Polymers in solution. Suspensions of colloidal particles. Such interactions determine the properties of most real world systems. Examples include self assembly of biomembranes, reactivity in biotechnologies and biochemistry, chemical synthesis, and a host of chemical engineering applications, from minerals processing, oil recovery to soil science and detergent formulation and drug delivery. In support of these activities we have several advanced diagnostic techniques such as ultra high-resolution computed tomography.

The School has a strong research effort in mechanochemistry: the use of physical impact to generate powders with unique physical properties especially on the nanoscale. Various processes techniques are being developed to create selective nanostructures in economically viable commercial quantities.

The School also has an active research program in ultra high speed laser ablation for both the modification of surfaces and the creation of exotic nanoscale ablation products such as ultra light carbon foams.

Potential student research projects

You could be doing your own research into materials science and engineering. Below are some examples of student physics research projects available in our school.

High-bandwidth stabilisation of a 2µm-band laser

Gravitational wave detectors have reached the thermodynamic limit of optical coating performance and require novel coating materials and coating noise suppression techniques for further sensitivity improvements. This project is to design a high-bandwidth feedback control system to stabilise the intensity and frequency of a 2µm-band laser for investigations of thermal noise in experimental mirror coatings.

Dr Johannes Eichholz, A/Prof Bram Slagmolen, Distinguished Prof David McClelland

Shape engineering of semiconductor nanostructures for novel device applications

This project aims to investigate the growth of III-V semiconductors on pre-patterned nanotemplates. By using different shapes and geometries, it is envisaged that these nanostructures will provide novel architectures for advanced, next generation optoelectronic devices.

Professor Hoe Tan, Professor Chennupati Jagadish

Tomography of dynamic processes (3D movies)

Generating 3D volumes, i.e., tomography, of an object as it changes over time  (or evolves) is a challenging problem. The ability to achieve this would reveal new information and understanding of many dynamic processes.

Dr Andrew Kingston, Prof Adrian Sheppard, Dr Glenn Myers

Positron Annihilation Spectroscopy

Understanding material defects at the atomic scale using anitmatter.

Dr Joshua Machacek, Professor Stephen Buckman

Please browse our full list of available physics research projects to find a student research project that interests you.